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Relevance of domain-wall softness for a universal classification of domain-growth kinetics
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The influence of domain-mall softness on the kinetics of growth is studied within a two-
dimensional microscopic model which supports domain walls of variable softness. The domain ra-
dius grows with time as 8 (t)-t, where the kinetic exponent is found to assume a value, n =0.25,
which is independent of the degree of softriess. This suggests a dual universal classification of
domain-growth kinetics into classes of systems with soft and hard walls.

Formation and growth of aggregates and ordered struc-
tures from the microscopic constituents of matter are
widely observed processes in nature. Among these pro-
cesses is the growth of ordered domains of molecules as it
takes place after a thermal quench below a phase transi-
tion temperature. The kinetics of domain growth is
currently subject to a resurging interest' " prompted by
the indication that some unifying principle may be opera
tive for the growth processes in a great variety of different
systems. It is now anticipated that the kinetics of growth
may be arranged into a small number of universality
classes. 6' " So far, neither has the unifying principle
been discovered nor have the relevant parameters for the
classification been determined unambiguously.

In some recent model studies ' it has been suggested
that the degeneracy p of the ordered phase as well as the
conservation laws governing the growth process are, im-
portant for a possible universal classification of growth.
That these two parameters, however, are insufficient for a
complete classification is indicated by two computer-
simulation studies ' which demonstrate that systems
governed by the same conservation laws and described by
the same value of p may have markedly different kinetic
exponents. The systems employed in these two studies are
distinguished by their capacity of supporting soft domain
walls, in contrast to the commonly studied Ising'-' and
Potts models which give rise to hard walls only.

In this work I present the results derived from a
computer-simulation study of a two-dimensional model
specifically constructed to allow a systematic investigation
of the influence of domain-wall softness on the domain-
growth kinetics. The model, which has a fourfold-
degenerate (p =4) ground state, contains a parameter
which controls the softness and the thickness of the
domain walls. The results of the study provide mounting
evidence that domain-wall softness is relevant for a
universal classification of kinetic exponents. In particu-
lar, it is shown that the kinetic exponents are independent

of the degree of softness, except in the limit of vanishing
softness where a distinct crossover to the well-known
hard-wall behavior is observed. The kinetic exponents of
the soft-wall and hard-wall universality classes are
markedly different, i.e., n =0.25 and 0.50, respectively.

The two-dimensional microscopic interaction model, on
which the present study is based, is defined by the aniso-
tropic Hamiltonian
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where J =J =—J~O and P~O are model parame-
ters. The model is arrayed on a square lattice.
S;= (S;„,Sty ) =(cosy;, sing;) is a classical planar spin vec-
tor. The repulsive pair interactions serve to produce
(2&& 1) antiferromagnetic ground states of which the J
term stabilizes structures with the propagation vector
parallel to the sublattice magnetization. The single-site
crystal-field-like term P favors spin orientations along the
tw'o axes of the square lattice. The ordered phase of the
model is described by a two-component order parameter
(gi, gq). There are p=4 thermodynamically degenerate
ordered (2)& 1) domains a low temperatures (see insert of
Fig. 1). The symmetry of the model is that of the planar
XF model with cubic anisotropy. ' Several adsorbed
monolayer systems are characterized by this symmetry,
e.g., oxygen on W(110).

The continuous nature of the spin variables enables the
system to form soft walls between domains of different
types of ordering (cf. inset of Fig. 1). The P term moni-
tors the softness and thickness of these walls: Small .

values of P/J facilitate the formation of very soft and
thick walls; large values of P/J lead to hard and thin
walls. The model is studied here over two decades of the
softness parameter, 10 ' (P/J & 10.

31 2613 1985 The American Physical Society



OLE G. MOURITSEN

0
103— 0

I
I

1 l
=2 T T T

+—

io'» ZE(t)l~0-0
mp -0-0 0 0~0 0 Op O~

square root of the number of spins in the domain. A spin
is defined as belonging to a domain if its directional angle
deviates less than 5cp=~/15 from the ground-state angles
of the domain in question. '" The second measure of
length scale, L (t), is obtained as
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I have used a conventional Monte Carlo method' to
construct the evolution of the model following a deep
quench in temperature from T=op to T=O. The excita-
tion mechanism is of the Glauber type involving single-
site random reorientations of the spins. Thus, the order
parameter is a nonconserved quantity. The main results
are derived from a lattice with N = 100X 100 sites subject-
ed to toroidal periodic boundary conditions. To make
sure that the results are not invalidated by finite-size ef-
fects, a number of simulations have been performed on a
lattice with 150X150 sites. Each quench is performed
several times using different initial configurations and dif-
ferent random-number sequences. Ensemble averages are
obtained by averaging over the independent quenches.
The evolution of the system is followed for times up to
4000 Monte Carlo steps site.

Visual inspection of snapshots showing spin configura-
tions taken at successive times after the quench reveals
that the domain-wall thickness usually decreases with
time. For a fixed time, the softer the potential, the wider
and softer are the walls. The morphology of the domain
pattern also depends on P. The softer the walls, the more
spongy and elongated are the domains. A compact and
regular domain pattern emerges when the walls get harder
and thinner.

The domain-growth process is analyzed quantitatively
by calculating, as a function of time t, two different mea-
sures of the characteristic length scale of the growth pro-
cess. The first one is the average domain radius, R(t).
The radius of a domain is simply determined as the

TIME t

FIG. 1. Log-log plot vs time t of the linear domain exten-
sions, 8 (t) and 1.(t), of the excess energy per spin AE(t) and of
the domain-wall thickness d (t) for softness parameter I'/J =2.
The time is in units of Monte Carlo steps per site. The solid
lines denote the asymptotic power laws, Eq. (3), with the same
kinetic exponent, n =0.24. The inset shows a low-temperature
spin configuration with a soft wall between two ordered
domains described by the order parameter components g~ and
gq of the 2 X 1 structure.

R(t)-t', L(t)-t', bE(t)-t (3)

Scaling implies a =b =c=—n g 0.
Figure 1 shows a log-log plot of the time evolution of

R(t), L(t), bE(t), and d„(t) in the case of P/J=2.
After a transient period of about 70 Monte Carlo steps per
site, the growth is seen to be described accurately by a11

three algebraic relations in Eq. (2) with the same ex-
ponent, n=0. 24. Thus the growth process obeys dynami-
cal scaling. The domain-wall thickness is found to de-
crease with time and to approach a limiting value,
d~(oo)=1.2, which is characteristic for the late-time re-
gime of the growth process for P/1=2. Figure 2 gives
bE(t) for the whole range of values of the softness pa-
rameter. From these data, and the corresponding data for
R (t) and L (t), it is observed that the growth is algebraic
in time for P/J (7 and that scaling is obeyed.

The kinetic exponent extracted from plots like those
presented in Figs. 1 and 2 is given in Fig. 3 as a function
of softness P. Figure 3 also shows the late-time domain-
wall thickness d„( oo ) as a function of P. From this fig-
ure, the striking observation is made that, although the
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FIG. 2. Log-log plot of the excess energy per spin, AE(t), as
a function of time t for different values of the softness parame-
ter P/J. The time is in units of Monte Carlo steps per site. The
sohd lines denote asymptotic power laws with kinetic exponents
as given in Fig. 3.

where g(T)=1 is the equilibrium value of the order pa-
rameter. L(t) remains a useful measure of domain size
only in the cases where the number of spins in the walls,
N„(t), is small compared to N. From the total perimeter,
l(t)=2v're(t)Nd(t), of the Nd(t) domains occurring at
time t, an average domain-wall thickness may be defined,

d„(t)=2N„(t)/I(t)=N (t)/v ~R (t)Nd(t) .

Finally, the excess energy, bE(t)=(H(t)) —(H(T)), is
calculated. bE(t) is a measure of the internal energy as-
sociated with the entire network of domain walls. If
dynamical scaling holds in the late stages of the growth
process, the growth laws are expected to be algebraic in
time, ' i.e.,
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FIG. 3. Kinetic exponent n and late-time domain-wall thick-
ness, d ( ao ), as functions of the softness parameter P/J. The
solid line is a guide to the eye. The dotted line denotes early-
time behavior in the extreme soft-wall limit. The dashed line in-
dicates crossover to hard-wall low-temperature kinetic behavior.
Circles indicate results for the model in Eq. (1). Squares refer to
the anisotropic-planar-rotor model governing herringbone kinet-
ics (Ref. 4). The horizontal axis is logarithmic.

late-time domain-wall thickness varies more than an order
of magnitude, the kinetic exponent is independent of P in
the decade 0.3 (P/J (3. The value of the exponent is
n =0.24+0.03.

For P/J &0.3, the exponent is gradually increasing.
This is not likely to be the true late-time behavior since
d~(t) is increasing with time in this range caused by a
high frequency of coalescence processes. Much larger lat-
tice sizes are required to obtain reliable information for
t & 2000 when I' is very small because the largest domain
tends to percolate before the different domains begin to
compete. The walls are so wide and soft that the
domain-domain interactions are screened completely. The
resulting growth is therefore fast and characteristic of
"early times" where the nucleated domains are growing
and coalescing independently in an "elastic medium of
soft spins. " Long runs, in which percolation has not yet
set in, indicate that there is a crossover to a lower ex-
ponent for t &2000. This may suggest that the indepen-
dence of n on the degree of softness also extends to the
very soft regime.

For P/J & 3, a distinct crossover to a different behavior
is observed. This is characteristic of the low-temperature
growth of models with hard domain walls. For I'/J & 10,
the growth is gradually slowed down and finally stops.
The resulting quenched state is a metastable glasslike

frozen-in configuration of domains. Similar observations
have been reported for deep quenches of p =4 Ising and
Potts models on square lattices. For all three models, the
lattice structure makes the systems get trapped in a meta-
stable domain state and the true long-time kinetics is not
probed.

The finding in quenched systems with soft domain
walls of a kinetic exponent which is independent of details
within the model [i.e., P and d (oo)] corroborates the
concept of universality in domain-growth kinetics. Obvi-
ously, it suggests that models which support soft domain
walls belong to the same universality class. The general
validity of this statement is supported by the recent find-
ing of n =0.25 for the domain-growth kinetics of herring-
bone phases (p =6) (Ref. 4) governed by a two-
dimensional anisotropic-planar-rotor model, ' a model
which also gives rise to soft walls. The results of both n
and d~( oo ) for this model fit nicely on the curves in Fig.
3.' Furthermore, Grest et al. have recently studied a
class of models on triangular lattices with high values of p
(p=48) and with interaction potentials which facilitate
the formation of "wide domain boundaries" composed by
a large number of small domains. These boundaries may
be considered as wide and soft domain walls. For a series
of models in the wide-boundary limit, Grest et al. also
find n=0 25 in.dependent of details within the models.

All this evidence suggest that the domain-growth kine-
tics of models with soft walls belongs to a single univer-
sality class characterized by n=0.25. Moreover, softness
seems to be more relevant for a universal classification
than the value of p, i.e., more relevant than the topology
of the domain-wall network. In particular, pinning effects
for p &d, ' which on the square lattice are found to de-
crease dramatically the driving force for the growth in
models with hard walls, appear to be superseded by
domain-wall softness which facilitates migration of the
pinning centers.

The universal kinetic exponent of soft-wall kinetics,
n =0.25, is markedly different from the classical ex-
ponent, n=0. 50, found for Ising-type hard-wall kinetics
with a ' nonconserved order parameter. ' The much
slower kinetic behavior for models with soft domain walls
is probably due to a screening of the domain-domain in-
teractions in the late states of the growth; This screening
decreases the driving force of the growth.
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