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Critical relaxation of the one-dimensional Blume-Emery-Griffiths model
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A model for the critical relaxation in the one-dimensional Ising-type S= 1 spin system is present-
ed. This model is equivalent to the Blume-Emery-Griffiths model and exhibits two simple critical
points and one tricritical point. The kinetic behavior is studied using the real-space
renormalization-group approach. In the two critical points we find that the critical slowing down is
described by the dynamic exponent z, z =2. In each point this exponent belongs to the critical order
parameter, while the second order parameter relaxes faster, with z =1 or 0. At the critical point the
two order parameters relax with the same z, z = 1.

I. INTRODUCTION

The Blume-Emery-Griffiths model' (BEG) describes a
system of spins. Each spin has a magnitude of one, and
interacts with its neighbors via an Ising-like interaction.
The model allows for interactions which depend on s, the
z component of the spin, S, or on the s . This enables us
to describe a system having two degrees of freedom.
Blurne et al. ' proposed their model to describe a He-"He
mixture. Using the two degrees of freedom they were able
to present (as an Ising-like system) a phase separation and
superfluid ordering. The model was reinterpreted to
describe phase transitions in simple and multicom-
ponent ' fluids, and magnetic systems.

The model exhibits a variety of properties such as criti-
cal, tricritical, and first-order transitions due to the ex-
istence of two degrees of freedom. This behavior causes
the model to be very attractive. It was studied using the
mean-field approximation, ' series, and Monte Carlo
methods, as well as renormalization-group (RG) tech-
niques. ' '

While the statics of the S =1 model have been studied
extensively, we have not had a profound study of its
dynamics. Obokata" suggested a multidimensional kinet-
ic model based on the Glauber' model. He used the
mean-field technique, and was not able to discern the
peculiarity of this system. A similar model was given by
Batten and Lemberg. ' They also used the mean-field
technique, but in a more sophisticated way. They found
an Ising-like behavior, with a one-time scale for the two
order parameters of the system. This is consistent with
the conventional theory' which is expected for the mean
field. In both studies, only the behavior near the two sim-
ple Ising points was examined.

In this paper we analyze the relaxation of a spin-one
model in one dimension. This one-dimensional model has
two critical points. One describes 1 to —1 transition of
the spin-Z component. The second describes the 0 to 1

transition of the absolute value of the spin-Z component.
The model has a third second-order transition at a tricriti-
cal point when these two transitions compete with each
other. It is natural to describe the model using two order
parameters. This description enables us to construct a ki-

netic model in which each order parameter has
Cxlauber' -li.ke dynamics.

To study the dynamics, we use the real space' RG
technique, ' as was proposed by us, ' ' to analyze the
time-dependent properties of systems near their critical
point. This technique, which fits the low-dimensional
system, was used to calculate z, the dynamic exponent, '

of a few one-' and two-dimensional Ising-like models.
In the following model we obtained z =2 at the critical
points, and z=1 at the tricritical point. These values
agree with the exact result known for the one-dimensional
kinetic Ising model, ' and do not agree with the expected
value for the tricritical point, as was studied using the e
expansion. '

This paper is organized as follows. In Sec. II the model
is presented. In Sec. III the main ideas of the time-
dependent real-space RG (TRG) approach are reviewed
and the calculation of the TRG is performed. A discus-
sion of the results is given in Sec. IV.

II. THE KINETIC S =1 MODEL

The model under consideration is defined by the one-
dirnensional Harniltonian

H =g(Js„s„+i+As„s„+i —M„),

where s=1,0, —1. This is the BEG Hamiltonian with a
zero magnetic field. Different versions of this Hamiltoni-
an which contain odd-spin parameters appear in the litera-
ture. The most general form in one dimension was stud-
ied by Krinsky and Furman, and we shall refer to it
below.

The spin-. one Hamiltonian is used to describe a system
having two types of species. One of them, which consti-
tutes a pure system, exhibits simple Ising-like behavior (of
S= —,

' ). The second species enters as an annealed impuri-
ty (or vacancy). References to physical systems which fit
this description were given in the preceding section. Each
lattice site is occupied by one and only one species. The
details of the species are given by the value of s. The im-
purity is characterized by s =0. The critical species, the
one which exhibits the 8= —, property, is characterized by
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s; =(P;+1)/2,
2

Sg —(7)SI (2.3)

the value s =+1. The sign in the last case is the local or-
der parameter of the critical species.

Instead of the s variable, the Hamiltonian can be
rewritten using two two-value variables, o. and p, which
are related to s via

4

The P variable is well defined by (2.2), and can have the
values +1. On the other hand, only when p;=1 is the
value of o; =+1 determined by (2.3). When P; = —1 the
value of o; is irrelevant. Treating cr as an independent
variable causes the partition function to be multiplied by

[ ;(l —it; )/2]
2 ' ' . Dividing the partition function by this fac-
torz allows us to express the Hamiltonian (2.1) using the
Io,p) variables as

g &(O'„,P„;o„+l,P„+l ) N(1& ——b, )/2
n

=g[ (J/4)o„o„+l+(&/4)P„P„+l+(J/4)o„iT„+,(P„+P„+,)

+(7/4)o„o„+,P„P„+l+(II/2)(P„+P„+, )—X(K —5)/2], (2 4)

where N=g, land .H= —,
' (E—6+ ln2). The two Ham-

iltonians (2.1) and (2.4) are equivalent. The reasons for
using one of them instead of the other are the details of
the calculations which have to be carried out, and the par-
ticular test of the investigator. We studied a kinetic gen-
eralization of the statics described by (2.1) and found the
form (2.4) more suitable for this purpose. The statics of
the model is studied extensively in Ref. 9 [using the form
(2.1)]. The variety of phase transitions found in two di-
mensions (Ref. 5) degenerates in one dimension to three
high-order transitions.

(1) S= —, Ising-like transition which is characterized by
a long-range order of the o degree of freedom. (The
"magneticlike" transition. )

(2) S = —, Ising-like transition which is characterized by
a long-range order of the P degree of freedom. (The
"lattice-gas" transition. )

(3) A tricritical point.

All these transitions take place at zero temperature and
I

should be regarded as pseudocritical. The static behavior
which we found using (2.4) is identical, of course, to that
stated above.

The kinetic model is a straightforward generalization of
the Glauber model' for the S=—,

' system. The model de-
scribes the time-dependent behavior of a large interacting
spin system whose equilibrium is determined by the Ham-
iltonian (2.4). The system is brought into a state of con-
strained equilibrium. Then, at time t =0 the constraint is
removed, and the system relaxes towards the final equili-
brium via an interaction with a heat bath. The heat bath
is not treated explicitly in the model, and is characterized
by a bare time scale, ~. During the relaxation neither the
average value of the spins nor the energy of the system is
conserved. Only one kind of spin, o or P, is allowed to
flip each time, and only at one lattice site, with a transi-
tion probability rate 8'; ( Io,PI ) or 8't['( Icr,pI ), respec-
tively. This procedure can be described by an empirical
master equation for the spin probability distribution,
P(Ia,PJ;r),

S
P(Io&P jir) y ~i (ol&Pit t oi&Pii . t AN&PN)P(ol&Plt t oi&Pi& oN&PN&r)

dt

1 o'
2 ( I +Pi ) +i (ol&Pit . i ot &P& & )P(ol&P 1& . i i &Pi&

~ ++ II
& (ol&Plt i oi& Pit ) (ol&Pli i oi& Pi&

1 0'+ 2 ( ]+Pi ) +i (&1&Pl& i &i &Pi~ t~ ~ ~ ~ )P(&l&Plt t oi&Pi i~ ~ ~ tr )

=L(a)P(a, t)= —g g (1—p; )W; (a)P(a;t),
1 CX= 0',P

(2.5)

where a denotes the spin type (i.e., gQ =f +f"), and

p; is a spin-flip operator:

I

The transition probability satisfies the detailed balance
which ensures the ergodicity of the system:

+rp f(ol pl . (1—pi )Wi (a)P, (a)=0, (2.7)

=f(oi,pl, . . . , —a;, . . . , oN, pN) . (2.6) where e denotes equilibrium, P, (a)=P(a, t = co ). Equa-
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III. THE RG TRANSFORMATION

The TRG transformation is composed of two stages.

A. The renormalization of the space

The RG transformation is applied to the two sides of
the master equation (2.9):

rT(a', a) P(a;t)= —T(a', a)L(a)P(a;t) .
dt

(3.1)

FIG. 1. Schematic representation of the spin states in s and
in o.-p space. The transitions between them (in o.-p space) are
indicated.

tion (2.5) describes two independent kinetic processes.
The transition between the states s =+1 is accomplished
by flipping o. The transition to the s =0 state is obtained
by flipping p. It is easy to see that there are six possible
transitions in the s space. These are the transitions be-
tween s =1,0, —1 in cyclic and anticyclic. orders, as plot-
ted in Fig. 1. In the 0-p space there are eight transitions.
Six of them are equivalent to those in the s space, and ap-
pear in Fig. 1. The two extra transitions are the flipping
of o; in the )M;= —1 state. These transitions are between
two states having the same energy. Inclusion of these
transitions does not affect the long-time dynamics of the
model. The relation (2.7) does not determine W; unique-
ly. We shall use

The master equation (2.5) can be written in a slightly
different form, namely,

We choose the RG transformation to be independent of
time. Thus the transformation on the left-hand side of
(3.1) is nothing other than the standard RG static
transformation. ' ' This transformation maps the set of
the spin variables Io.,pI to a new set of spin variables,
Io',p'I, defined on a lattice whose dimensions are scaled
by a factor b, while preserving the free energy of the sys-
tem. The transformation is performed using the operator
T(a',p';o, p) operating on P(cr,p;t). The T fulfills some
conditions so as to conserve the probability distribution
after the transformation. ' '

The simplest choice for T is the decimation transfor-
mation,

(3.2)

M „„+((K) =exp V(a„,a„+)), (3.3)

where K[ =(J,K,H)], is the parameter space of the Ham-
iltonia. Each term M „„+&corresponds to a particular
state of a„and a„+), and the terms in M are organized
according to the following key:

by which every b spin becomes a member of the renor-
malized lattice, and all the spins between the new ones are
summed out of the probability distribution. We are not
interested, for the present, in "antiferromagnetic" order-
ing; hence, we limit ourselves to b =2.

The RG transformation is easily carried out using the
transfer matrix method. The transfer matrix M is

rdP(a, t)Idt = WP(a, t), — (2.9)

P(a, t) =P(a, t) /P, (a) .

The operator W is obtained from (2.5)—(2.7),

W;=P, S;(1—p; ).

(2.10)

(2.11)

where P(a, t) measures the deviation from equilibrium,
1

—1

1
—1

1

1
—1
—1

P(a) = 1+h~gcr;+happ; . (2.12)

i,a

For further properties of the Liouville operator L (or W),
the reader is referred to Ref. 23 and references therein.
We shall only note that since S' does not depend on the
history of the system, the model is a Markoffian one.

We limit ourselves to the relaxation from infinitely
small perturbation from equilibrium. This limit is physi-
cally accessible in the critical slowing-down problem. We
study the magneticlike perturbation which consists of odd
spin operators. Hence, the perturbation P is

The outer multiplication of these matrices (divided by the
partition function) is a matrix representation of the proba-
bility distribution. The decimation transformation is per-
formed by the inner multiplication of pairs of M. The re-
normalized transfer matrix is

A (K )M „„+)(K')—:M2„2„+((K) M2„+) q(„+()(K),
(3.4)

where A(K ) is the contribution to the free energy from
the decimation. Relation (3.4) determines the RG recur-
sion relations,
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K'=RK . (3.5) TL (a)P (a; t) =b 'L'(a')P'(a'; t) (3.12)

The fixed points of this transformation,

(3.6)

are associated with critical points (or zero correlation).
Using the following functions in the parameter space,

x =exp(J), y =exp(K/4), w =exp(H),

The recursion relations derived from (3.4) are

Ax'y'w'=y w (x +x )+2/y
Ay'w'/x'=2y w +2/y

A/y'=w(x+x ')+2/w,
Ay'/w'=2y 2+2y2/w2 .

The fixed points K' =(x,y*,w*) of (3.8) are

(ao, ao, oo ) at point A: Ising (ferromagnet),

(1,oo, 1) at point 8: Ising(lattice gas),

( oo, co,0) at point C: tricritical .

(3.7)

(3.8a)

(3.8b)

(3.8c)

(3.8d)

(3.9)

In a similar way the RG transformation of P is calcu-
lated. There are two different contributions to it. When
the spin site i of a; is i =2n (a spin which is not summed
out in the decimation), the first contribution is just a„'.
I'he second contribution is when i =2n + l. In this case a
gaum of the form M „„+i.a „+,.M „+,„+2,where

T r

g 1 0
OI -= 0, -' —0

I

0 0 0
0= 0 0, and o, =

has to be carried out.
To the leading terms, the calculation gives

AM(K ')(cr „'+o'„'+ i )/2
~2 +&'~

O

at fixed point A, at fixed points B,C,
(3.10)

M P 2n+ i.M- AM(K ')(P n +P „'+i)/2

at fixed points A,B, and C .

The two contributions are collected together and give
the linearized RG transformation of the perturbation P at
the fixed points Q =A,B,C:

which is of the same form as (2.5).
In this expression the transformation of L(a) into

L'(a') is determined by that of P, (a) since L (a) is com-
posed of terms which appear in P, (a) [Eq. (2.8)]. W;
enters into W [Eq. (2.11)]via the expression

P ' =P, Wi ( I a I ) . (3.13)

(a;)The symbol P ' means that all the interactions around
the spin mentioned in the brackets are excluded from P, .

(a;)The fact that P ', as given by (3.13), is independent of
a;, is a direct consequence of the detailed balance (2.7).
Later, we shall use this lack of dependence on a; to identi-

(a;) I (a,' ) ~ (a,' )
fy expressions as being P ', or P ' . P ' denotes a
renormalized probability distribution with the Hamiltoni-
an (2.4), from which the interactions with a,' are excluded.

I(a'. ) .
Thus, P ' is equivalent to

P ' =P,'(Ia'I)Wi (Ia]) . (3.14)

(a2„)
@(M2n,2n+i M2n+1, 2n+2) ~ (3.15)

where P'' " ' "+ ' is the contribution to the renormal-
ized partition function from the spins which range be-

(a, ) .
tween 0 to 2n —2 and 2n+2 to N. M ' is the transfer
matrix which is obtained from the relation

(a,. ) (a,. )
M; ' i;SM; + i ——exp( V; i; ) W; exp( V;;+ i ) . (3.16)

The term (1—p; )P [Eq. (2.11)],which multiplies P ' to
form the i term on the right-hand side of the kinetic equa-

(a;)
tion (2.9), simply multiplies P ' by 2h~a;. As already

(a;) ~

noted, P, ' is independent of a;, so that a; appears only
as a; T(a';a). The T(a';a) depends on a; only if a; is a
spin which is renormalized to a a,' variable. Thus, if
i =2n + 1 (a spin which is summed out) a; appears linear-

{a,)
ly in TP ' a;. The contribution of the trace over its
values is therefore zero. If, on the other hand, i =2n (the
a; is transformed into a a„' variable) we shall have to per-
form the trace on it. The only effect of the RG on a; is
to transform it into a2„. There is no difference between
terms connected to o. or p, and they are treated equally in
the discussion below under the general symbol a. The
new variables a„' i and a„'+i decouple the cells in which
a„' is found from the rest of the lattice. Thus, the trace
over the rest of the lattice, which can be performed in-
dependently, gives

(a2„)
(M 2n —2, 2n —1 M 2n —1,2n )

he=it. ~h~, hp Aqhq, ——Q ~ Q

where,

A,"=2, 1~=1, 1~=2,

(3.1 1) The detailed expressions for the M'n' are

U 1/(y w)U
M~=ym

1/(y w)U w U

Z„"=2, X~a=2, X„'=2.

The calculation of the transformation of the right-hand
side of (3.1) is more tedious. Ideally, we would expect the
result where

~1/2 ~1/2

ta 'U m 'U (3.17)
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X1/2
1/2 —1/2 1 1

X X
and U=

The use of the renormalized bare time scales,

r~=(A, /to~)r~=b

The multiplication M M' ' at the three fixed points gives

2 ' AM'' ' point A,
M-M' '= ~ AM'' ' po1nt B,

2 1/2AM, (. ) point C,
(3.18)

gM (~~ point A,

~ M ~ = 2-'"AM' ~ ' point B,
AM (~~ Point C.

Substituting (3.18) and (3.17) gives

r„' =(&„/co„)7.„=b
(3.24)

P'(a', t) =W' g(1/~' )h
' g a,'dt I

(3.25)

The standard ideas of the RG transformation identify z
in the time-dependent problems' ' ' ' as the dynamic ex-
ponent.

IV. CONCLUS, ION

brings the renormalized master equation into the invariant
orm,

t (a„') ggP con an

where

A & B C
CO~ =

2 ~ CO~= 1, CO~= 1

A B & C
co& ——1, cO& ——» co&

——1 .

(3.19)

A B C
z& —1, z& —2, z& —1 .

(4.1)

Six exponents characterize the relaxation of the pertur-
bation at the three critical points,

I I

2P,' ( I a'I )co g 8' ' tr,' +2P,' ( I
a'

I )tot'g W'; '
p,'

1+h~co~+ET; +hpcopgp( (3.20)

To express the perturbation in terms of h', we use the
recursion relations (3.11). The equation (3.1) becomes

dt
P'=W' 1+(co /A, )h' go,'+(co„/A,„)h„'gp,'

(3.21)
B. The renormslization of the time

The renormalization of the space transformation
transformed the master equation into (3.21). This equa-
tion has two time scales. In order to have a self-consistent
description of the kinetic procedure, the two bare time
scales should be included in the master equation a priori.
With the two time scales ~ and ~&, which characterize
the interaction with the heat bath of the fields h and h„,
respectively, the master equation,

dt
P(a;t)=W (h /r~)go;+(h~/r~)gp, ;

becomes

P'(a';t)=W' (1/r )(~ /& )h' ga,'
dt

(3.22)

+ (1/w~)(toq/A~)h ~gp;'

In the derivative of (3.19) we used the fact that the factor
A, which is the contribution to the free energy from the
decimation between the spins 2( n —1)—2(n + 1) has to be
absorbed into P'' ' in order to keep the normalization of
the probability distribution. The reader is referred to Ref.
18 in which a detailed graphic representation of this kind
of calculation is given.

Using (3.19), the left-hand side of the renormalized
master equation (3.1) is

The slowest relaxation mechanism governs the critical
slowing down of the system. Hence the dynamic ex-
ponents are

z=2
z=l

(4.2)

(4.3)

at the two simple critical points and at the tricritical
point, respectively. The kinetic behavior near the two
simple critical points is not surprising. The static
behavior of the system near these two points is an Ising-
like behavior. The kinetic process is a one-spin-flip mech-
anism, as in the Glauber model. ' Hence, we would ex-
pect the z =2 exponent known for the one-dimensional
(1D) Glauber model. However, examination of the relaxa-
tion of the faster dynamic mode shows a difference be-
tween the two Ising points. At the magneticlike critical
point (point A) the two order parameters suffer from crit-
ical slowing down. The critical order parameter is the
slowest mode (z =2). The nonordering parameter relaxes
faster with z =1. From Eq. (3.11) it is clear that the stat-
ic behavior of the nonordering parameter (characterized
with A,~) is the one responsible for its slowing down, and it
is the kinetics (3.19) which distinguish between the two
parameters. The coupling between the two order parame-
ters resembles the coupling in model A of Halperin
et al. , ' which presents the kinetic of a purely dissipative
system near four dimensions. The model A is assumed to
present the tricritical behavior of a metamagnet (the
Gaussian fixed point). However, the nonordering parame-
ter in model A behaves as the energy of the system. En

one dimension the energy relaxes with the same z as the
critical order parameter, ' thereby ending the resem-
blance.

At the second critical point B, the lattice-gas-like point,
a different behavior is found. In this case the nonordering
parameter is totally irrelevant, in both its static and
dynamic behavior, and has z =0.
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The different behavior is noticed at the tricritical point
(C). Now the two order parameters have similar critical
behavior, both in the statics and in the dynamics. The
dynamic exponent is the same for the two order parame-
ters, z~ =z„=1, and its main contribution is from the A,„.

We are not aware of similar low-dimensional systems
having tricritical behavior which have been analyzed us-

ing the TRG. Hence we can only make a comparison
with studies that used the e expansion, on systems near
four dimensions. Siggia and Nelson studied the dynam-
ics of He- He near the tricritical point. They also ex-
tended their study to the dynamic of the metamagnet,
which corresponds to model 2 of Halperin et al. ' Al-
though the original BEG model was assumed to give a
representation of the statics of the He- He mixture, it un-

doubtedly represents a system which has an order parame-
ter that belongs to different symmetry class. The dynam-
ics of the He- He mixture is affected by conservation
laws which do not appear in our purely dissipative model.
Hence, comparison can be made only with respect to
model A 2'24

The statics of model A is that of a system having an or-
der parameter and of nonordering parameter. ' One
can include in the model extra terms which would allow
the nonordering parameter to be critical itself, and not
only at the tricritical point. However, that has not been
done, and their information is restricted to the two critical

points corresponding to points A and C. We already
mentioned in the discussion of the relaxation at point A,
the difference between the relaxation of the nonordering
parameter in model A (such as the energy) and in our
model (which is faster than the energy). At the tricritical
point the two models also exhibit different behavior: our
model is characterized by z =1, while model A is charac-
terized by z=2 (for all orders in e). Thus, the two
models, which describe similar systems but in different di-
mensions, exhibit different critical slowing down. One
should remember that the expansion around four dimen-
sions is not valid below two dimensions. Hence, although
the result z =2 was obtained for all order in e, it would be
mere coincidence if it would be valid in one dimension.

The impurity dynamics in a 10 chain was studied in
Ref. 26. The model has similar dynamics to ours but it is
restricted to only one impurity. Hence we can compare
only the behavior near the simple Ising-like point, A. Not

— all the cases given in this reference correspond to our
model. The one case which does correspond (case "a"
with constant a and a varied J; in the notation of Ref. 26)
reveals the same z =2 as the one that we obtained.
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