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Contribution of light holes to thermionic field emission in Si and Ge
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Light holes (LH) may give the main contribution to the thermionic field-emission (TFE) current
through grain boundaries in Si and Ge. In spite of only a small concentration, the LH dominate because
their transmission probability through the potential barrier may be several orders of magnitude larger than
the probability for the heavy holes (HH). In order to explain the temperature dependence of the TFE
current, previous authors were forced to introduce a lowering of the potential barrier with decreasing tem-
perature. However, taking into account the contribution of the LH in TFE is equivalent to a lowering of
the potential barrier because it results in a slower decrease of the current than found in previous calcula-
tions with only one type of holes.

Polycrystalline semiconductor films are studied intensively
because they are one of the important elements of mi-
croelectronics and they are widely used for solar energy con-
version instead of noneconomical single-crystalline materi-
als. ' Polycrystalline p-Si conducting leads show a large tem-
perature coefficient of resistivity which is caused by the
strong temperature dependence of the resistance of grain
boundaries. 2~ This dependence has been explained within
the framework of the thermionic emission (TE),3 and ther-
mionic field emission (TFE).4 As far as TFE is concerned,
the conventional theory is based on a one-dimensional
time-independent &KB transmission probability v for po-
tential barrier:7

1

r(E) =exp —2 (2m'[qV(x) —E] j' dx ff . (1)J r1

Here, x1 and x2 are the classical turning points of the car-
riers with an energy E associated with the component of
momentum in the x direction -normal to the interface,
qV(x) the charge-carrier potential energy in the depletion
region caused by the grain boundary, and m' the effective
mass of the charge carrier.

In p-Si and p-Ge there are two different types of holes:
light holes (LH) and heavy holes (HH) with different effec-
tive masses ml.'=m1m0 and m~= m2m0, where m0 is the
free-electron mass (in Si: mt = 0.16, m2 = 0.52; in Ge:
mt=0. 043, m2=0. 34, Ref. 8). Most treatments, however,
have thus far used only one equivalent carrier effective

mass m'= mmp (for Si, e.g. , in Ref. 4 m=0.386). Since
m1 (( m2, the transition probability ~ for the LH may easily
be larger than for that of the HH by several orders of mag-
nitude. In these cases the current through the grain boun-
dary calculated by the approach developed here differs by an
appreciable amount from previous works where equivalent
carrier effective mass were used. It is the purpose of the
present paper to consider the two carrier types in detail and
to calculate their relative contributions to thermionic trans-
port.

Let us consider in Fig. 1 the same potential-energy dia-
gram for an individual grain boundary in a p-type semicon-
ductor as done earlier by Lu and co-workers. 4 The space-
charge potential barrier has the height V~ and width 8'.
The usual relation between V~, 8' and doping concentra-
tion N in the grain is satisfied: W' =2m Vs/(qN), where a is
the static permittivity. An additional rectangular barrier
with a width 5 and height H, is assumed. This energy dia-
gram with additional barrier, where both width 5 and height
H are allowed to vary with temperature in order to achieve a
force fit to experimental data, ~ is physically questionable.
This potential-energy diagram is used here only to demon-
strate the importance of contribution of the LH in the TFE
through rectangular barrier ( Vs=0 on Fig. 1) and through
space-charge potential barrier (8 = 0), as well as in the com-
mon case, which was analyzed by Lu and co-workers. 4

For small applied voltages U, satisfying qU/kT « 1, it is
easy to obtain the net current density Jof two types of car-
riers by using a method similar to the one used for only
one type.
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of the conductivity, which is introduced for equal scattering
times LH and HH as'

(m +(3/2) +.m +(3/2) )/m +((/2) ~ m e(1/2) )

EB = qVB
H

qx

FIG. 1. Potentia1-energy diagram of a grain boundary in p-si.

Here, p is hole concentration in homogeneously doped crys-
talline and U the voltage applied across the potential barrier;
U is assumed to be equally divided on each side of the
symmetrical semiconductor to semiconductor junction.

The coefficients C, (E) are obtained by integration of Eq.
(1). The first term in C((E) is responsible for TFE through
a space-charge barrier of height E~ and width 8' at the basis
and the second term for TFE through a rectangular barrier
of height H and width S (see Fig. 1).

For E & H; we have C, =—0. Equation (3) can be integrat-
ed from H to ~ and one can obtain the usual expression for
TE

ITE = exp( —H/kT) (5)

where H is the barrier height. If the tunneling probability is
small [i.e., C((E) is large] the integral from 0 to H in (3)
gives only a small contribution to I in comparison with ITE.
In this case I=—ITE, and the net current J is determined by
TE. The integrals (3) for the LH and the HH are equal, ex-
cept that the prefactors of the first one are smaller, being
m((m)+ m2), than before the second integral, which is
m2/(m)+ m2). To get Irs in the conventional form (5), we
have included mL', + mH in the coefficient 8 (2).

The following points are important.
(1) The contribution of the LH to the current J amounts

to a (m)/m2) share of the contribution of the HH and is
larger than the contribution of the LH to the density of
states which is proportional to (m)/m2)3/ .

(2) The appropriate transport effective mass m, ', which
determines the current in Eq. (2), is

1/m, "= [(mL', + mH)/(mi'. ""+mH"/") ]' (6)
and equals neither the effective mass mD of the density of
states ma= (m/. + m ), nor the effective mass m,

'

D, (E) = —[1—+2m(mo/(H E)SkT—/t ] (7)

For E H we have D& & 0 and D& & 0 for all energies E, if

Fi —=42m(mo/HSkT/t & 1 (8)

Barriers for which F& » 1 are defined as "wide. " To es-
timate F, from Eq. (8) one can use the following units: kT
and H in eV, S in, and taking /2m()/t=0. 5012 as a
dimensionless constant. At room temperature the barrier
with H = 0.2 eV is "wide" for the heavy holes in Si if
S & 47 A and for the light holes in Si if S & 85 A. The TFE
current through a "wide" barrier is determined by the elec-
trons tunneling near the top of the barrier. The integral of
Eq. (3) can be solved analytically:

1 h2I= ITE+ ITpEp ITpp- exp( —H/kT)
my + m2 2mp5 kT

(9)

The contributions of the LH and the HH to the ITpE in
Eq. (9) are exactly identical. The small coefficient m) in
front of the integral of Eq. (3) for the LH is compensated
by the larger value of the integral compared with that for
the HH. If H & kT, barrier was no importance. But, if
H » kT, ITrE [see Eq. (9)] for the "wide" barrier is small
in comparison with ITs(5). The contribution of ITFE to I in-

creases when T decreases.
When the temperature decreases, the inequality (8)

breaks down before ITpp dominates over ITE, and it is in-
teresting to consider the case FI « 1 . Such barriers are de-
fined as "narrow, " and D, (E) of Eq. (7) changes sign,
when E increases from 0 to H It means that the integrand
of Eq. (3) has a maximum at an energy E small in compar-
ison with H. The integration of Eq. (3) then results in

Previously3 4 m,
' was used in TF and TFE calculations as an

equivalent carrier effective mass. For TE currents, it gave
no essential difference compared with the exact results (2)
because m,"/m, = 1.06 in Si and 1.116 in Ge.

Next, let us analyze the contribution of TFE to the net
current, in the case 8'2E~ && 82H, when only the rectangu-
lar barrier matters and only the second term is preserved in

C, (E) in Eq. (4). In the energy range E(H the sign of
the first derivative with respect to the energy of the in-
tegrand of Eq. (3) equals the sign of the expression

m(
ITFE

my+ m2

+2moHS 1 —exp[ —(H/kT) (1—F() 1
xp 2 m] (10)

Since E& « 1 and H » kT, the last fraction is close to one. The contribution of the LH to ITpE exceeds that of the HH
whenever

2/2moH 8(Jm2 —Jm))/t =—2H(F2 —F))/kT & ln(m2/m()

For the "narrow" barrier it is IrFE » ITs [compare (10) and (5)]. If the inequality (11) holds, the total current J is deter-
mined by TFE of the LH. This current of the LH will also be larger than the current calculated in a one-band approxima-
tion if the inequality

2J2moHS( jm2( [1+(m)/mq) ]/[1+ (m)/m2)' ] }' ' —Q )m/t )& ln(( [1+(m)/m2)'/ ][1+(m)/m2)'/ ] }'/ m2/m)) (12)
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holds. Inequalities (11) and (12) differ only by unessential
square roots of the order of unity. This means that if the
main contribution to the current is determined by LH, then
this current is larger than the current calculated in a one-
band approximation in previous publications.

The usual expression for one type of carrier is not at all
applicable, if LH mainly contribute to ITFE. In the exponent
of Eq. (10) one has the LH effective mass, but in the
preexponential factor, as it is possible to see from Eqs. (10)
and (2) it is I/ (m") '~~, where the effective mass
m'= mH(mH/ml". ) &) mH.

When the temperature T decreases, the transition from a
"wide" (E&) 1) to "narrow" barrier (F& & 1) takes place.
An increased contribution of the LH to the current results.

If 8 ~H && W Es and only the space-charge barrier
matters, the ITFE for the "narro~" barrier will differ from
Eq. (10) only by the insignificant last fraction if one substi-
tutes 8 and 8 by 8'and E~, respectively. For the "wide"
barrier, the contribution of the LH to the ITFE will be
(mt/mq)~~3 of the contribution of the HH.

To demonstrate the influence of the LH on the net
current J we show in Fig. 2 the dependence of I on 5 for
three different values of X (see Fig. 1) for the case
N = 8.92x 10' cm, E~ = 0.078 eV, which was analyzed in
detail in Ref. 4. The result of Ref. 4 for a one-band approx-
imation with equivalent effective mass m'=—m, = 0.386m'
is shown by the dashed curves, while the present calcula-
tions (2)-(4) are given by solid curves.

At room temperature and X = 0.1 V the difference in the
two calculations is small because, for 5=—0, the influence of
the rectangular barrier vanishes and I is close to IrF(5=0).
From Eq. (5) with H=Es we have that logtoIra(5=0)
= —1.31 for T=298 K and —2.65 for T=148 K. (These
values are shown as crosses on the ordinate of Fig. 2.) For
large 5 again I is close to ITF(H), which is determined from
(5) with H=Es+qx. On the Fig. 2 ITa(H) is shown by
dot-dashed curves.

When X increases, Irs(H) decreases and the contribution
of ITFF to I increases. The difference between the two cal-
culations becomes then considerable. For T=148 K the
discrepancy is large even for X=0.1 V. It reaches two or-
ders of magnitude for X = 0.5 V.

This comparison demonstrates the necessity of taking into
account both types of holes in p-Si for the modeling and op-
timization of polycrystalline silicon resistors.

We conclude this paper with a short summary of principal
results. The contribution of the LH to the TFE current in-
creases, when the temperature T decreases. This contribu-
tion becomes larger than the contribution of the HH, when
the current itself becomes sufficiently larger than the
current calculated for the given barrier with the only TE
taken into account. This result does not depend on the
form and on the parameters of the potential barrier.

For the p-Ge the role of the LH and the difference
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between the calculations with the real mL', and ma and with
the equivalent carrier effective mass m'= m,

' is consider-
able because the ratio mJmt for Ge is greater than for Si.

The approach described here may be used for the TFE
from the grain boundary interface states" of p-Si and p-oe.
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FIG. 2. Dependence of log~oI on rectangular barrier width 5 for
T=298 K (a), and T=148 K (b) for different additional rectangu-
lar barrier heights X=0.1 V(1), 0.2 V(2), and 0.5 V(3). Solid
curves show present calculation with masses m~ = 0.16 and
m~=0. 52; dashed curves show the results of Lu et al. for the one-
band approximation with mass m =0.38; and dash-dotted curves
show the logtaITE from Eq. (5) for H = Es+ qX.
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