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Scaling approach to phonon-fracton crossover
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A scaling approach is formulated for the vibrational modes, from phonon to fracton, of a fractal net-
work. The ratio of fracton-to-phonon density' of vibrational states at crossover is found to be noncritical,
i.e., independent of the crossover length scale. A steplike increase in the density of states at crossover is
justified by an appeal to the normalization requirement on a fractal network. Applications are made to dif-
ferent fractal models. Recent effective-medium-approximation results are shown to violate scaling.

The crossover between the long wavelength (low frequen-
cy) phonon (ph) and the short length scale (high frequency)
fracton (fr) vibrational excitations was first discussed by
Alexander and Orbach. ' Assuming a scaling form for the
dispersion relations between the frequency cu and the
characteristic length scale of the mode, X.„=—A. , one can
write'

~()).-') =~- f(g) -')
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~ () -') ) -l)+t»»l )/g-0

Q),„(X ') g»'A. ', X/g

(2a)

(2b)

Here 8 is a characteristic dynamical index related to the scal-
ing properties of the elastic consants, the conductivity, or
the diffusion constant. 3 Thus, a = I + (()/2). Let
represent the characteristic length at which the vibrational
eigenstates change their character from phonon to fracton
(h. & g, phonon; X ( g, fracton). Then, as shown in Ref. 1,
crossover frequency, co„, can be defined (ru (co, phonon;
«) & a)„, fracton) which must scale as

N(o)) =20))' 'f(a)/o)~) (5)

%e find it convenient to use a vibrational-mode normaliza-
tion per unit mass (i.e., per atom). In the fracton regime,

states which decreases when one crosses from the phonon
to the fracton regime. This appears to contradict the
relevant experimental results5 (for example, for epoxy
resins7), and also the EMA calculations of Derrida, Orbach,
and Yu.s

Both experimental and EMA calculations appear to ex-
hibit a large increase in the density of states in the crossover
region. Tua, Putterman, and Orbach have suggested some
remedies for this inconsistency.

In this Rapid Communication we use a scaling approach
to the density of states in an attempt to clarify the nature of
the crossover region. Our results are summarized in Fig. 1.
The density of states crosses over from the phonon
behavior N~h [Eq. (6b)] to the fracton behavior Nr, [Eq.
(6a)] near co„[Eq. (3)]. The apparent step in N is given by
Eq. (10). The power-law relation between b, N and 0)

should be -observed experimentally.
Consider the scaling behavior of the density of vibrational

states. %e write

~ g
—[)+(»2)l

CO

From Eq. (2b), the velocity of sound obeys

C~g»2

(3)

(4)

It is evident from Eq. (2) that the phonon frequency, to-
wards o) = 0 (large X), is always higher than the extrapolated
fraction value one would obtain from Eq. (2a) for the same
A. (because 8 & 0). The two dispersion curves [Eqs. (2a)
and (2b)] must then cross at higher 0). It seems natural to
associate the crossover frequency (co„) with the dispersion
curve crossing, and to assume the following: (a) co(h. ') is
monotonic increasing in )). ', and (b) cu()). ') has a positive
second derivative. This procedure was used by Alexander4
and Alexander, I.aermans, Orbach, and Rosenberg. This
shape now appears to contradict results of the calculation for
a percolation model within the effective medium approxirna-
tion (EMA)s which exhibited an inflection point in the
dispersion curve in the crossover region. More important,
the above assumptions4 5 [(a) and (b)] lead to a density of

I
Ngr (M }

I

C.O.

FIG. 1. Crossover of the density of vibrational states (solid line).
The dotted (dashed) lines represent the continuation of the phonon
(fracton) asymptotic behavi'or into the crossover regime.
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one knows that'4 s (broken line in Fig. 1)

Nt, (0)) = Ao)i' ', o)/a)„)) 1 (6a)

where an explicit expression for p will depend on the partic-
ular fractal model chosen, and will be discussed below. The
prefactor in Eq. (5), 2, does not depend on 0i„. In the
phonon regime, one must have N, h(oi)~i0d '. The only
way in which one can satisfy these requirements and Eq. (5)
simultaneously is if one has in the phonon regime (dotted
line in Fig. 1)

N&h(CO)~ Cd~ Ql, Ql/Q)~ && 1 (61 )

This immediately leads to f(x) 1, x ~; f(x) x" ~,

x 0, implying that the ratio

Nt, (~.0)/N(, h(~~) = C, (7)

where C is noncritical (independent of co„). Because p in
Eq. (6) will be restricted to 1 ~ p ~ d (see below), one also
notes that

is a scaling function. Nevertheless, a step in N(0i) will

scale like Eq. (10). Both results are manifestations of the
scaling form of Eq. (5). This steplike increase in N(oi) at
co„appears to be called for from EMA calculations (but see
below) and upon comparison with experiments.

The scaling prefactor exponent p can be related to the fre-
quency scaling index for fractal models. ' This is discussed
in detail in Refs. 4 and 5. In essence there are two model
options.

(a) Infinite cluster only On.e is dealing with a single clus-
ter which is fractal at short distances and d dimensional
(Euclidean) on large length scales. One then has

2d
2+0

where d is the fracton dimension' and d the fractal (Haus-
dorff) dimension of the fractal network. This is the model
discussed by Tua et al. 9 In this model, the mass density is
critical

Nph(co) & Nr, (o)), i0 « i0„ ~ gd-d~ ~ d[(d/d) —1]
CO (12)

because by construction d —p~0. Furthermore, we have
taken the vibrational spectrum to be normalized per atom,
so that the integral of Nt, (co) [Eq. (6a)] from 0 to the upper
cutoff corn (see Ref. 5) is unity. This crossing over to pho-
non excitations for eo less than co„must mean that one al-
ways misses some states in the low-frequency region (as
long as co„ is finite). The number of missing modes
depends on the point where the curves of Eqs. (6a) and
(6b) cross. This frequency, co„, is expected to be propor-
tional to c0„, i.e., to scale as Eq. (3). Then,

[Nr, (co) —N(,h(co) ]de~ 0ig,~ o)g, (8)

This means that N(co) has to be larger than the extrapolat-
ed low-frequency value of Nt, (0i) somewhere in the cross-
over regime to assure overall normalization for the number
of vibrational modes as shown by the full line in Fig. 1.
This has implications for the shape of the scaling function
f(x) in Eq. (5). In particular, f(x) has to approach its
asymptotic limits as

f(x) 1, x (9a)

for large argument upon comparison of Eqs. (5) and (6a).
However, from Eq. (8), f(x) must be greater than 1 for at
least some range of x to preserve normalization. For small
argument, comparing Eqs. (5) and (6b), leads to

f(x) xd i'« 1, x 0 . (9b)

EN(co) =Aevi', '/s. f (10)

from the assumed scaling form [Eq. (5)]. This would in no
manner contradict our previous result [Eq. (7)l. The ratio
of the extrapolated density of states [Eq. (6)] at any fre-
quency proportional to co„ is constant [Eq. (7)] when N(cu)

Scaling considerations are obviously insufficient for a pre-
cise determination of the shape of the scaling function f(x)
when x —1. Equation (8) and our observation that f(x)
must exceed 1 for at least some range of x could therefore
lead to a sharp feature at crossover which could be inter-
preted visually as a "step" of size hf in f(x) (see Fig. 1).
The result would be a step in N(co) with

(b) Finite and infinite clusters The alt.ernative3 s is to as-
sume that one has a Stauffer' distribution of finite clusters.
As shown in Refs. 4 and 5, one has

p =2d/(2+e) (13)

p EMA d/2

pPrA
(15)

%e believe this inconsistency reflects the breakdown of
hyperscaling within the EMA, at least for d )2, represent-
ing another aspect in which EMA has mean-field features.

Another manifestation of the fact that NaMA(c0) does not
have a scaling form is the magnitude of the step in
NEMA(a&) at crossover exhibited in Ref. 8. It increases asi0„0violating both Eqs. (7) and (10) of this paper.

We have shown that the ratio Nt, (co)/N, h(ru) is noncriti-
cal at co = co„, and that normalization conditions could
reasonably lead one to expect a steplike increase in N(co) at
crossover. This behavior is required by the observed tem-
perature dependence of the specific heat T as measured in
nearly all amorphous materials. This was recognized in Ref.
5, and used to advantage in Ref. 9 in an attempt to con-
struct a phenomenological density-of-states curve for pho-
nons and fractons. The effective medium approximation
resu1ts of Ref. 8 also exhibit this increase, but its predicted
critical behavior has been shown above to be incorrect.

so that the mass density p becomes independent of g.
In both cases (a) and (b), the required inequality

1 ~ p ~ d is satisfied for percolation. Models with p & 1
are, however, possible and appear in some situations. "

If one compares our results exhibited in Eq. (6) with the
EMA calculations of Derrida et al. it becomes obvious that
the EMA density of states does not have a scaling form.
The phonon and fracton EMA densities of states scale as

NEMA ( )~ ~ —d/2~d-1

NOMA (Oi) = const

respectively. Thus, upon comparison with the scaling form
of Eq. (6), respectively,



SCALING APPROACH TO PHONON-FRACTON CROSSOVER 2567

There must be an experimental manifestation of this ef-
fect for measurements other than specific heat if the appli-
cation is to be as general as claimed in Ref. 5. Very recent
neutron diffraction experiments by Rosenberg' have shown
an upward departure of N(cu) from co2 when plotted on a
log-log graph, the extracted crossover frequency changing in
the direction predicted by Eq. (10) when the length scale
was changed (amount of hardener) in epoxy resin. Optical-
absorption experiments' may also have shown the increase
in N(cu) at frequencies expected to be equal to co„ in the
relevant material.

Vfe recognize that all these pieces of "evidence" are
somewhat circumstantial at this stage, but at least none of

them conflicts with our interpretation. %e suggest that
direct investigation of the vibrational density of states in the
energy regime expected to contain the crossover energy (or
length scales of order the crossover length) in amorphous or
polymeric materials' is in order, and would provide impor-
tant insight into their geometrical structures.
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