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We present Laughlin-Jastrow wave functions for incompressible fluid states of two-dimensional electrons
at Landau-level filling factor 1/m that satisfy periodic boundary conditions. This rederivation of Laughlin-
type states emphasizes that it is correct short-distance behavior of the wave functions rather than angular
momentum considerations that lie behind the explanation of the fractional quantized effect.

Laughlin! has provided the key to understanding the frac-
tional quantized Hall effect? with his construction of
Jastrow-type variational wave functions that describe in-
compressible fluid states of two-dimensional electrons in a
magnetic field. As originally formulated, Laughlin’s states
describe circular fluid droplets containing N, electrons that
expand to provide a uniform cover of the ‘‘Hall surface’’ as
N, — oo. A variant formulation on a spherical surface has
been described by Haldane;? this allows homogeneous states
with finite N, to be constructed: Recent finite-system stud-
ies* in this geometry have, we believe, conclusively con-
firmed that at -} Landau-level filling the Laughlin-Jastrow

wave function describes the essential character of the
ground state of systems where the interactions are suffi-
ciently repulsive at short range, and that the Coulomb in-
teraction belongs to this class.

Laughlin-Jastrow (LJ) states have not been previously
constructed in the other popular finite-system geometry,
namely, the periodic boundary conditions on the plane. In
this Rapid Communication we construct such states. The
philosophy of our construction is identical to that of Ref. 1;
the states described here have the same thermodynamic
limit as those of Ref. 1. While no new physics is being
described, our construction now makes direct comparison of

the LJ state with finite-size results in the periodic geometry”

possible. The discrete center-of-mass degeneracy of the
ground state in this geometry is also made explicit.

In the Landau gauge A = —Byx, the wave function
describing a particle confined to the lowest Landau level has
the analytic form

p(xy) =exp(— 532 f(2), z=x+1iy , 1)
where f(z) is an entire (holomorphic) function, and length

units v/(#/eB) =1 are used. An essentially similar form oc-
curs in the symmetric gauge,! and we emphasize that the
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following discussion can be carried out in any gauge. The
particle translation operator that acts on the wave functions
is given (using two-dimensional vector notation with a pseu-
doscalar cross product) by

t(L) =explL-(V —ieA/k) —iL xr] . )
We will impose periodic boundary conditions

t(L)¥=exp(i¢p)¥, a=1,2 , 3)

where L= (L;,0) and L= (L,cos#,L,sind) are two non-
parallel displacements. For these boundary conditions to be
simultaneously applicable, #(L;) and #(L,) must commute,
i.e.,

'Ll XL2| =2‘rrNs , 4

where N; is an integer. This means that the total magnetic
flux though the parallelogram defined by L, and L, is exact-
ly N; flux quanta and integral. This region bounded by the
four points z==‘;L1( +1 +7), 7=L,e'®/L, will be referred
to as the principal region.

The boundary conditions used in the study by Yoshioka,
Halperin, and Lee® are a special case of (3) with ¢,=0.
However, because of the noncommutativity of translation
operators when a magnetic field is present, the choice of the
¢, is not invariant under continuous translations of the
center of mass, and the more general form (3) is more ap-
propriate. If the periodic boundary conditions are interpret-
ed as imposing a toroidal topology, the phases ¢; can be re-
lated to ‘‘solenoid fluxes ®;=/%¢,/e passing through the
two periodic orbits. If the phases are allowed to vary with
time, this is equivalent to a uniform electric field (E* E”)
where the complex drift velocity v=(E”—iE*)/B is given
by v= (d/dt)(L14>2 - Lz€w¢1)/271'N,.

The periodic boundary condition on the wave function (1)
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is the condition

f(z +L1) =el¢1
f(2 ’

f(z+L,e'
f(2)

Since f(z) is entire, the integral of d/dz{In[ f(z)]} around
the boundaries of the principal region counts the number of
zeros of f(z) inside it. The condition (5) fixes this number
to be precisely N,. The possible analytic form of f(z) is
thus strongly constrained, and the most general form is ex-
pressible as

O]

exp{iwN,[(2z/L,) +71}= 2

NS
f(2) =exp(ikz) T[] 91(=(z

v=1

-z,)/Lil7) (6)

where the zeros z, are in the principal region, and k is real
and in the range 0 <|k| <=aN, Im(7)/L,. 8 (ul|r) are the
odd elliptic theta functions.® Fixing the solenoid fluxes con-
strains k and the sum zy= Ez,, to take one of the N? sets
of values satisfying

exp(ikL,) =( —l)N‘exp( id1) ,
@)

expQarizo/L) = (—1)"Sexp(igy— ikL7)

If (k,zo) is a solution of (7), the other solutions have the
form

(k—=2wny/Li,zo+nLre®+n,Ly) ,

where n; and n, are suitable integers that keep k and z; in
the specified ranges.

We remark that the number of linearly independent solu-
tions of (5) is equal to the number of zeros within the prin-
cipal region. The basis set of eigenstates of the translation
operator t(L/N,) (which has the action z— z +L{/N;) is
constructed by placing the N, zeros in a string satisfying
z,+1=2,+Li/Ny, there are then N, distinct orthogonal
solutions of (5). An alternative way to specify states is to
construct ‘‘coherent states’ by placing all the zeros at the
same point. The wave function is then maximum at the
“‘diametrically opposed’’ point z +(1 +7) L;/2; there are N2
nonorthogonal solutions of (5) with this form.

We now consider the many-particle wave functions for N,
particles. Translational invariance allows these to be ex-
pressed as the product of a center-of-mass term and a factor
involving only relative coordinates. We follow the argu-
ments of Ref. 1 and seek a ground-state wave function
where the relative motion is described by a Jastrow function,
i.e., a product of pair factors

F({z))=F™(2)II f(z—z),

i<j

Z= EZk . - (8)

Application of the boundary condition for each particle gives

fGz+L)/f(D=m ,
‘ C))
f(z+Le"®)/f(z) =mexpl27i(N,/N,)z/L1] ,
where m; and n; are constants. Integration of d/dz

J

F({z}; z)==F”“(Z)Hal(ﬂ'(zk—z)L;l'r)H[«‘)1(17(2,—2,)/L1|1')]"' Z= Ez,,+m 1z |

i<j
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x {In[ f£(2)1} around the boundaries of the principal region
shows that the number of zeros of f(z) is N;/N,= m, which
must be integral. We again follow Ref. 1 and seek the solu-
tion of (9) that (a) is odd under z — —z because of an-
tisymmetry under particle exchange, and (b) has all its zeros
at the point z=0 where the particles coincide (this elim-
inates ‘‘wasted’’ zeros). The only solutions are

[ =™ (mz/Li|7)]Im, (10)

As z—0, f(z) ~z™ The center-of-mass factor must then
satisfy

m odd .

Fr(ZAL) _ (W= ey
I;Cm(z) )
] an
.m. i
EUZ22D explinm(2Z/L0) +1]
(Ns—'”)ei"’Z '

=(-1
The general solution of this is characterized by a real wave
vector K and mzeros {Z,}
. .
Fm(Z) =exp(iKZ) T[] 81(n(Z—-2Z,)/Li|7) ;

v=1

exp(iKL) =( —I)N’exp(idn) R

12)

13)
exp[21ri EZ,,/L1] =( —l)N‘exp(i¢2~ iKL7)

Thus, there is an m-fold degeneracy associated with the
center-of-mass coordinate in the presence of fixed solenoid
fluxes. This degeneracy of the ground state with N;=mN,
was also found in the numerical study of Yoshioka et al.’

If ‘“‘coherent state’ center-of-mass wave functions are
constructed by placing all the zeros at the same point in the
principal region, there are m? distinct solutions of (13) com-
patible with the specified solenoid fluxes. For any such
solution, the amplitude of the state vanishes when the
center-of-mass coordinate Z/N, lies on one of a lattice of
points zg+nL,/N, + nyL,e’®/N,. The charge density of the
state will be essentially constant, but with a small superim-
posed periodic component that is minimized at these posi-
tions, and vanishes as N, — oo.

It may be appropriate to replace the ‘‘solenoid flux”
boundary condition (3) with the less restrictive condition

#(La) =4(L,), 14)

where ¢ is the translation operator of the ith particle. This
is a selection rule that requires all particles to satisfy the
same boundary condition, but leaves the ¢, unspecified. In
this case, the restrictions (13) are lifted, and zo can be
chosen arbitrarily. Since the eigenvalue spectrum of a
translationally invariant Hamiltonian is independent of the
¢, there is a continuous degeneracy associated with the
center-of-mass coordinate if (14) is used.

Following Laughlin’s treatment on the open plane, we ex-
hibit wave functions describing fractionally charged ‘‘hole”’
defects. The hole state is given by

all i,j ,

(15)
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N; is given by mN, + 1. F*™(Z) are again solutions of (11). The defect is centered at the point z =z. Since the amplitude
of the wave function vanishes if any electron coordinate is at Z, this state has vanishing charge density at that point, which

can be chosen without restriction.

As a function of the hole coordinate z, the wave function (15) satisfies the boundary condition

F({z};z+mLy) =(=1)m—1*
F({Zi};f)

>

F({z});z +mL,e'®)
F({z }"E)

If m > 1, the function is not periodic in z with the funda-
mental periods, but only with longer periods so the repeat
distances are m times those of the electronic wave functions.
The boundary conditions show that the number of zeros in
the enlarged ‘‘principal region bounded by z/L;= %—m
x( £1 +7) which contains m?N; flux quanta is mN,. Since
the flux quantum for a charge ¢ particle is 1/g¢ times the
flux quantum for an electron, the wave function for such a
particle would have m?(gN;) zeros in this region. The
boundary conditions (16) thus indicate that the ‘‘hole’’ car-
ries fractional charge! [g|=1/m This seems to be essen-
tially the same argument as the ‘‘adiabatic transport” argu-
ment of Arovas, Schrieffer, and Wilczek.”

The model ““particle’” defect state seems less easy to con-
struct in the periodic geometry. The defect creation opera-
tor would have to remove one zero from the wave function
as a function of each particle coordinate in each repetition
of the fundamental region. An ansatz involving
9.(7(d/dz)/L,|7) seems the likely solution, but the choice
of ordering is nontrivial, and we leave the construction of
the periodic analog of Laughlin’s ‘‘particle’’ defect as an
open problem.

Numerical studies by Su® with square boundary conditions
(7=1) identified defect states in the form of a line defect,
which were eigenstates of the many-particle translation
operator []t,(L;/N,). These are the analogs of the mo-
mentum-basis states usually used in Landau-gauge calcula-

exp{imN,[(2Z/L)) +m7l}=(—-1)"

(16)

)
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T
tions. For direct comparison with the model states (15)
which are equivalent to Laughlin’s states in the thermo-
dynamic limit, the coherent-state linear combination of the
line-defect states would have to be formed. The relation
between these types of states is analogous to that described
above for the electron wave functions.

Finally, we note that while the above discussion is mainly
formal, it does allow one physical point to be made. The
original formulation! made use of arguments based on an-
gular momentum conservation. The above formalism
shows that Laughlin’s construction can just as easily be car-
ried out in a geometry that does not conserve angular momen-
tum, and it is instead correct behavior of the wave functions as
particles approach that is the key principle of its success.
There is an analogy with the original BCS formulation of
the superconducting ground state, which made use of
momentum conservation, while the basic principle of pairing
of time-reversed states can of course be implemented under
the more general conditions of ‘‘dirty superconductivity.”
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