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We study the effects of the particle-hole asymmetry terms contained in the Landau-Silin equa-
tions on the collective modes of normal 3He. We find that there are no frequency shifts, first order
in particle-hole asymmetry terms, of either the zero sound mode or the spin wave modes of normal
He. Propagating spin waves cannot be excited by zero sound; but, because of particle-hole asym-

metry, zero sound can drive small magnetic oscillations with frequencies (~„„„„„d+OL,„)in the
combined pulsed-NMR and zero sound experiment proposed by Ketterson.

In this paper we present a systematic study of the small
particle-hole asymmetry (PHA) terms that are contained
in the Landau-Silin equations' for the normal phase of
liquid He. Our main result is that zero sound can induce
small oscillations of the magnetization with frequencies
(to+Qo), where co is the zero sound frequency and Qo ls
the Larmor frequency, and wavelength equal to that of
zero sound. Our investigation was largely motivated by
the paper of Ketterson (hereafter referred to as JK),
which suggests that because of PHA zero sound can be
used as a probe of the transverse spin wave modes of He.
However, we come to qualitatively different conclusions
regarding the effects of PHA on the spectra of collective
modes, and on the coupling between spin waves and zero
sound. Thus, part of this paper is a commentary on the
paper of JK. To begin, we briefly review PHA where it is
most clearly exhibited, in the superfluid phases of He.

The particle-hole transformation is defined by a unitary
operator C which takes a quasiparticle with energy

=e —ez&0 above the Fermi surface (FS) into a
P 1

quasiparticle with energy —g and rotates the spin by m.

In terms of the quasiparticle field operators,
a —+Ca C =(i os)a@a -& where p is defined

pa
by g = —g and f =p. In the energy band,

P P

~
&eo«eF, the particle-hole transfortnation is an

approximate symmetry of the low-energy (quasiparticle)
Hamiltonian. The particle-hole transformation is not an
exact symmetry; the order of magnitude of the particle-
hole symmetry violating terms is determined by the finite
slope of the quasiparticle density of states at the FS,
N(g-)=N(0)+N'(0)g + . For one spin population

P
2 —i'.

N(0) =rn kp(2HA' )
' is determined by the effective

mass m' and the Fermi wave vector kz=(3+n}'~i,
where n is the equilibrium density. The slope N'(0) is not
related to parameters in the Fermi-liquid theory; however,
from the Fermi-gas theory N'(0) =N(0)/(2m~), so it is to
be expected that PHA is a small effect at low temperature
kz T« er;, low excitation energy fico «ez, and magnetic
fields yirtH «eF—the usual conditions for the validity of
I andau's Fermi-liquid theory.

Particle-hole asymmetry is observable when it is associ-
ated with a broken symmetry or the singular response of a

collective variable. In the superfluid phases PHA is clear-
ly exhibited and leads to several striking effects. The A i

phase of He is a condensate of quasiparticle pairs with
their spins aligned parallel to the magnetic field lines.
The range of temperatures in which the A i phase is ther-
modynamically stable is proportional to the magnetic
field and determined by PHA. Particle-hole asymmetry
has also been observed in the dynamic response of super-
fluid He-8. The sharp resonance observed in the ul-
trasound attenuation by Giannetta et al. and Mast et al.
has been identified as the J=2+ mode (the real squash-
ing mode). '9 The observed coupling of this mode to zero
sound is nonzero because of PHA. The recently reported
gyromagnetic effect in rotating He-8 has been interpret-
ed as evidence that the vortex cores in He-8 are fer-
romagnetic. ' Theoretical models for the vortex magnetic
moment in He-8 have been investigated recently by
Ohmi et al. and Salomaa and Volovik. " Ferromagnetic
vortices were first proposed theoretically for the P2 su-
perfluid inside neutron stars. ' In that case, but more
generally for any ferromagnetic vortex in a p-wave super-
fluid, the magnetic moment is nonzero only because of
PHA. ' Given the attention that has been paid to these
small, but impressive PHA effects in superfluid He, it
seems worthwhile to study PHA in the normal phase of
He, which is the main subject of the rest of this paper.

Recently, Ketterson suggested that a combination of'

pulsed NMR and acoustics may be used to study the
transverse spin wave modes of normal He. Ketterson's
proposal is to use pulsed NMR to prepare the He in a
uniform, but nonequilibrium, state in which the magneti-
zation is tipped at an angle 80 relative to the original stat-
ic field Ho. The magnetization then rotates about the
static field at the Larmor frequency. The tipping angle
Hit is constant for times short compared with the spin-
relaxation time Ti (due to the combination of spin-flip
scattering at the walls and the nuclear dipole interaction).
Since Ti can be made to be several hours for temperatures
below 10 mK (Ref. 13) by coating the walls with He,
there is more than sufficient time to probe the nonequi-
librium spin system with zero sound. Ketterson's idea is
that PHA provides the necessary coupling between zero
sound and transverse spin waves. With He initially
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prepared as a bath of homogeneous spin waves, zero
sound can be used to excite transverse spin waves with
finite wave vector in a process where the q =0 spin waves
stimulate the decay of zero sound phonons into transverse
spin waves with frequency determined by energy and
momentum conservation, co( q ) —Qo ——tosw( q ), where
co( q) =cLq is the longitudinal zero sound frequency, Qo is
the q =0 spin wave frequency, and cosw(q) is the final-
state transverse spin wave frequency. Thus, by tuning the
magnetic field, the zero sound frequency, and observing
the decay of zero sound it should be possible to determine
the transverse spin wave spectrum cosw(q). While this
picture has its appeal, it is not possible to excite the trans-
verse spin waves [with frequencies cosw(q)j using zero
sound because there is no coupling between zero sound
and any propagating mode of the spin system. However,
there is an interesting magnetic response to zero sound at
frequencies (co+Qo) due to PHA, in the experimental ar-
rangement proposed by Ketterson. But these magnetic os-
cillations are more accurately described as the driven
response of the longitudinal magnetization in the rotating
frame, modulated by the uniform rotation of the original
homogeneous magnetization. ' This is a different physi-
cal picture than that proposed by Ketterson; the spin vari-
ables that couple to zero sound —with both PHA and a
finite 8H—have no natural oscillations. They are not
propagating spin wave modes, and consequently, there is
no resonant transfer of energy between the spin wave sys-
tem and zero sound as is implied by the quantum decay
process suggested in JK.

For Ketterson's proposed experiment the PHA terms
imply that there is a small magnetization wave, induced

by zero sound 5n(r, t) ~e' '' "", that is modulated by
the uniformly rotating magnetization. The components of
this magnetization wave, in a coordinate system (x,y,z)
with z being the direction of the static magnetic field Ho,
are

5M„+i5M„=i)~ 5n ( r, t)sin(8' )eyA +iQot

2

5M, =iiM 5n(r, t)cos(8H ) .yfi
2

(lb)

f5MI— I5n I
=10 G [Ko/(10 kG)],

which for an area A„i&——2 cm and Ko ——10 kG gives a
~~g~~tic flux

I
~'I = I5M

I Aceu eq~~l to appro»mately
one-tenth of a flux quantum. The simplest geometry for

where i)M-(A'Qo/e~) is a measure of the PHA to be de-
fined below. Thus, the 5M„and 5M„components are
nonzero only for finite tipping angles (8It&0) and oscil-
late at frequencies (co+Qo), which should facilitate their
detection since the induced magnetic oscillations, which
are small in magnitude, are separated in frequency from
both the unperturbed rotating magnetization and the
sound wave.

This PHA effect may still be difficult to detect. The
magnitude of the magnetization is small, '

fiQp

detecting these oscillations is a He cell with the static
magnetic field along the z axis, with a conducting loop
around the cell in the x-z plane, and —after the magneti-
zation is tipped away from the z axis—with sound waves
transmitted along the y axis through the conducting loop.
The magnetic oscillations induce an ac voltage of magni-
tude

—=2X10 6 V [Ko/(10 kG)][hc0/(10 sec ')],

d3 '
[5~-].,=f,f("pP').p:„[5n- j,p (3)

where

f(p p') prI, =f'(p p')5 r5pp+f'(p 0')o r'&p,

is the quasiparticle interaction function for magnetic
fields yfiH «e~. External fields contribute to the quasi-
particle energy implicitly, as well as explicitly, by modify-
ing the quasiparticle distribution function. In the pres-
ence of a magnetic field H= —(yiri/2) 'h(r, t) and a sca-
lar field u ( r, t), the quasiparticle energy becomes

where b,tv =coo+Qo. This value will be smaller if the wave
front is not uniform over the full area A„&&. These volt-
age oscillations might be observable, but their high fre-
quency, their short wavelength (A, =3.5 && 10 cm
[1 MHz/(coo/2m') ]), and the finite (but long) spin-
relaxation time T& may make their detection difficult.

It is shown in Ref. 14 (see also the Appendix) that the
form of Eqs. (1)—including the dependence on 8', co+Qo,
and i1~ "an be obtained from a symmetry analysis of
the retarded Green's functions that determine the density
and spin-density response to a scalar field. However, not
all questions regarding the effects of the small PHA terms
on the collective mode spectrum and the coupling between
these modes can be resolved by symmetry arguments. For
this purpose we analyze the PHA terms contained in the
collisionless Landau-Silin equation.

A general description of the nonequilibrium properties
of normal He would start from a quantum transport
equation for the Wigner distribution function that de-
scribes the quasiparticle excitations How.ever, for the
cases we consider the wave vector and frequency of the
disturbances are sufficiently small, fico and
fiqv~-& k&Tp=P ', that the quantum transport equation
reduces to the Landau-Silin equation for the semiclassical
spin-matrix distribution function n (r, t), '

P

d, n i [n,e ]—+ —,
' IB' e,B' n

——,
' [B' e,B' n j =I

P P P P

where [A,B] ( I A,B j ) is a commutator (anticommutator)
in spin space, I is a collision integral, and the quasipar-

P
ticle energy e is a functional of the distribution function.

P
Specifically, for a given perturbation 5n of the distribu-

P
tion function, the corresponding change in quasiparticle
energy is
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e =e 1+h o. ,P P P
5,5m —2(h,qX5m )—2(5h Xmo)

d3 '
e =g +u+2 f'(p, p ')5n

P P (2m )

h =h+2 I f'(p, p ')5m
P (2m )

(4b)

(4c)

+ v
p r 5m —no5h —n oh,q(0)5e

a
h, q 5n =0.

P
P

(7b)

where 5n and 5m are scalar and vector components of
P P

the response of the distribution function, 5n
P

=5n 1+5m .o, to the external fields. These response
P P

functions are determined by a coupled set of integral-
differential equations for the scalar and vector com-
ponents of Eq. (2) and by the initial distribution function.

For n =n 1+m .cr, Eq. (2) becomes
P P P

B,n +(8' e )(B~-)+(8' h" )(B~" )

'—(B~ )(8' n ) —(BM" )(5' m" )=I
(5a)

B)m —.2(h Xm )+(B' e )(8' m )+(B' h )(B~ )

—(B~ )(8' m ) —(8' h )(8' n ) = I (5b)

Here we study only the collisionless excitations, and so we
set I =0. At sufficiently low temperatures such that

P
cur »1, where cu is the characteristic frequency of an ex-
citation and ~~ T is the quasiparticle relaxation time,
damping of the collective excitations by quasiparticle
scattering can be neglected, or included perturbatively.

The well-known collisionless collective excitations of
He (longitudinal and transverse zero sound, and the spin

wave modes) are reviewed in detail by Baym and Peth-
ick. ' Here we briefly review the derivation of the equa-
tions of motion for these modes since the notation and re-
sults are useful for what follows. The collisionless modes
are the solutions to Eqs. (5) linearized about the equilibri-
um distribution,

E'p

v-= dg 5n (Sa)

ep
o.-= dg 5m

P —&p P P

which are functions only of the direction p of the quasi-
particle momentum p near the FS. This method works
because the quasiparticle velocity, v = 8 g, and

P P P
molecular fields are slowly varying functions of g near

P
the FS, so to a good approximation they can be replaced
by their values on the FS. (What is left out of this pro-
cedure are the PHA effects. ) When this step is carried out
the g' -integrated equations for v- and o - decouple, and

P P
when written in terms of Fourier components

(Sb)

v-(q, o))= d r dte 'q ' "v-(r, t),P

etc., these equations become

(co —q v-)v- —(q v-)5e-=(q v-)u,
P P P P

cocr- 2ih, X—(o-+5h-) —(q v-)[o-+5h-]

(9a)

=2i h,qX h„,+(q.v-)h„, , (9b)

At low temperatures no ———5(g ), thus only those ex-

citations very near the FS are relevant for the linear
dynamics. The next step, which is the usual procedure in
simplifying the low-temperature kinetic equation, is to in-
tegrate Eqs. (7) over the band of quasiparticle energies

~
&eo, and so derive equations for the much simpler

P
-integrated" scalar and spin-density distribution func-

P
tions

n 'q =no(g )1+mo(g ) o,
no(g )=(1+e ')

(6a)

(6b)

where v-=v~p is the Fermi velocity and the external
P.

fields (u, h„,) are shown explicitly. The molecular fields
are given by

mo(k-, ) =no h.q(4-, » (6c)

3,5n + v 8 5n —no5E' —no 11 q(0) 511

h, q 5m =0,
P

P

(7a)

where no dno/dJ, h,q(g'-——)=ho[1 Fo(g )/(1+Fo—)]
includes the molecular-field correction to the static field
ho= —(yA'/2)Ho, Fo(g ) is the energy-dependent l =0
Landau parameter defined in Eqs. (17), Fo ——Fo(0) is the
usual Landau parameter, and g =e' ' —eF is the unper-

P P
turbed quasiparticle energy measured relative to the Fermi
energy. The linearized equations, written in terms of the
deviations, 5n =n —no, 5m =m —mo, 5e =e

P P P P P P

, and 5h = h —h, q become

dQ-,
5e- = P(p p ')v-,

P 4.~ P

dQ-,
5h-= f F'(p p')o-, , .

4m

where

(10a)

(10b)

2N(0)f' (pFp pFp )=F"(p p ')

are the Landau interaction functions evaluated on the FS.
Here we briefly discuss the solutions to these equa-

tions. ' Both longitudinal and transverse (with respect to
q) zero sound are eigenmodes of Eq. (9a), with linear
dispersion relations col T ——cL Tq. These modes propagate
in the absence of collisions because the quasiparticle in-
teraction I" provides a restoring force for density and
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current fluctuations. For longitudinal zero sound the re-
storing force (due primarily to Fp and Fi ) is large and
leads to a high sound velocity, cL&&U~,' consequently,
(quF/co) is a useful expansion parameter for this mode.

The spin wave modes of He are obtained by solving
Eq. (9b) for the components of cr i-n a coordinate system

(x,y, z ) with z
~ ~

h,q. The equations of motion become

tpo- —q. v-(o'-+ 5h-') = q v-h'„, ,P P P P P
(1 la)

too =+2h (o= +5h=+) q —v-(o. =++5h=+)P P P

=(+2h,q+ q. v-)h „, , (1 lb)

where o= =(cr"-+io-)/V 2. Equation (1 la) for o'- is for-
P P P P

mally the same as that for the scalar distribution function
v-, except that the interaction F' is replaced by F'. InP'
consequence, there are no spin wave modes associated
with the variable cr'-, because in He the interaction F'
does not provide a restoring force for longitudinal fluctua-
tions of a- (with respect to h,q); the antisymmetric Lan-
dau parameters (Fp,Fi,F2) are all below the threshold
values for propagating longitudinal spin wave modes.
The spin wave excitations that exist in He are eigen-
modes of the transverse components o=, and have eigen-

frequencies that depend on the angular momentum quan-
tum numbers of the particle-hole pairs. The spherically

+ +
symmetric components (I =0), opp —— (dQ-/4. )o =,

P P
corresponding to the transverse oscillations of the magnet-
ization, have eigenfrequencies (at q =0) tppp

——+Qp, where
Qp = (2/A')h p

———yHp is the Larmor frequency. The
higher angular momentum components o ~+— are also
eigenmodes, but with frequencies that are separated from
the Larmor frequency because of Fermi-liquid interac-
tions,

(q =0)=+Qp[1+Ft /(21+1)]/( +~p) .

In the standard NMR experiment a spatially uniform
transverse magnetic field excites only the 1 =0 transverse
modes. However, Doniach' has noted that the I ) 1

transverse modes can be inferred from the experimental
observation' of the Leggett-Rice effect. ' Recent NMR
measurements on the He- He system at temperatures
below 25 mK show the first evidence of I ) 1 transverse
spin waves in that system.

Now we consider the effects of PHA on the sound and
spin dynamics of He, in the presence of a nonequilibrium
tipped magnetization. Immediately after an NMR tip-
ping pulse is applied to He, the distribution function that
describes the rotating magnetic state is

n-=np(g )1+m, (g ).o, (12)

where m, =nph, qp(t) describes an instantaneous rotation
of the equilibrium spin-density distribution mp ——nph, z.
The magnetization

M(t) = — &" 2X(0)h„P(t)

P(t) =sin(8tt )[cos(Qpt)x +sin(Qpt)y ]+cos(8H )z . (14)

Next we linearize the colhsionless Landau-Silin kinetic
equations [Eqs. (9) and (10)] in the deviation of the distri-
bution function (and molecular field) from the time-
dependent distribution describing the rotating state [Eqs.
(12)—(14)]. The linear equations of motion for the pertur-
bations, 5n =n np(g —) and 5m =m —m, (g ) be-

P P P P P P
come

precesses about the static field hp=hpz according to

B&p —2ho)& p =0 (13)
/

By convention we choosep(t =0), =R(y, 8H ) z, a rotation
of the equilibrium magnetization about the y axis by an
angle 00, so that

r

8,5n + v .i) 5n —n p5e —np'h, qP(t) 5h + 5h«, (g ) .5m = v 8 [npe„, +np'h, qP(t). h„,],
P

(15a)

8,5m —2I (hp+5h„, ) &&5m —nph [p(t) &5h ] I
r

+ v 8 5m —np5h + 5h„, 5n —np'h, qj(t)5e
P

nph&q(h t&&p)+v 8 [nph t+np'h qp(t)e ] (15b)

In addition to the molecular fields generated by the per-
turbation of the distribution function, there is a time-

dependent molecular field 5h«, generated by the magneti-
zation of the unperturbed rotating state,

3 I

5h...=2 f " f'(p, p')m, (g-.)
(2n )

dA-,
2N(0)h„P—(t) f ' f'(

~ p ~p,pFP

which depends only on the magnitude of the quasiparticle
momentum, or equivalently the quasiparticle energy g p
near the FS. It is convenient to define energy-dependent
Landau parameters,

F' (PS"''I k-, )=2&(0)f"(
I p IPSsf'» (17a)

(17b)
1

Ft"(k)=(2I+1)f F"(x
~
k)Ft(x) .

These quantities, as well as the density of states N(g) and
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the quasiparticle velocity v =U (g )P, enter kinetic
P P

equations when PHA is included. The molecular field
generated by m, can then be written

bution function; thus the PHA parameters are

B N(g)" Bg X(0), , (23a)

P = —hq'fdic g 5n (19a)

(19b)

5h„,= —h,qFO(g )P(t) .

Inspection of Eqs. (15) shows that the g -integrated
P

distribution functions (v- and o -) become weakly coupled
when PHA corrections are included. In addition to a
direct coupling between these variables, there is also an in-
direct coupling via the energy moments of the distribution
functions, H"(x)= —h, q

6"(x)= —h,q
a

(k) Fs a(
U(0)

X(g)
X(0)

g„=—h,q
— U(g)
1

v B
I

r

re = —heq Fo(k)
/=0

g'=0

(23b)

(23c)

(23d)

(23e)

where the prefactor is a convenient normalization. The
coupled equations for the g -integrated functions follow

P
from Eqs. (15)—(19).

The scalar equations are

B,v-+ v B (v-+5m-+g„P-+IJ, X-)
p p r p p " p p

= —V, B (e„,+q,P h„,),
B,P-+ v- B(P-+.P 5h-+rt, P (-)

(20a)

= —v- B [P.h„,] . (20b)

The vector (spin) equations are

B&o' —2[hoX o heqp X—(Foo5h +g&' (—)]

+ v-. B (o-+5h-+g„g-+PA-)
p r p p " p p

=2h,q(pX h„,) —v- B (h„,+g„e„,p),

B,(~ —2[hoX (~ —h, Fo(p X g-)]

+ v-. B ( (-+P5e-+g,PP-) = —v-. B (Pe„,) .

(20c)

(20d)

The PHA parameters vg„and vy, [Eqs. (23b) and (23c)]
couple the scalar and vector functions explicitly. There
are additional PHA couplings from the energy depen-
dence of the molecular fields and quasiparticle velocity,

dQ-,
X-= H~(p p')cr-. +g, o'-,

4~
dQp'A-= . 8'(jj ')v-, +g,v-,

p

(21a)

(21b)

as well as PHA corrections to the molecular field that
come from the energy dependence of the density of states
and the quasiparticle interactions. Thus, 5e- and 5h- are

p p
given by

d Qp~' [F'(i.J"')v- +6'(pf ')13-1
4e p

(22a)

5h-= - P p p
' o'-, +6' p p

' -, . 221

There is one additional PHA parameter g~ which enters
the calculation of a one-body observable from the distri-

where I u &,uz, u3 j is an orthonormal triad of vectors that
rotate about z at the Larmor frequency. We refer to this
triad as the rotating coordinate system (axes) and Ix,y,z j
as the laboratory coordinate system (axes). The orienta-
tion of the rotating axes is fixed by requiring that the
components of Eqs. (20), projected along the u; directions,
satisfy linear equations with time-independent coeffi-
cients. In particular, the rotating coordinate system de-
fined by

u i
——sin(8~ )z —cos(8' )[cos(Qot)x +sin( Qot)y ],

u z ——sin(Qot)x —cos(Qot)y,

u 3 =cos(8H )z+ sin(8~ )[cos(Qot)x +sin(Qot)y],

(25a)

(25b)

(25c)

leads to equations of motion for the longitudinal and
transverse variables, defined with respect to u3, that are
equivalent to those for 8~ ——0. Note that u3 ——p, is the

Equations (20)—(23) are the complete set of Landau-Silin
equations, linearized about the rotating state, which in-
clude all first order PHA terms.

The PHA parameters are typically of order A'Qo/eo,
where eo is the relevant energy scale of the quasiparticle
density of states, velocity, or interactions. If we assume
eo ——eq -—1 K, then A'Qo/op=1. 5X10 for a 10-kG mag-
netic field. There are some indications that the energy
scale is considerably smaller than the Fermi energy ' (but
still large compared with millikelvin temperatures),
eo & 0.1m~, which would imply correspondingly larger
PHA parameters. In any event these corrections are small
for any conceivable laboratory magnetic field. Finally, we
note that Eqs. (8) and (9) of JK include only part of the
PHA terms; those arising indirectly from P- and (- are
omitted.

Equations (20) are complicated by the time dependence
of P(t). However, this time dependence can be formally
removed by transforming to a reference frame that rotates
at an angular speed equal to the Larmor frequency. For
any spin vector B we write

3
B= g 8'u;(t), (24)
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direction of the unperturbed rotating magnetization. It is
convenient to introduce circularly polarized transverse
variables,

B+=(B—'+iB )I@2, (26)

=+iQ,qh„, —v- BM

d, (=+iQ,+Op=+ v- B g=+ =0,
B&o'-+ v-. B (cr-+5h-+g„g-+A-)

p ~ p p "p p

= —v- B (h„,+g„c.„,),
B,g-+v- 8 (g-+5m-+g, P-)= —v-. Z~„, ,

(27a)

(27b)

(27d)

B,v-+ v- 8 (v-+5c'-+q„P-+X-)
p p p p " p p

vp'~-, (&xi+'gvhxt) i

so that the equations of motion in the rotating frame be-
come

d, o=++i Q,q(Foo= 5h=—+g, g=+)

+ v- 8 (o=+5h=+g„g=)

the theory of NMR, and is a good approximation provid-
ed there is a magnetic resonance at co=QO. In this case
there is no such resonance; the approximation is not valid,
and both ti~e dependences must be retained. In the rotat-
ing frame there are no terms with different time depen-
dences, and consequently our Eqs. (27) include all cou-
plings between the scalar and spin-dependent components
of the distribution function. These equations also show
that the spin wave eigenfunctions are the components of
o.- that are transverse to the tipped magnetization in thep
rotating frame.

The effects of PHA on the zero sound dispersion can be
determined from Eqs. (27c)—(27f). As is also true for the
transverse spin waves, there are no corrections to ihe zero
sound dispersion relation which are first order in PHA.
This result is obtained by solving for the zero sound
dispersion relation perturbatively in terms of the PHA pa-
rameters. Here it is convenient to introduce a matrix 'no-
tation for the Fourier transform of Eqs. (27c)—(27f),

(28)

There are several points to be made before we consider
special solutions to these equations. (i) Equation (27b) for
g= is decoupled from all other variables, including thep
external fields. Thus, g= are irrelevant variables, whichp
we hereafter omit. This means that there are no first-
order PHA corrections to the equations of motion for the
transverse components o= of the spin-density distributionp
function in the rotating frame. (ii) Since Eq. (27a) for o=

p
is independent of 8H, the spin wave eigenfrequencies, for
any wave vector q, are also independent of the tipping an-
gle 8H. This result differs from that of JK, who finds the
dispersion relation for the i =0 spin wave to be
[oooo( q) —Qo] ~ sec(8~)q . (iii) Equations (27c)—(27f)
show that the scalar distribution function v-, and there-
fore zero sound, is coupled by PHA terms to o-, g-, P-,
and not to any transverse variable. Since there are no spin
wave modes associated with these variables, zero sound
cannot be used as a probe of the spin wave spectrum in
He. (iv) In JK, Ketterson was motivated to look for a

mode crossing with co —Qo ——choo(q), where co is the zero
sound frequency, Qo is the Larmor frequency of the uni-
formly precessing magnetization, and choo(q) is the fre-
quency of: transverse spin waves with i =0 and wave vec-
tor q. The reason we believe that JK finds spurious
first-order frequency shifts in the collective mode spec-
trum, as well as an unphysical spin-orbit coupling in
choo(q) for 8~&0, is that he makes an incorrect Fourier
decomposition of the kinetic equations. This leads to an
incorrect identification of the spin wave eigenfunctions
for 8II&0, their eigenfrequencies, and the coupling of
zero sound to the spin-dependent variables when PHA is
included. In the laboratory reference frame JK dis-—i (co+Qo) tcards terms which evolve as e and retains terms—i (co—Qo)tthat evolve as e . This approximation is used in

3

(29)

P„, is a column vector representing the external fields, andI is the linear operator given below. We label the ele-
ments of the vector g by the index p and the elements of
L by a pair of indices for the row and column positions.
The matrix product in Eq. (28) includes an angular in-
tegration, so that

dQ-,
L e f(p)4= J L""(p,p ')g"(p '),

4m
(30a)

(30b)

The longitudinal and transverse zero sound modes cor-
respond to the eigenfunctions and cigenfrequencies of the
homogeneous Eq. (28),

(31)

S =0

I+I'"' 0 0 0
I 0 0

0 0 I+I 0
0 0

(32a)

where A. is a label for a particular mode. We can write
I.=q.v-S, where S is symmetric with respect to inter-
change of p and p '. Furthermore, L (S) is the sum of a
zeroth-order term L (S ) and a perturbation L"(S"),
which is first order in PHA parameters:
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0 0
g,I+H g„I+G'

0 g,I+6'
g,I+0' q„I+6'

0 g~I+6'
0

0

0

0

where I=4~5' '(p —
hp ').

If PHA is neglected, then zero sound is an eigenmode
of Eqs. (9a) and (10a); we denote the eigenfunction and
eigenfrequency of these equations by P- and coo. The cor-

p
responding four-component eigenveetor of

GPG=L *Oo ~
0 (33)

1S

I
fo=4;'() ~ (34)

0

The first-order PHA correction to the zero sound frequen-
cy is given by

fo+(L "+to)
5pp = (35)

(No+ No)

where fo is the eigenfunction of the transposed zeroth-
order equation,

fp ——a(q v-) 'P-(1,0,0,0), (37)

(cop L)+5—$=L "» gp .

For longitudinal zero sound

sp =pip/gUF =cp /Up = 3 ( 1 +Fi l3)Fp )) 1

(38)

so sp is a good expansion parameter. The only precau-
tion that must be taken is to make sure that terms which
are higher order in sp, but with large coefficients ~FG,
are included. We do this by setting 5g=cop L e Po+5$',
then

(p(o —L )+5''=coo L *(L"*to). (39)

where a is a normalization constant. It follows immedi-
ately from Eqs. (32b), (34), and (37) that 5co=0; there are
no first-order PHA corrections to the zero sound velocity.

Although there are no first-order PHA corrections to
any of the collective mode frequencies in He, there is an
interesting coupling between zero sound and the magneti-
zation which is first order in the PHA parameters and,
therefore, possibly observable. The coupling between the
scalar and longitudinal vector components of the distribu-
tion function, exhibited in Eqs. (27e) (2—7f), implies that
zero sound drives small oscillations of the magnetization
along the direction of the unperturbed magnetization in
the rotating frame. These oscillations are obtained from
the first-order correction to the zero sound solution @o. If
we set g=gp+5cP, then we have from Eq. (28)

p(GPG=VG+L'.

The eigenfunction of Eq. (36) is easily constructed,

(36) Then to leading order in sp ', 5ht/ can be calculated by
neglecting L on the left-hand-side of Eq. (39). From the
third component of 5$ we obtain the induced spin density

a-= g a((p q) 'sp .P((p.q)+so'(2I+1) ' (l+1) 1+ P(+i(J( q)+I 1+ P( ((p q)
(&o . (»+3) ' (2l —1)

a(= [rIu+g, +(~(+G(')/(2I+1)]p(,
dQ-

P( ——(21+1)f P((p q)P"(q p(o.) .

The 1=0 components of both o- and g-=p- contribute
p p p

to the induced magnetization,

5M (qioio) =2N(0) (pro+'ri(vgo) .
2

(41)

The contribution from (Tp is

~G 0'o[1 + Iu+(~i +6& )/3]/(1+F(/3)

+sp (Pp/3)(g„+gq +IIp+ Go )(1+Fi /3)'
+so (2/2/15)[g„+h)~+(A'z+Gz)/5](1+Fi/3),

(42)

where the continuity equation has been used to eliminate
Pi in favor of the amplitude of the density fluctuations Pp
sp P(/3 =Pp( 1+Fi /3) '. lt is easily shown from Eqs.
(9a) and (10a) for 4- that Pz=2fp for sp))1, thus the

terms on the second and third lines of Eq. (42) are gen-
erally small compared with those on the first line, except
for the term ~sp (Pp/3)HG. Since Hp g„FG+ smaller——
terms, we have to leading order in so ',

(To=-go[a +(2+Fi /3)g, +(H'i+ G i )/3](1+Fi /3)

so we can write the induced magnetization entirely in
terms of the density Auctuation amplitude
5n(q, cop) =2N(0)(PG,

yg I( q. r —~O5M(1,()=t/~ 5(1(q cop}e ((3(r)
2

where

'(I = 7J +[(J +(2+F /3) g„+(IIh +G 1 )/3]

X(1+Fh/3) '.
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Thus, in the laboratory reference frame there is an in-
duced magnetization wave, modulated by the uniformly
rotating magnetization, given by Eqs. (1).
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Nordic Institute for Theoretic Atomic Physics for finan-
cial support. This research was supported in part by Na-
tional Science Foundation Grant No. DMR-80-2063.

dependence generated by H,

X„„[Mp]=—ie(t —t')([nH(xt), nH(x 't')])~

X,„=R[z,Qot] X.,„,
X,„[Mp]= i8—(t —t')([s~(xt), nH(x 't')])~

X„=R[z,Qpt].x,, R[z,Qot]

X,,[M ]=—ie(t —t')([s (xt), s (x't')])

(AS)

(A 10)

(A 1 1)

APPENDIX

M(t)=R[z, Q,t] M, ,

Mp ——R[y, Hat]. M,q,

(Al)

(A2)

where M,q= —2N(0)h, qz:—XHp, then the density matrix
that describes this state, assuming it was prepared from
an equilibrium ensemble described by p(HT ) with

HT ——H —@HO.S, is

In this appendix we discuss the constraints on the
linear-response functions of normal He imposed by spin
rotational invariance and approximate particle-hole sym-
metry of the underlying Hamiltonian H. A brief version
of this argument is given in Ref. 14, while Serene has pre-
viously investigated the consequences of symmetry for the
order-parameter response functions in superfluid He.

If He is prepared in a state with uniformly precessing
magnetization,

Equations (A9) and (All) give the transformation be-
tween the spin-dependent response functions defined in a

+ 0coordinate frame rotating at the Larmor frequency (X,„
and X») and the response functions defined with respect
to a nonrotating coordinate system (X,„and X»). Also
note that X,„[Mp] and X,,[Mo], ealeulated with the den-

sity matrix &=p(H yx 'Mp —Stt), are the equilibrium
response functions (in the rotating frame) calculated in the
tipped magnetic field X 'Mp. We then expand these
functions in the basis [u i, u 2, u 3I with u 31IMo given by
Eqs. (2S) for t =0; X,„=g,. , X,'„u; and

3~ 0 ij ~o~oX» —g X»u tu J
i,j=1

The coefficients X,'„and X,', are then the usual equilibrium
linear-response functions evaluated in the field X 'Mp.
Thus, in the nonrotating frame we obtain,

& =p[H yx 'M(t) —S] . (A3)

3

X,„=g X,'„(xt, x 't'
l Mp)u;, (A13)

X„„=—ie(t —t') ( [n,( xt),n, ( x 't')] ).„,
X,„=—ie(t —t')([s (xt), n (x 't')]).

T

(A4)

(AS)

The density matrix satisfies the Liou ville equation,

B,&=i[&,HT], and gives M(t) as the expectation value

for the magnetization to linear order in M. The density
(X«) and spin-density (X» ) responses to a scalar external
potential, as well as the spin-density response (X„) to an
external magnetic field, are determined by

3

Xgg(xt, x t
l Mp)u;uj. (A14)

where Iui, u2, u3I is the rotating coordinate system de-
fined by Eqs. (2S).

Spin rotational invariance of H and approximate
particle-hale symmetry of & and H imply important con-
straints on the linear-response functions. Rotations in
spin space are generated by the unitary transformation,

A ~U(A )3 U(A )t with U{A) =e' ', so that

X„=—ie(t —t')([s (xt), s (x 't')]).
T

(A6) ++
stt~R[A] st, (A1S)

where the density (nH ) and spin-density (sH ) operatorsT T
are defined in the Heisenberg picture and carry the time
dependence generated by the Hamiltonian HT. In addi-
tion the density matrix becomes

~H~~H ~

&a[Mo] &H[R[A] 'Mo] .

(A16)

(A17)

&tt p[H yx 'M{t).SH (——t)), — (A7)
In consequence, the linear-response functions satisfy, for
any rotation A,

which is independent of time since M(t) and SIt (t) satis-
T

fy the same Bloch equation, B,M =y(M XHp). We
neglect very small nuclear dipolar interactions in He, so

A
that [H,S]=0. Because of the invariance of H under
spin rotations, Eqs. (A4)—(A6) are more conveniently
written in terms of operators that carry only the time

X„„[Mo]=X„„[R[A ] Mo],

X,„[Mo]=R[A ] X,„[R[A ] 'Mo],

X„[Mp]=R[A]X [R[A] 'Mo] R[A]

{A18)

(A19)

(A20)

A rotation of vr!2 about Mp gives u i —+u 2& u 0~ u li
therefore, Eqs. (A13) and (A14) reduce to
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3 A
Xsgg=Xsnu3 ~

(A21)

X„=X„(uiu i +uzuz)+Xss u3u 3

+Xss ( tl i tt z —tt z tt i ) . (A22)

A m rotation about u 2 implies that all four functions (X,„,
X,", , X,X,', ) are functions of

~
Mo ~. From Eq. (A21) we

have that X,„ is a purely longitudinal magnetic response
along the same tipped field Mo that enters the density ma-
trix. Thus, X,„does not contain contributions from (or
couplings to) any spin wave mode in He.

As was noted earlier, the particle-hole transformation,
represented by the unitary operator C, is an approximate
symmetry of the low-energy (quasiparticle) Hamiltonian
HT', CHrC =Hr+small PHA terms If .all particle-

hole asymmetry terms are neglected, then C s 0C~= s 0,
Cn~Ct = —n~+const, Co~C~=o~, and
=0. The PHA terms imply that X,„ is nonzero and fisst
order in PHA; X,„-qX„„,where

(irtQp)—
)V'(0) fiQp ((1

5M(xt) =(y iir)( X,„ /X«) 5n(xt)u3(t),

which gives Eqs. (1).

(A23)

Thus, spin rotational invariance and approximate
particle-hole symmetry imply that the magnetic response
to a scalar field, u (qto)e' q ' " "",when written in terms
of the density response, 5n(xt)= 5n(q co)e' q'" "", be-
comes
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