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Electric-field-induced new features in the photoconductivity of extrinsic silicon
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Under low background radiation and at low temperatures ( —1.4 K) the extrinsic photoresponse of
phosphorus- and antimony-doped silicon exhibits a peak below the ionization energy of the impurity, when
an electric field is applied. This peak grows in intensity and shifts (up to 2 meV) to lower energies as the
electric field is increased. Both the position and the intensity of the peak saturate at a critical field which

depends inversely on the impurity concentration. A possible explanation of the observed features is pro-

posed.

INTRODUCTION

There has been a renewed interest in the studies of ex-
trinsic photoconductivity or absorption spectra of semicon-
ductors due to the observation of many exotic shallow
centers other than the well-known donors and acceptors.
The D (donor with an extra electron) and A+ (acceptor
with an extra hole) centers and their complexes, ' molecular
centers and pairs of impurity centers in different charge
states are some examples. Structure in the photoconductivi-
ty spectra due to electron-phonon umklapp processes have
been predicted4 and observed. 5 The presence of these
centers can drastically alter the characteristics of impurity
based infrared photoconductive detectors. Hence, a detailed
understanding of the role played by these centers is very im-
portant. These centers present an excellent opportunity for
the observation of many effects due to their close analogy to
the well-known hydrogen problem in atomic physics.

We present here a detailed study of the extrinsic photo-
conductivity spectra of silicon doped with phosphorus or an-
timony impurities at low tempeatures and controlled back-
ground radiation.

We report new features in the spectra which vary with the
electric field across the sample. The observed spectra ex-
hibit a peak below the ionization energy of the impurity
with the applied electric field. This peak grows in intensity
and shifts (up to 2 meV) to lower energies with electric
field. The position and the intensity saturate at a critical
field which depends inversely on the impurity concentration.
Possible explanations of these observed features are pro-
posed.

Carter et al. have observed the photoconductivity spectra
(below 400 cm ') of the phosphorus donors in silicon at
1.5 K for 10' and 10' impurity atoms/cm as a function of
applied electric field. They observe peaks corresponding to
the electronic transitions from the ground state to the excit-
ed states of the impurity. However, the peaks do not ap-
pear at the energy positions observed in the absorption mea-
surements but are always shifted to lower energies by about

a linewidth. These were speculated as due to hopping of
electrons between excited states of different donors. They
also observed one additional line (possibly more) at 333
cm ' which was attributed to molecular origin of closely
spaced donor pairs. No detailed model of the process was
presented. A broad peak below the ionization energy of the
impurity similar to the one observed by us also seems to be
present in their spectra, though it was not discussed.

Owing to the differences in impurity concentrations and
possible differences in the biasing and background radiation
on the samples, a direct comparison between our data and
those of Carter et al. is not possible.

EXPERIMENTAL RESULTS

The samples were cut from single-crystal float-zone sil-
icon. The material was purified by zone refining prior to
growth. Residual impurities other than boron are vaporized
or swept down to the ends of the boule. The boron concen-
tration is in the range of 10' cm . Doping with the im-
purity of interest was accomplished by insertion of calculat-
ed amounts before crystal growth. The doping concentra-
tion varies along the growth axis but has a very high radial
uniformity. The samples are obtained from wafers cut in
the radial plane. After lapping and polishing, phosphorus
was diffused into the surfaces to provide a heavily doped
degenerate layer. The surfaces were then metalized sequen-
tially with electroless nickel and electroplated indium. One
of the contacts was fused to a tinned copper heat sink and
the other soldered to the metal wire for the external circui-
try. The infrared radiation reaches the detector transverse
to these contacts via a light pipe arrangement. Room-
temperature radiation was minimized by placing a cold filter
in front of the-sample which was immersed in liquid helium.
A FS-720 Fourier transform spectrometer equipped with a
dedicated computer to p|:rform a real time analysis of the
data was used.

Figure 1 (lower panel) shows the photoresponse per unit
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the average, become more energetic and cause greater im-
pact ionization of the bound electrons in the excited states.
Hence, excited states which did not have sufficient thermal
energy to contribute to photothermal ionization become ac-
tive to produce photoconductivity due to electric-field-
induced impact ionization. This effect results in (a) an in-
crease in the photoconductivity and (b) an apparent shift in
the EIP towards lower energies. To initiate impact ioniza-
tion process, however, one needs some electrons in the con-
duction band to begin with. Even though the temperature
is small, the Boltzmann distribution allows this probability
to be nonzero. Both the position and the intensity of the
HIP saturate due to the fact that the electrons cannot be
photothermally ionized from the excited states deeper than

n =4 (binding energy of this level being —2 meV) because
their ionization energies are more than an order of magni-
tude larger that kT. At higher impurity concentrations, the
ionization energies of the excited states are reduced due to
overlap effects thus making both the photothermal and im-
pact ionization processes more efficient at a given electric
field. This accounts for the lower values of the saturation
field.

Another mechanism which may also contribute to the ob-
Served behavior of the photoconductivity peak is one in
which 0 centers are created by transferring electrons from
the excited states to the neighboring unexcited donors. It
is, however, difficult to explain all the observed features us-
1Ilg this 1Tlodel.

To summarize, we have studied the extrinsic pho-
toresponse of phosphorus- and antimony-doped silicon at
low temperatures ( —1.4 K) under low background radia-
tion. The photoconductivity spectra exhibit a peak below
the ionization energy of the impurity with the applied elec-
tric field. This peak grows in intensity and shifts (up to 2
meV) to lower energies as the electric field is increased.
Both the position and the intensity depends inversely on the
impurity concentration. %e have proposed a model involv-
ing phototherrnal and impact ionization mechanisms which
provides a satisfactory qualitative explanation of the ob-
served features. More quantitative work needs to be done
on this model, however, before one can be certain of its
validity.
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