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The evolution equation for the density matrix of a moving particle in a crystal is reformulated; as
one presenting a (formal) trapping problem and an exact solution obtained with the help of the Mon-
troll defect technique. The solution is used to calculate the neutron scattering function. An explicit
evaluation is carried out for a particle moving along a linear chain via nearest-neighbor interactions
and the temperature dependence of the line shape is studied exactly as well as in limits.

I. INTRODUCTION pmn t[H~P]mn ~(1 5mn )Pmn (2.1)

This paper has two purposes: (i) to present a new
method for the exact solution of a density-matrix evolu-
tion equation used frequently in modern transport theory,
and (ii) to evaluate, with the help of that solution, a
specific observable, viz. , the neutron scattering function.
The transport equation is the stochastic Liouville equation
(SLE).' It has recently found extensive use in various
fields of physics. The method of solution we present is
based on the "defect" technique developed particularly
by Montroll and collaborators for problems involving the
trapping of moving excitations. Although no trapping
occurs in the physics of interest to the present work, we
will show that the SLE can be reexpressed as presenting a
formal trapping problem in a manner analogous to that
employed in the theory of mutual annihilation of excitons
developed by one of the present authors. The result is an
exact solution of the SLE in the Laplace and Fourier
domain. The exact solution is particularly appropriate as
a starting point for the study of the scattering function
relevant to experiments involving probe particles such as
neutrons. A field of investigation where such a study is
important(is that of hydrogen motion in metals where un-
resolved problems remain in the interpretation of some
neutron scattering experiments. ' The particular
feature that our solution possesses is the ability to address
the degree of transport coherence of the moving particle
which produces the scattering line shape.

Qur paper is structured as follows. In Sec. II we intro-
duce the SLE and present the method of solution. In Sec.
III we show that the neutron scattering function is espe-
cially amenable to analysis with the help of that solution,
give a formal expression for the scattering function, and
evaluate it explicitly for a linear chain with nearest-
neighbor transport interactions. In Sec. IV we plot and
discuss the temperature dependence of the exact expres-
sion for the scattering cross section along with its special
cases in several limits. Conclusions fortn Sec. V, and a
brief appendix demonstrates a simple extension of our
analysis to systems involving SLE's more complex than
the one introduced in Sec. II.

II. SLE AND METHOD OF SOLUTION

The stochastic Liouville equation in its simplest form is
given by

and describes the time evolution of the density matrix p of
the moving particle in the representation of site states
m, n. The system in which the particle moves is a crystal,
i.e., possesses translational periodicity. The intersite in-
teraction is H. The last term in (2.1) describes the ran-
domizing process whereby the off-diagonal elements of p
decay, a being the rate at which this process occurs. Al-
ternatively, a may be looked upon as the average rate of
scattering among the band states of the particle. In the
limit of no scattering, (2.1) describes wavelike or coherent
motion whereas, in the opposite limit, it describes hopping
or incoherent motion. The indices m, n are vectors in the
appropriate number of dimensions. A different form of
the SLE is

p „=—i[H,p] —a(1 —5 „)e

+25mn g ( Ymrprr Zrmpmm ) (2.2)

and describes, in addition to the processes included in
(2.1), a transport channel wherein the particle hops from
sites r to sites m at rates 2y~, . We shall show the
method of solution for (2.1) in the body of the paper and
the extension to (2.2) in the Appendix.

The SLE (2.1) can be looked upon as presenting a for-
mal trapping problem in a 2d-dimensional space, where d
is the dimensionality of the system under analysis. We
shall use g to denote the "homogeneous" solution of (2.1),
i.e., its solution in the absence of the last term,

g „(t)= g P „„(t)p „(0) .
m'n'

(2.3)

Pmn+Ctpmn = t [H&P]mn++5mnpmn (2.4)

we see that a produces two perturbations on (2.3): that
caused by o.p „on the left side and that caused by
a5 „p on the right side. In the context of the dynam-
ics of a hypothetical walker whose unperturbed motion is
given by (2.3), these two terms represent, respectively, an
overall decay akin to the radiative decay of a moving exci-
ton and a trapping or annihilation process ' which takes

The quantities P are the density-matrix propagators, i.e.,
the solutions of (2.1) for a=0 for the initial conditions

p „(0)=5 p5 p. If we recast (2.1) as
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place only when m =n, i.e., in a special trap-influenced
region in the m, n space. The first of the two terms intro-
duces a simple multiplicative factor into the solutions
(2.3), but the second requires an analysis through the de-
fect technique. Equation (2.4) takes the form

p „(e)=rI „(e+a)+ag g „(e+a)p ~ (e)

in the Laplace domain, where e is-the Laplace variable
and tildes denote Laplace transforms. The case m=n
gives

p (e) =g (e+a)+a+ f ~ (e+a)p (e),

(2.6)

which involves only diagonal elements of the density ma-
trix in the representation of m, n. We solve (2.6) through
the use of discrete Fourier transforms. These are defined
through relations such as

k y eikm (2.7)
m

where k is generally a vector and km a dot product. The
result is

(2.8)g "(e+a)
1 —aP (e+a)

Equation (2.8) is one of the central results of this paper.
It is straightforward to substitute (2.8) in (2.5). One

then finds that the solution of the SLE (2.1) is given by
(2.3) with the replacement

e ik(s —r).(e)~P .. .(&)+—g k
. f „„„(e+a)g, , „(e+a) .

N „,k 1 —ag (e+a)
(2.9)

This result is exact and explicit. It is explicit in the sense
that once one knows the f's, i.e., the propagators of (2.1)
or (2.4) in the absence of a, one can write down the solu-
tions of (2.1) by following the prescription of (2.9) and the
right-hand side of (2.3), for arbitrary initial conditions.
The practical usefulness of (2.9) depends on the simplici-
ty, or lack thereof, of the. quadrature problem involved in
the inversions of the transforms. The result we wish to
stress in this paper is (2.8) rather than the general solution
(2.9). Indeed, we show below that (2.8) gives us a direct
and practical method of evaluating the scattering func-
tion.

III. SCATTERING FUNCTION AND
ITS EVALUATION FOR A LINEAR CHAIN

—ikx ik(t )x (3.1)

where p is the density operator of the target system, i.e.,
the particle moving in the crystal, k is the momentum
transfer, and x is the position operator. The experimental
signal is made up of contributions from both the moving
particle and the lattice constituents. Under favorable con-
ditions, such as those which commonly prevail for hydro-
gen in transition metals, the two parts of the signal can be
separated from one another. We address only the contri-
bution of the moving particle here. Accordingly, we take
x in (3.1) to be the position operator of the moving parti-
cle. If the target system is initially in equilibrium, the ap-
propriate form of p is canonical. At infinite temperatures,
when p is proportional to the unit operator, the correla-

The motion of g particle moving among the sites of a
crystal, such as a hydrogen atom in a metal, can be stud-
ied experimentally by scattering a beam of probe particles
that interact weakly with the moving particle. The
relevant scattering function S(k,co) as derived by Van
Hove" is conveniently expressed as the Fourier transform
in time of a correlation function I(k, t), often called the
intermediate scattering function' '

tion function I(k, t) becomes simply the Fourier
transform of a conditional probability in the basis of the
site states of the particle,

I( k, t) = g e'" P(m, t) =Pk(t) . (3.2)

Treikx(e iLt e —ikx)— (3.3)

wherein L is defined by LO = [M, O] for any operator 0,
and by defining

p'(t) =Tr», he
' 'pe

p(m, t) = (m
~

p'(t)
~

m ),
(3.4)

(3.5)

we find the finite-temperature generalization of (3.2) to be

I(k, t)= ge'" p(m, t)=p"(t) . (3 6)

While p(m, t) is generally complex, and therefore not a

Here, and throughout this paper, Debye-Wailer factors are
neglected for convenience. In obtaining (3.2), the trace in
(3.1) is partitioned into a trace over the particle coordi-
nates as seen in (3.2) and a trace over all other coordi-
nates, these constituting a bath. The probability P(m, t) is
thus a reduced probability. The variety of methods which
may be used to obtain such probabilities has made (3.2) a
standard feature of scattering calculations in high-
temperature systems. ' '

The infinite-temperature limit assumed in (3.2) is ap-
propriate when k~T, the product of the Boltzmann con-
stant and the temperature, is much larger than the effec-
tive bandwidth of the moving particle. Equation (3.2) can
become inadequate at lower temperatures when the sym-
metry of the observed scattering line shape is affected per-
ceptibly. Under these conditions the departure of the
thermal density matrix from the unit matrix must be tak-
en seriously in calculating I(k, t). By transferring the
time dependence of exp[ikx (t)] in (3.1) to the other opera-
tors under the trace
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probability, it behaves like one dynamically: It is a diago-
nal element of an operator obeying a reduced
Liouville —von Neuman equation for a specific, although
nonstandard, initial condition. As such, the results of Sec.
II may be directly applied to calculate scattering line
shapes through the prescription

f dte '"'I(k, t) .2s'

with the notation I'(k, t) = ,
'

[—I(k,t)+I( —k, —t)]„and
P=(kH T)

As an illustration of (3.7) and (3.8) we calculate S(k,co)
for a discrete linear chain with the nearest-neighbor trans-
port interaction Hm =V(5mn+1+5mn 1). This requires
that g (e+a) and g (e+a) be evaluated, and S(k,co) ex-
tracted from (2.8) and (3.7). The specific form of the SLE
is now

Pmn V(Pm —1,n +Pm+1, n Pm, n —1 Pm, n+1}

(3.7) —a(1 —~mn }pmn (3.9)

S(k,co) =e~~ sech( —,@co) f dt I'(k, t)2' (3.8)

We note in passing that (3.6), which gives an observable of
interest in terms of the Fourier component of a complex
"quasiprobability, " is very similar to a result obtained
elsewhere' which expresses another observable of interest,
the conductivity, in terms of the moments of the
quasiprobability.

The usefulness of the exact solution of the SLE present-
ed in Sec. II should be completely clear from (3.7). The
latter gives the scattering function as the Fourier
transform (in time and space) of the site-diagonal ele-
ments of an operator which can be taken to follow the
evolution dictated by the SLE. Equation (2.8), on the oth-
er hand, gives that double Fourier transform explicitly
since the passage from a Laplace transform to a one-sided
Fourier transform is trivial. The rest of this paper ex-
ploits the conjunction of (3.7) and (2.8).

For later use we state here an alternate form of (3.7)
which involves a symmetrized form of the correlation
function I(k, t) and is similar to one in which the Kubo
linear response of the frequency-dependent conductivity is
usually displayed

the indices m, n being integers from —oo to oo. The solu-
tion of (3.9) in the absence of a is well known, the result
for the propagators being

P „(t)=i'" 'J (2Vt)J„(2Vt), (3.10)

This form is exact and independent of the details of the
Hamiltonian. Using the result that for our Hamiltonian
[exp( iHt)]m—,=i'" 'Jm, (2Vt), one obtains

g (t)=ID(2Vp) g Jm+„(2Vt)Jn(2Vt)lm(2Vp)et"m,
m, n

(3.12)

where Im is the modified Bessel function of the first kind
of order m. This may be summed exactly using standard
summation formulas' to yield

where Jm is the Bessel function of the first kind of order
m. The calculation of g" in (2.8) proceeds as follows:
Letting Z denote the partition function, we find in the
time domain

+k(t) Z —1 g (e iHt) —
(e pHe —tkn)—(eiHt) eikm

Nl, f,S

(3.11)

g (t)=ID(2VP) 'Jo(4Vsin( —,'k)I(t ——,'iP) —[—,'Pcot( —,'k)] I'~ ) . (3.13)

In order to use (2.8) for the line shape calculation, we require the Laplace transforms of the quantities 1'(t) and g(t) in
(3.10) and (3.13}. The former is obtained immediately:

1'�"(e+a)=1/[(e+a) +16V sin ( —,
' k}]'~

I (2VP)eikl/2

The transform of (3.13) can be evaluated in the form of an infinite series

gl I [(e+a)'+ V(k)']'"—(e+a) )
~'

~

o( V~) l= (k)"'[(e+ )'+V(k)']' 'g "(e+a)=

(3.14)

(3.15)

where, for convenience, we have defined V(k)
=4Vsin( —,

'
k) and gl ——sgn(l)'. For practical computations

one may either use (3.15) or a numerical evaluation of the
Laplace transform of (3.13). We have found it convenient
to use the latter procedure. ' The substitution of that re-
sult and of (3.14) in (2.8) gives the scattering function ex-
plicitly through either (3.7) or (3.8). We present the re-
sults below.

IV. PLOTS AND DISCUSSION

The special contribution of our present calculation of
scattering line shapes is that it treats systems with an arbi-

l

«ary degree of transport coherence. To show this ex-
plicitly we present Fig. 1, in which we isolate the effects
of coherence from those of temperature by consideang the
infinite-temperature case. In this limit, the present re-
sults are equivalent to those of Ref. 5. We have scaled ail
parameters by V(k). So scaled, the representation of
S(k,co) in Fig. 1 is independent of momentum transfer
and the particle energy bandwidth, i.e., there is no hidden
deperidence on these quantities.

The narrowing and resurgence of the scattering line
seen with increasing a/V(k) is a dynamical consequence
of limited quantum-mechanical phase memory. For large
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On the other hand, if (as in the present ease) the derived
function S(k,m) fails to satisfy (4.1), then (4.3) fails as
well. The right-hand side of (4.3) may then be used to de-
fine a new function S (k, co) which satisfies (4.1) exactly.
Figure 3 compares an S'(k, co) and the S(k,co) from Fig. 2
used to generate it. One sees explicitly that S'(k, co) does
not possess the problems shown by S(k,co), but is other-
wise practically identical to S(k,co).

Alternatively, one could define a function S'(k, co)
formed from the antisymmetric part of S(k,co},

e @co/2
S'(k, co)=, [S(k,co) —S(—k, —co)],

2 sinh( —,
'

Pco)

and use it to address the detailed balance problem in a
similar manner. In fact, Fig. 3 shows explicitly that there
is almost no quantitative difference between S'(k, co) and
S'(k, co). Therefore, we will consider only S'(k, co) in the
rest of the paper. We note also that (i) for inversion-
symmetric systems such as we consider here, the integrat-
ed intensities of S'(k, co) and S(k,co) for a given k are
identical and conserved against variations in parameters,
and (ii) the small -co behaviors of S'(k, co) and S(k,co) are
the same.

Our prescription for the calculation of scattering line
shapes therefore consists of the derivation of S(k,co) from
(3.7) and the substitution of this approximate result into
(4.3). The final line shape is S'(k, co). We stress that this
procedure is entirely equivalent to using the relation (3.8)
following the calculation of the symmetrized correlation
function I'(k, r) from the SLE.

Figures 4 and 5 present typical results of the SLE as
d by the symmetrization prescription (4.3). In
fairly high degree of transport coherence is con-

over a range of temperatures, while in Fig. 5 a
erence result is shown. While high-coherence re-
vide more detailed information about the system,
low-coherence case which is most commonly en-
d in experiments probing atomic transport in ex-
ystems.
ts presented thus far have been exact consequences
tochastic Liouville equation. Also of interest are

ate results, accurate to low order in some
parameter. %'e will now explicitly consider the
ntity p (e), and from it produce approximate
using (3.7). From such S(k,co), S'(k, co) will be
by applying (4.3) without further approximation.

ining (2.8), (3.14), and (3.15) one obtains

~/v (k)
FIG. 5. Scattering function for highly incoherent transport

after the symmetrization prescription {4.3). Parameter. values:
kgT=4V; k~ T= oo. For each curve

a/V{k) =4.0, ka =m.

maintain the detailed balance symmetry at finite tempera-
tures is due to the approximate nature of the transport
description. Indeed, this is normal in the traditional ap-
plication of the classical prescription (3.2), which only
yields line shapes even in frequency. Such line shapes can
be valid only at infinite temperatures, and it is common
practice to "improve" them with a correction factor
exp(Pco/2)

(4.2)
improve

where So(k, co) is the even line shape derived from (3.2).' Fig. 4 a
Unlike the classical treatments, the result of (2.1) and (3.7) sidered
is a line shape which is of indefinite symmetry. In restor- low-coh
ing the detailed balance properties which the line shape suits pro
must possess on general grounds, we wish to utilize the it is the
fact that SLE-derived line shapes are already "improved" countere
in the sense that they are quite well balanced if tempera- tended s
tures are not too low. We note that the detailed balance Resul
relation may be written equivalently as of the s

e~~' appl oxim
S(k,co)=, [S(k,co)+S(—k, —co)] . (4.3) relevant

2cosh( —,'Pco) full qua
If (4.1) is satisfied by a candidate line shape function S(k,co)
S(k,co), then (4.3) is also satisfied and merely shows how obtained
S(k,co) may be expressed in terms of its symmetric part. Comb

I

/It[(a+a) +V(k) ]' —(@+a)j ' II(2VP)
V(k)" '

t [(a+a) + V(k)']'. 2 —aj 10(2VP)
(4.4)

«t»»ng only terms of lowest order in pV, ' the infinite-temperature result is modified to yield

R (co)cos[B(co)](1+—,
'

Pco)
S(k,co)=—

~ R(co) —2aR(co)cos[6(co)]+a
with the auxiliary definitions

R(co)=I [a +V(k) —co ] +4' a j'
B(co)=arg [[(iso+a) + V(k) ]'~ j .

(4.5a)

(4.5b)

(4.5c)
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We note that this result, which is first order in PV, satisfies (4.1) to second order in Pco. Since the first-order term is odd
in frequency, the correction is lost when (4.3) is applied. The result is

ei' " R (co)cos[6(co)]
~ cosh( —,'Pa)) R(co) 2—aR(co)cos[6(co)]+a

To this low order, the structured part of the line shape is independent of temperature and identical to the infinite-
temperature line shape. The next correction, obtained by retaining terms to second order in PV, contributes to S (k, co)
with the result

S' k
R (co)cos[6(co)]

7r cosh( —,
' p~) R(co) —2aR(co)cos[6(Q))]+a

I R (co)cos[6(co)]—a j I R (co) —2aR (co)cos[6(co)]+a —co j
2 2 2VP cos(k)

4Vsin( —,
' k)

R (co) —2aR (co)cos[6(co)]+a
(4 7)

While the above approximations are restricted in the
temperature range over which they apply, they are valid
for arbitrary frequency, momentum transfer, and degree
of coherence. To find approximate forms valid at lower
temperatures, an alternative parameter is needed. A use-
ful smallness parameter is V(k)/(@+a). Formulas
developed in powers of V(k)/(a+a) will display the im-
portant features of the line shape in the incoherent re-
gime (a » V), the small-momentum-transfer regime
[k «

~
(iso+a)/2V

~ ], and in the wings [co && V(k)]. Ex-
panding the radicals in (4.4) and retaining terms to first
order in V(k)/(a+a) yields

1+i [V(k) /(e+ a )]I~ (2 VP) sin( ,
' k)—

p "(e)=
I e+ —,

' [V(k)'/(a+a) ]jIo(2 VP)
(4.8)

Applying (3.7) yields the direct line shape

1S(k,co) =—
Vk 1

2V Io(2Vp)

[ V(k )2 ~2]2+~2a2
(4 9)

V(k)
2'1 e Pc@/2

S'(k, co)=—
2~ cosh( —,

'
pro) V(kp

CO +
2A

(4.11)

and applying the symmetrization prescription (4.3) to (4.9)
yields the properly balanced line

Pcs/2 —,
' a V(k)

S'(k, co) =—, , (4.10)~ cosh( —,Pc@) [—,
' V(k) —co ] +co a

The temperature-independent factor in (4.10) is, interest-
ingly, just the familiar stochastically broadened line shape
due to Kubo ' for a two-state system with energy levels at
+ V(k)/v 2.

Finally, it is easily seen from (4.10) that when a is large
in comparison to both co and V(k), the well-known dif-
fusion result is recovered:

V. CONCLUSION

The contributions of the present work are three: (i) the
defect-technique method of solution of the stochastic
Liouville equation with (2.8) and (2.9) as the end result,
(ii) the application of this result, particularly (2.8), for the
exact calculation of the scattering line shape in a represen-
tative one-dimensional system, as in (3.8)—(3.15), and (iii)
a resolution of the detailed balance problem characteristic
of the stochastic Liouville equation as explained in the
discussion following (4.3). We comment on each of these
in turn.

The stochastic Liouville equation has been derived and
explored in numerous ways in diverse contexts. "' The
characteristic feature of the new method of solution we
have presented is that it is based on recasting the equation
as describing a formal trapping or annihilation problem,
although such capture processes do not occur in the phys-
ics under consideration. The correspondence between the
method of solution given here and the annihilation
analysis of Ref. 7 may be understood through an inspec-
tion of (2.4). The purely coherent evolution, i.e., the case
of no bath interactions, is taken to correspond to the an-
nihilationless system. The effects of the bath are looked
upon as producing decays: through an overall depletion
at the rate a as well as through a formal "capture" pro-
cess occurring in a restricted region of the space under
consideration. The restricted region is "along the diago-
nal" in the site representation of the density matrix and
corresponds to the destruction region that appears in the
annihilation problem. The space under analysis has twice
the number of dimensions as the physical crystal in both
cases: in the annihilation problem because the particles
annihilate in pairs, and in the present problem because the
evolving object is a density matrix —rather than a proba-
bility or an amplitude —and therefore a double-indexed
quantity. Exact solution of trapping problems is practical
only when the defect region is small in extent. Although
the defect region for the present problem is initially infin-
ite in extent, we are successful in reducing its size through
the use of the Fourier transform. This is identical to the
annihilation case and it is the translationally invariant na-
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ture of the system under consideration that makes the
reduction possible. The final solution for the annihilation
problem is presented in the Laplace-Fourier domain as
the product of a correction factor and the e-displaced
(e—+@+a) solutions for the pure crystal without annihila-
tion. The final solution for the stochastic Liouville equa-
tion appears here in the Laplace-Fourier domain as the
product of a correction factor and the e-displaced solu-
tions for the purely coherent crystal. In the simple one-
dimensional model with nearest-neighbor transport in-
teractions which we have used to illustrate our method,
the purely coherent solutions are known explicitly in
terms of Bessel functions. All the required information
about the full solution of the stochastic Liouville equa-
tion, in particular the scattering line shape, is therefore
obtained easily through the use of our method.

Our interest in the present paper is in applications of
the stochastic Liouville equation to light interstitial trans-
port and we note that a form of the equation has appeared
in the metal hydride literature. " Its primary use has been
to extract diffusion constants for specific transport
models. A limiting case of the SLE is the master equa-
tion, which describes completely incoherent motion of in-
terstitials and has long been used as the basis of neutron
spectroscopic studies of jump diffusion. ' It is in part the
apparent inability of such theories to explain a growing
body of neutron spectroscopic data ' that has motivated
investigation into alternative transport models. As Figs.
1—5 show, our analysis allows us to study the effects of
arbitrary coherence and finite temperature in full detail.

The stochastic Liouville equation possesses an undesir-
able characteristic which is well known. The assumption
of a universal rate a for the decay of p „ forces the SLE
to produce equilibrium solutions which do not possess the
correct thermal behavior: All off-diagonal elements of
the density matrix in the site representation vanish in
equilibrium, and all k states are occupied with equal prob-
ability. This result is obviously incorrect unless the tem-
perature is infinite. It is expected that the scattering func-
tion would be affected by this failing of the SLE, since, on
balance, line shape symmetry is dependent on the detail of
the equilibration process. This shortcoming of the SLE
has been recognized in the exciton literature and at least
two attempts have been made to correct it. ' In one of
them 5 a form of the SLE has been constructed specifical-
ly to build into the equation the correct equilibrium solu-
tion. While such a procedure is simple for the dimer con-
sidered in Ref. 25, the large number of k states (or of p~„)
involved in crystal makes the generalization of that pro-
cedure for our present purpose impractical. Moreover,
that remedy is unable to address the failure of directly cal-
culated line shapes to meet detailed balance criteria. The
approach we have taken in the present paper consists of
calculating from the SLE a symmetrized correlation func-
tion rather than the simple I(k, t), and using the general
relation, viz. (3.8), to connect it to the scattering function.
The general relation is valid independently of the dynam-
ics or the approximation inherent in the SLE. On the oth-
er hand, the symmetrized correlation function calculated
from the SLE contains the specific dynamics particular to
the latter. By using our method, one thus obtains a

scattering function that contains the precise dynamics of
the SLE as well as the correct detailed balance properties.
It is perhaps worth emphasizing that, as far as the scatter-
ing line shape is concerned, the detailed balance problem
does not even arise if one uses our prescription from the
very beginning of the analysis. It is further important to
observe that the departure from the detailed balance rela-
tionship inherent in the direct consequence of the SLE is,
perhaps surprisingly, quite small even at low tempera-
tures, as Fig. 2 shows explicitly.

Some generalizations of the theory of neutron scattering
incorporating the interplay of hopping and tunneling
motion of interstitial atoms have been proposed. ' The
present formulation of the neutron scattering function is
formally distinguished from others in that it is applicable
at finite temperatures and is derived from a reduced
density-matrix equation. When the evolution equation is
the stochastic Liouville equation, as in our exemplary cal-
culations, the expected broadening of the line shape with
increasing incoherence is seen to result ultimately in the
narrowing of the line. We note that the narrowing
behavior is a consequence of diminishing transport coher-
ence and cannot be reproduced by convoluting the
coherent line shape with a broadening distribution as in
Ref. 15. Moreover, while a hopping channel may be in-
corporated into the SLE as in (2.2) and in the Appendix,
the broadening of scattering line shapes exhibited in this
paper is not attributable to the hopping of the probed par-
ticle. We have carried out a study of the consequences of
the interplay of band and hopping transport by our
method, and the details are being reported elsewhere.

In all the expressions and figures presented in this pa-
per the quantity a/V(k) plays the role of the incoherence
parameter: Its magnitude depends directly on the relative
magnitude of the bath interactions and the intersite
transfer interaction. For fixed momentum transfer k/a
this quantity is proportional to u/V, which clearly mea-
sures the reciprocal of the mean free path of the moving
particle in units of the lattice constant. This is evident
from the fact that, with a as the lattice constant, V 2Va is
the average group velocity and 1/u is the average time be-
tween collisions (bath interaction events). What is partic-
ularly interesting in the present problem is the role played
by the entire expression a/V(k) rather than by u/V. For
small values of momentum transfer, sin( —,

'
k) may be re-

placed by —,
' k. The parameter a/V(k) is proportional to

the ratio of the characteristic length of the neutron
scattering probe, viz. , a/k, to the coherence length of the
atomic motion, viz. , the mean free path. Whether coher-
ence features will manifest themselves in the scattering
line shape will depend on the magnitude of this ratio. We
present Fig. 6 to clarify this point and note that, to the ex-
tent that momentum transfer may be varied in an experi-
ment, it'may be possible to undo the Markoffian limit suf-
ficiently to determine the intrinsic ratio a/V. In Fig. 6,
a/V is constant, but the transition from coherent to in-
coherent behavior is produced by the variation in the
amount of momentum transfer. In the completely in-
coherent situation, i.e., when the standard diffusion result
(4.11) applies, the relevant ratio is that of a /k to
[(V /a)a /co]'~ . The significance of the latter quantity
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~/V (k)
FIG. 6. Scattering function showing the effect of varying

momentum transfer. Transport has been taken to be intrinsical-
ly highly coherent, and the symmetrization prescription (4.3) has
been applied. Parameter values: curve a, ka =~; curve b,
ka =~/2; curve e, ka =m/4; curve d, ka =m/10; curve e,
ka =m/20. For each curve, a/V=0. 4, k&T=2V.

is that it is the distance traversed diffusively by the mov-
ing atom in a time period 1/co characteristic of the neu-
tron probe. The diffusion constant is proportional to
(V /a)a . The relevant ratio for this incoherent case is
therefore again that of the neutron probe length to an
atomic motion length. The situation described here is
similar to that discussed elsewhere in the context of the
measurement of exciton transport and coherence through
Ronchi ruling experiments.

The work reported in this paper is exact but restricted
in the illustrative example discussed to one-dimensional
systems. %'hile the qualitative features of the results
should be of value in the context of light interstitial trans-
port, an extension to a three-dimensional system is neces-
sary before direct comparison to experiment can be made.
Such work is under way.
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APPENDIX

The purpose of this appendix is to obtain an exact solution of the stochastic Liouville equation and a formula for the
scattering function such as (2.8) starting, not from the simple form of the SLE (2.1), but from the form (2.2). On writing
the latter as

pmn ++pmn = t t~~plmn +8mn ~pmn +2 g ( 7mrprr ) rmpmm )

we find that the defect term is more complex than that encountered in (2.4) for the simpler SLE, but still lies along the
region m =n. Following standard usage we define the matrix 3 in terms of the gain-loss matrix y through the prescrip-
tion

Amr Ymr ~

In consequence, the matrix elements u5m, in Sec. II are replaced by the quantities a5m„—A „,and (2.5) is generalized to
yield the solution of (Al)

p „(e)=q „(a+a)+gf ~ „(e'+a) ap ~ (e)++A „p„„(e)
m'

(A2)

-k(, ) n '«+c )

1 —(a —A")g "(@+a)
as the generalization of (2.8) in the text of the paper.

(A3)

The translational invariance of the crystal implies that the
Am„are functions of m ralone and immediat—ely leads
to

The inclusion of the additional transport channel
through the hopping rates 2 „ leaves the scattering func-
tion unchanged except for the replacement of a by a —A
as the factor multiplying f in (2.8). It is straightforward
to examine line shapes with (A3) instead of (2.8), and we
have done so in Ref. 5 for the case of infinite temperature.
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