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A self-consistent theory of localization in a tight-binding model of topologically disordered sys-
tems is investigated. A key element of the theory is use of a disordered reference system in which
the structure of the medium is taken into account. The spatial disorder inherent in the Boltzmann
center-of-mass distribution is taken as the explicit source of lateral disorder, and the effects of
simultaneous site-diagonal disorder are also included. The theory is formulated in a manner which
circumvents use of the so-called upper-limit approximation. The Anderson transition density
predicted by the theory is estimated for transfer-matrix elements of the forms V(R)-R
V(R) -exp( —R /aH), and V(R) -(1+R/a~)exp( —R /aH). Full mobility-edge trajectories for
power-law transfer-matrix elements are also determined, with particular emphasis on the cases n =. 3
and 5 corresponding, respectively, to dipolar and quadrupolar excitons. A connection is also made
between the density of states determined from the self-consistent theory and that resultant from
solution of the quantum mean spherical integral equation.

I. INTRODUCTION

The theory of localization in disordered systems,
pioneered by Anderson' in 1958, continues to occupy a
central role in condensed-matter physics. It was shown by
Anderson' that there is a transition between localized and
extended eigenstates in a one-particle tight-binding model
with site-diagonal disorder (random site energies). There
have since been numerous studies of this model on lat-
tices.2

Systems such as liquids, gases, or glasses are, however,
characterized by topological disorder. In recent years
there has been interest in obtaining criteria for localiza-
tion in this class of systems. " Attention has focused
on analysis of random tight-binding models with off-
diagonal (or lateral) disorder, in which the matrix element
transferring the excitation from site to site is a random
variable, reflecting the spatial disorder inherent in the
problem. Particular emphasis has been given to the na-
ture of electronic states near the metal-insulator transition
in disordered materials, although the question of whether
or not states at a given energy are localized is also relevant
to phenomena such as the propagation of multipolar exci-
tons in fluids and the propagation of phonons in amor-
phous materials. ' ' The aim of this paper is to pursue a
theory of localization in topologically disordered systems,
in which one takes into account the structure of the medi-
um in which the phenomenon occurs; both off-diagonal
and site-diagonal disorder will be considered.

Abou-Chacra, Anderson, and Thouless'"' have
developed a probabilistically based theory of localization
for the Anderson model on a Bethe lattice. This is re-
ferred to as the self-consistent theory, and is centered on a
self-consistent solution of the equation for the self-energy
in second-order renormalized perturbation theory. Our
approach to localization in the more complex case of

topological disorder, which is also based on a noninteract-
ing tight-binding model, follows the methods of Abou-
Chacra et al. , '" and yields a self-consistent theory in a
manner which combines the methods of probabilistic
quantum mechanics with elements of liquid-state theory.
It need hardly be emphasized that the theory which we
formulate is an approximate one for the systems con-
sidered, and also is in the nature of a mean-field theory.

Several authors ' have studied the self-consistent
theory for a completely random distribution of site posi-
tions, the structure of the medium thereby being ignored;
furthermore, these studies have been confined to
Anderson's so-called upper-limit approximation" to the
basic equations of the self-consistent theory, whereby one
neglects the influence of the real part of the self-energy.
In a previous publication' we outlined a theory which al-
leviates the first problem, and examined the implications
of the theory for lateral disorder alone and within the
upper-limit approximation. Here we develop the theory
further, to circumvent use of the upper-limit approxima-
tion and to include the effects of site-diagonal disorder.

In Sec. II we derive the general self-consistent equa-
tions. For a fixed center-of-mass configuration of the
atoms, I R; J, we assume that the system is specified by a
tight-binding model. The site energies are assumed to be
drawn from a given probability distribution, while the
topological disorder inherent in the Boltzmann distribu-
tion for the centers of mass is taken as the explicit source
of randomness in the transfer-matrix element. To calcu-
late the joint probability distribution, f (EJ,AJ), for the
real and imaginary parts of the self-energy of atom j,
Sz. EJ i', we —perfo——rm an average over a reference sys-
tem deemed to consist of particles, each possessing a ran-
dom self-energy and mutually interacting via an appropri-
ate classical interaction potential, Uo( I R; I ). For simpli-
city, we assume that the interaction potential is spherical-
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ly symmetric and pairwise-additive, of the form

U ([R;])=—,
' y'U (

[ R; —R.
[ );

in specific applications we will assume Uo(R) to be that
appropriate to a hard-sphere fluid with hard-sphere diam-
eter o.. Introduction of a disordered reference system in
which the structure of the medium is explicitly taken into
account is a key element of the present theory.

Calculation of the average referred to above is formally
equivalent to a determination of the excess chemical po-
tential of atom i dissolved in the multicomponent refer-
ence fluid, wherein it interacts with the other atoms via a
complex potential. We may therefore use suitable approx-
imation schemes for calculating the "chemical potential"
which are available to us from conventional liquid-state
theory, ' in order to render tractable the resultant integral
equation for F(ki, k2), the Fourier transform of
f(E;,6; ). Whether or not states at the chosen energy are
localized depends on whether or not solutions to the de-
rived equation exist. By examination of the asymptotic
behavior of E(ki, k2), we derive a linear homogeneous in-
tegral equation, the limits of stability of solutions to
which indicate the transition to extended states at the
determined energy and given number density. Analysis of
this equation therefore yields the mobility edge as a func-
tion of number density.

In Sec. III we demonstrate a close connection between
an approximate density of states resultant from the self-
consistent theory, and the density of states obtained from
solution of the quantum mean spherical integral equation
for multipolar excitations. ' The latter is essentially
an effective-medium theory for the electronic states of
topologically disordered systems, and has recently been
the subject of considerable theoretical interest. '

In Sec. IV we estimate the Anderson transition density
predicted by the theory, namely that density at which the'

mobility edges coalesce at the band center and below
which all states in the band are localized. Transfer-matrix
elements of the form V(R) -R ", applicable to a discus-
sion of electronic multipolar excitons, are considered, and
the relative influence of site-diagonal disorder is also in-
vestigated. Similarly, we investigate transfer-matrix ele-
ments of exponential form, applicable to triplet excitons
or to a discussion of the nature of electronic states near
the metal-insulator transition in disordered materials. In
contrast to the majority of previous theories, and in agree-
ment with the recent work of Puri and Odagaki, ' ' the
predicted Anderson transition density for the case of ex-
ponential transfer-matrix elements depends on two length
scales, namely aH, an effective Bohr radius for the elec-
tron under consideration, and o., the hard-sphere diameter;
the relative influence of these competing length scales in
determining the Anderson transition density is investigat-
ed. -

Finally, in Sec. V we calculate the full mobility-edge
trajectories for transfer-matrix elements of form
V(R)-R "; particular emphasis is given to the cases
n=3 and 5, corresponding, respectively, to dipolar and
quadrupolar excitons.

(E e()Gg, (E)+ g—V(R;,RJ )Gjk(E) =5;k,
J

and the self-energy S; (E) is defined by

E —e; S; (E)= [G;;(E)]—

(2.1)

(2.2)

In Feenberg (renormalized) perturbation theory, the
self-energy is written as a sum of terms, each of which
corresponds to a nonrepeating path for the excitation
transfer. The approach of Abou-Chacra et al. ' '5 is to
consider solely the set of equations arising from the two-
body, second-order perturbation terms (which are exact
for a Bethe lattice), and to subsequently ignore the differ-
ences between the self-energies appearing on either side of
any of these equations. One considers the approximate re-
lation

S;(E)=g V~J[E eJ. SJ(E)] 'VJ-, , —
J

(2.3)

and enforces self-consistency by requiring that the proba-
bility distributions of S; and SJ be self-consistent. We
shall also adopt this approach for the topologically disor-
dered systems under investigation. Elyutin, and Fleish-
man and Stein, have discussed the assumptions involved
in applying the approximate relation (2.3) to topologically
disordered systems. Elyutin" also points out that the self-
consistent equation (2.3) is equivalent to a partial resum-
mation of the class of graphs in the Matsubara-Toyozawa
expansion of the diagonal Green function, consisting of
diagrains which have the topology of a Cayley tree with
variable bonds that can, at each site, assume values from
K=O to X = oo (where K is the connectivity).

Localized and extended states are characterized by dif-

II. SELF-CONSISTENT EQUATIONS

For fixed center-of-mass configurations I R;I, we as-
sume that the system is specified by a tight-binding
modql. The excitation moves in the frozen configuration
of atoms and has one possible characteristic energy, e;, as-
sociated with each atom i. When pertaining to electronic
transport, e; is the energy of an electron bound to atom i,
whereas in the excitonic case, e; is the difference in energy
of the levels between which the excitation occurs. We as-
sume that the site energies I e; I are random and indepen-
dent, with some given probability distribution P(e;). In
the limit in which site-diagonal disorder is absent, the site
energies are the same for all i, e;=@0, corresponding to
the trivial distribution P (E; )=5(e; —eo).

The matrix element which transfers the excitation from
atom i to atom j is —V(R;,Ri), the range of which de-
pends on the particular problem under investigation. For
example, V(R)-R " is applicable to multipolar excitons
( n =3, 5, etc., corresponding to dipolar, quadrupolar, etc. ,
excitons), and V(R)-exp( —aR) is often deemed appli-
cable to triplet excitons or to a discussion of electronic
transport in the impurity band of a semiconductor. The
source of off-diagonal disorder, or randomness in the
transfer-matrix element, is taken to be the topological dis-
order inherent in the Boltzmann distribution for the
centers of mass.

The Green function for the random tight-binding
model satisfies
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E =R+ig, SJ(R+ig)=EJ. ib,j —. (2.4)

We further take g to be very small and assume the states
are localized, so that b,z is very small except on a set of
measure zero. One obtains

( V(R;,RJ )
i

R —e E-J J

= g ~
V(R;,Rq)

~
XJ, (2.5a)

~
V(R;,RJ ~ (g+AJ)

(R —e E)—J J

= g ~
V(R;,Rq) ) YJ,

(2.5b)
t

ferent distributions of S;(E) when E is complex and ImE
tends to zero. ' We examine the stability of localized
states by looking for a solution to Eq. (2.3) in which
Im[S~(E)] is proportional to ImE. Where such a solution
exists the states are localized, and where no such solution
exists the states are assumed to be delocalized. Equation
(2.3) is separated into real and imaginary parts by writing

where Xz and YJ are thus defined. Equation (2.5a) for E;
does not involve b;, and the equation for b,; is a linear in-
homogeneous equation which has a solution, provided the
largest eigenvalue, A, , of the corresponding homogeneous
equation,

r

, —xsj a, =. o,f
V(R;,RJ )

i

J (R —e E)—J J' (2.5c)

This is readily shown to be given by

(2.6)

is less than unity; A, = 1 corresponds to the limit of stabili-
ty of localized states.

It is straightforward to obtain an expression for the
joint probability distribution f(E;,b,; ) by averaging over
the multicomponent reference system described in the In-
troduction. We specifically consider the Fourier
transform F(k„k2) given by

+ oo + OO

F(k&,k2)= f dx f dy f(x,y)exp[i(k~x+k2y)] .

r

X(ki, k )=(err f dX& I dpjg(X(, Y))exp i+ (
V(R;,R()( (k~X&+kep&) (2.7a)

= exP & V RRJ k&X&+k2YJ
r, Ix, r,. j

(2.7b)

Equation (2.7b), written as an average over I and

I Xz, YJ I, is formally equivalent to

g~ t

F(k~, k2) =exp
kBT

(2.9)

where T is the absolute temperature; hp is the excess in-
teraction chemical potential for atom i dissolved in the
multicomponent reference fluid, when it interacts with the
atoms in the fluid via the complex "potential" U(R;, Rz )

embodied in the argument of the exponential in (2.7b) and
give explicitly by

U(R;, RJ)= rkrrT
i
V(R;,RJ) —

i (kiXJ+ k2 YJ) . (2.10)

The interaction chemical potential Ap may be calculated
by the standard Onsager-Kirkwood strategy of liquid-
state theory, whereby one "charges up" the interaction of

where ( )r denotes an average over the phase space I of
particles interacting via the chosen classical interaction
potential; Q(XJ, YJ ) is the joint probability distribution of
the quantities XJ and YJ defined by (2.5), and is given by

Q(X~, YJ)

= f dpi P(FJ )f(R —ej Xi ', YJXJ —r))XJ—
(2.8)

g(R;A, U(R)) go(R)exp
A, U(R)

B
(2.12)

where go(R) is the pair distribution function for particles
interacting via Uo(R) alone. The primitive EXP approxi-
mation has the virtue of being asymptotically exact at low
densities, and we employ it as a matter of convenience.

Using (2.12), we therefore find

I

atom i with the atoms in the reference fluid. ' Assuming,
for convenience, that V(R;,RJ)= V(

~
R; —RJ ~

), one
finds

al =pf dzfdRfdX
Xfd Y U(R)Q (X, Y)g(R;A, U(R) ),

(2.11)

where p is the mean number density and g(R;A, U(R)) is
the pair distribution function for two atoms, separated by
a distance R in the reference fluid and interacting via
Uo(R)+ U(R). Given the choice of reference system, Eq.
(2.11) is exact. To proceed further we must specify the
pair correlation function. Many elaborate approximations
to this function have been devised in liquid-state theory
(for a review, see Ref. 27), one of the simplest of which is
the so-called primitive exponential (EXP) approxima-
tion, '

F(kl k2)=exp 4rrp f"dR R'go(R)[Q{ki
I
«R)

I

' k2
I
«R)

I

') —1]

where Q (k~, kz) is the Fourier transform of Q(X, Y). It is a straightforward matter to show that

(2.13a)
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+~ dk) +~
g(ki f

V(R) l, k2 l
V(R)

l
)= f f dxP(ki)F(ki, .k2 l

V(R)
l

/x )

Xexp —ik'i (R x—)+ik2 l
V(R)

l
.

l
V(R)

lg+ik)
X X

(2.13b)

where P(k) is the transform of P(e;). Equations (2.13)
constitute a nonlinear integral equation for F(k&,kz).
When solutions to this equation exist, the states are local-
ized; when no solutions exist, the states are delocalized. If
we employ Anderson's upper-limit approximation, "
whereby one neglects the real part of the self-energy, Eqs.
(2.13) reduce precisely to an integral equation for F(k),
the Fourier-transformed probability distribution of b,;, de-
rived by us in a previous publication. ' The critical densi-
ty above which states at the chosen energy become delo-
calized for fixed parameters specifying V(R) (or,
equivalently, the value of the strength of the transfer-
matrix element needed to destroy localized states at a
given energy and number density) was found within the
upper-limit approximation by s'tudying the asymptotic
small-k behavior of F(k). Similarly, here we study the
full integral equation for F(k&,kz), for small values of
k2. Before proceeding with this analysis, note that if we
entirely ignore the structure of the medium, by setting

I

F(ki, k2)=Fo(ki) —kzB(k, )+, pC(0, 1],
where

(2.14)

l

go(R)=1, Eqs. (2.13) reduce to that of Fleishman and
Stein, who consider the self-consistent theory of locaHza-
tion for a completely random distribution of site posi-
tions; for an exponential transfer-matrix element, these
authors have discussed the Anderson transition for this
model within the confines of the upper-limit approxima-
tion. In passing, we note that the relatively simple con-
nection between (2.13), in which the structure of the medi-
um is taken into account, and that pertaining to a com-
pletely random distribution of atoms, is, in essence, due to
our use of the primitive EXP approximation. Systematic
extension of the analysis beyond the EXP approximation
is possible and does not appear to diminish the tractability
of the resultant integral equation for F(ki, k2). To study
Eqs. (2.13), we assume' that for small k2 we can write

r

Fo(ki) =F(ki, k2 ——0)= f dE; exp(ikiE;) f db,;f(E;,6; ) (2.15)

is essentially the Fourier transform of the average probability distribution for the real part of the self-energy. The ex-
ponent P must be positive, as limk oF(ki, k2)=Fo(ki), and cannot be greater than unity, since an exponent greater
than unity would imply that the mean value of bq is zero. From Eqs. (2.13), we find that Fo(ki) satisfies the nonlinear
integral equation:

T
I

00 dk']
Fo(ki)=exp —4irp f dR R go(R) 1 —f f dx P(k'i )Fo(ki )exp[ iki(R —x—)+iki

l
V(R)

l
x ']

Substitution of (2.14) into (2.13) yields

F( k» kz) = F(ok)i4npkzFo(ki) —f dR R go(R)
l

V(R)

+~ dk']
&( f P(k'i)B(ki )

(2.16)

&& f dx lx
l

~exp[ —iki(R x)+iki
l

V—(R)
l

x ']+ .
(2.17)

and comparison of (2.17) with (2.14) shows that B(ki ) satisfies a linear homogeneous integral equation; this equation im-
plies a relationship between p, P, R, and the parameters specifying V(R) [analogously to the corresponding equation de-
rived within the upper-limit approximation, namely Eq. (4) of Ref. 13]. The integral equation for B(ki) may be written
in a more elegant form by defining the functions A (x) and 8 (x):

+~ dkA(x)= f P(k)B(k)exp[ik(x —R)],
+~ dkW(x) = f P(k)Fo(k)exp[ik(x —R )] .

(2.18a)

(2.18b)

From (2.17) and (2.14) we find that A (y) satisfies

~(~)=4~) f dRR'go«)
I
V(»l" f d~ lx l

"~(x)~(y+
I
«R) I'&» (2.19)
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which is of the form

A (y) =4np f 4'(y, x)A (x)dx,

with

(2.20a)

(2.21)

The solution of the adjoint equation may be related to the solution of the original equation for a different value of P, but
with the same values of p and the parameters specifying V(R), by

~p(»= lx I

' f, dRR'go(R)
I

V(R) I' ~i p(I V(R) I'~x). (2.22)

Substitution of (2.22) into (2.21) gives back (2.19) with P replaced by 1 —P. The eigenvalue of (2.19) is thus an even func-
tion of P——,', the point P= —,

' is, in fact, a minimum, and thus p attains a maximum for P=P, =—,'. Thus we must solve
(2.19) with P= —,

' to find p, for given R, P(E), and V(R); from this solution we obtain p, as a function of R [for fixed
parameters specifying V(R)], or, equivalently, the mobility edge R, as a function of density. To specify the kernel of
the integral equation (2.19), we require knowledge of Eo(k & ), as given by the solution of the nonlinear integral equation,
(2.16), with an assumed form of the distribution P(e) This p.roblem, in itself, is complicated; in the following section,
however, we obtain an approximate solution for Eo(k&) [or its Fourier transform fo(E;) defined in (2.15)] which is
asymptotically exact for small k& (large E;).

4'(y, x)= f dRR go(R) l
V(R)

l
~W(y+

l
V(R)

l
/x) lx

l
(2.20b)

Analogously to the upper-limit analysis, there is a maximum value of p for which (2.19) has a solution, and that is the
critical density, p„ for given energy R, given parameters specifying the transfer-matrix element V(R), and for the partic-
ular distribution of site energies, P(e). For p~p„states at the chosen R are delocalized (actually, this comment
presumes that p, is a monotonically increasing function of R above the Anderson transition density, which is indeed
found to be the case). Following the method of Abou-Chacra et al. , ' it can be shown that the critical value of the ex-.
ponent P is —,: If (2.19) possesses a solution for given P, p, and given parameters specifying V(R), then so does the corre-
sponding adjoint equation,

a(x)=4mp f dRR go(R)
l
V(R)

l

~ f dya(y)W(y+
l
V(R)

l
Ix) lx l

III. APPROXIMATE SOLUTION FOR Eo(kg ) AND CONNECTION WITH THE MEAN SPHERICAL
INTEGRAL EQUATION

For convenience, we assume the distribution of site energies to be of Lorentzian form,

P(e) =
A, +(e—eo)

(3.1)

where A, determines the half-width of broadening due to site-diagonal disorder; P(k) is then a Cauchy distribution,
P(k)=exp( —A,

l
k

l
+ikeo) Equation (.2.16), to be solved for Fo(k&), becomes

+ 00 +oo dk ( +oo
lnFo(k$)= 47rp f —dRR go(R) 1 —f f dxFo(k$)exp[ —A,

l
k$ l

—tk/(E —x)+ik$ l
V(R)

l
x ']

o

(3.2)

where E=R —eo. It may be shown that Fo(k& ) asymptotically approaches a Cauchy distribution for small k, ; if we as-
sume

Fo(k&)=exp( —a
l
k~

l
+l'k~xo) a&0

the right-hand side of (3.2) is equal to

—4mp f dR R go(R) 1 exp [—(—a+A, )
l
ki l

+i(E xo)k&1-+ OO
l V(R) l

(a+A, ) +(E—xo)

(3.3)

(3.4)

Assuming further that V(R) falls off at large R faster
than R, we may expand the exponential appearing in
(3.4), as all integrals of the form

g2go y ~ 2n ~)0
are bounded. Retaining terms linear in k~ only, (3.4)
reduces to the form

where

J (p)=4np f dR R go(R) l
V(R)

l
(3.6)

[—(a+i, )
l
k, l

+i(E—xo)k, ] J (p)
(a+X)'+(E—x, )'

(3.5)
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In the following sections we will approximate Fp(k~) by
the Cauchy form (3.3), with a and xp given by the solu-
tion of (3.7); we shall be specifically concerned with two
limiting cases:

(1) E=0 (R =op), for which (3.7) yields

a= —, I
—A, +[iP+4J (p)]'~ I, xp ——0. (3.8)

This case is of interest in respect of determining the criti-
cal density for the Anderson transition, p~, namely that
density at which the mobility edges coalesce at the band
center and below which all states in the band are local-
ized. For transfer-matrix elements of exponential form,
and also for V(R)-R " as applicable to multipolar exci-
tons, we expect pz to be sufficiently low that the band
center occurs at E=O. We shall return to this problem in
the following section.

(2) A, =O, corresponding to neglect of site-diagonal dis-
order [P(e)=5(e ep)] Fo—r this .case, (3.7) yields

a= —,[4J (p) —E ]'i, iE i
&2J(p)

(3.9a)
Xp ———,E,

fp(E;) =
a +(E;——,'E) (3.9b)

Equations (3.9) will be used in the final section to calcu-
late mobility-edge trajectories for multipolar excitons with
off-diagonal disorder alone.

The approximate analysis of fp(E; ) developed here pro-
vides a direct connection between the density of states
resultant from the self-consistent theory and that predict-
ed from solution of the quantum mean spherical integral
equation for topologically disordered systems. ' The
density of states p(R ) is defined by

Employing (3.3) on the left-hand side of (3.2), and equat-
ing it with (3.5), we show that Fp(k& ) asymptotically ap-
proaches a Cauchy distribution, provided that the follow-
ing pair of equations for a and xp are satisfied:

(a+&)J'(p) (E—xo )J (p)
A= Xp= ' ~

(a+A) +(E xp—)' (a+A)'+(E —xp)

(3.7)

for the imaginary part of the self-energy will be of the
form b,; ~g; we therefore expect f(E;,5;) to take the
form

f(E;,5; ) =f'(E; )5(b„—

cry�),

and, from (2.15) (with g infinitesimal), we find

f'(E;)= I db; f(E;,b, ;)=fp(E;) .

Thus, if R corresponds to a localized state, we have

p(R)=fp(E) . (3.12)

In particular, if we employ the approximate form of fp,
Eqs. (3.9), there results

p(R)= —,[4J (p) E]'~', —IE
~

&2J(p) . (3.13)a 4J~(p)

Equation (3.13) is a familiar semielliptic Hubbard density
of states with bandwidth

B =2J(p) . (3.14)

From conventional liquid-state theory, it is well known
that the low-density behavior of gp(R;p) is given by'

Up(R)
gp(R;p) =exp +0(p),

AT
(3.15)

where Up(R) is the chosen spherically symmetric, classi-
cal interaction potential employed in our multicomponent
reference fluid. From (3.6) and (3.14), it is therefore clear
that the spectral bandwidth 8 scales with p' in the low-
density regime. As an illustration, consider the simple ex-
ponential transfer-matrix element applicable to a discus-
sion of electronic transport,

V(R) = —Vpexp( —R /a&), (3.16)

B =4J (p)=4~Vp(pa~) 2
Q~

+2 +i
a~

where aH is an effective Bohr radius for the electron
under consideration. If Up(R) is that appropriate to a
hard-sphere fluid with hard-sphere diameter o, then
gp(R;p)=6(r —o)+O(p), where 6(x) is the unit step
function. In this low-density regime, we thus find

'2

p(R ) = ——( Im G,+(R )),
where

(3.10) 0
Q exp —2

~H
(3.17)

Xf(E;,&;) . (3.11)

If R corresponds to a localized state, the solution to (2.5b)

G;+;(R)=limG;;(R+ig) .
q —+0

For simplicity, we consider the case when lateral disorder
alone is present [P(e)=5(G—Ep)]; from (2.2), (2.4), and
(3.10), we obtain

+00 +00
p(R)=n 'lim dE;

E—E,. '+ ~+2, '

The Hubbard form of (3.13) need hardly surprise us when
one recalls that the Hubbard Green function results from
that appropriate to a Bethe lattice of connectivity E, in
the limit that K tends to infinity with the Bethe-lattice
bandwidth, B =2 Vp VIC, remaining constant. Recall
further, from Sec. II, that the average diagonal Green
function resulting from the self-consistent equation (2.5)
consists of a partial summation of all diagrams that have
the topology of a Cayley tree. We can therefore use (3.17)
to determine the effective connectivity, defined through
B =2 Vp(J,rf)', for the topologically disordered system
under consideration. It is apparent that E,g ~pa~, and
that Edf &&1 for low concentrations; this conclusion is
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commensurate with the work of Elyutin.
Consider now transfer-matrix elements of the form

V(R) =yR (3.18)

where n=3 (5) corresponds to dipolar (quadrupolar) elec-
tronic excitons. Assuming Uo(R), as is appropriate for a
hard-sphere (HS) fluid, we find

~(p') =
I

y'
I
[p'12'(p')]'"

(3.19)
Iz.'(p*)=4~ f dJ go(J p')J"' "'

where p'=po is the reduced density, y =R/o, and
y =yo "; extended virial expansions for the integrals
Iq„(p ) have been given by Larsen et al. To make con-
tact with the quantum mean spherical model for dipolar
or quadrupolar excitons, let

~y ~

= aoeo for n=3,1

2

part of which is related to the dipolar optical-absorption
spectrum of the fluid. At low densities one may legiti-
rnately neglect irreducible three-body contributions to
a(R) (this is tantamount to neglect of the irreducible
three-body integral b in Ref. 20, which determines the
spectral shift). a" (R )=a"(R )o is then given from the
mean spherical integral equation theory by

CXp 6'p
2 Epa"*(R)= 2

4J (p)—
4J (p)

2 2
'

R —eo ——(R +co)E—=2epE,

(3.21)

Considering only tPe band in the vicinity of R =+eo, it is
clear that

(3 2()) whence

i
y'

i
=v 14Coeo for n =5 .

Here, ao ——aocr ( Co =Cour ), where ao ( Co) is the iso-
lated atoin, zero-frequency dipole (quadrupole) polariza-
bility for the particular' dipolar (quadrupole) electronic
transition under investigation, e.g., an s —+p (s~d) elec-
tronic transition. For purposes of illustration, consider
specifically the mean spherical integral equation for dipo-
lar excitons. ' ' There, one calculates the renormalized
dipole polarizability a(R ) =a'(R )+i a"(R ), which corre-
sponds to the frequency-dependent renormalized polariza-
bility of an atom in the condensed phase, the imaginary

r

a"*(R) —=p(R )
2

(3.22)

where p(R) is given by (3.13) and J(p) by (3.19). This
direct connection between the mean spherical integral
equation result for a"(R ), and the approximate density of
states resultant from the self-consistent theory, is entirely
due to the graphical structure of a(R ): Under neglect of
irreducible m-body graphs (m &3), a(R) consists of a
partial summation of all graphs that have the topology of
a Cayley tree with variable connectivity.

IV. THE ANDERSON TRANSITION

(4.1)

To deteimine the Anderson transition density pq, we may use Fredholm Theory to solve the eigenvalue problem
(2.19), with P=P, = 2 and E=O To estim.ate pz we consider here the first-order term in the Fredholm series corre-
sponding to (2.19); a lengthly analysis of the integral equation, for the transfer-matrix element V(R)-R, shows that
the Anderson transition density deterniined from the first-order theory is in error by only —15%.

First-order Fredholm theory applied to (2.19) yields

1=4mpz f dRR go(R) [ V(R)
] f W(x+

)
V(R)

]
/x)

(4.2)

where W(x) is given by (2.18b); for convenience, we regard P(e) as given by the Lorentzian distribution, (3.1), and we
take Fo(k) and a as given by (3.3) and (3.8), respectively. Equation (4.1) becomes

1=4p„(a+a) f dR R'go(R)
~
V(R)

~ f0 (a+A, ) +[x+
~

V(R)
~

/x]

and with a simple transformation of variables, this may be
cast in the form

1=16pg(a+I, ) f dz
+~ Q(z)

( 2 1)1j2 (4.3a)

Q(z)= dRR go(R)
o (a+A) +4( V(R)

)

z'

(4.3b)
We consider separately the solution of (4.3) for transfer-
matrix elements appropriate to multipolar excitons, and
transfer-matrix elements of exponential form.

A. MultipoIar excitons

Consider transfer-matrix elements of the form (3.18).
The pair distribution function go(R) is assumed to be that
appropriate to the low-density limit of a hard-sphere
fluid, as discussed in Sec. III. [Alternatively, one could
use the general form (3.15) with Uo(R) given by, say, a
Lennard-Jones (12-6) potential; this would introduce a
temperature dependence into the problem which is absent
in the case of a hard-sphere reference fluid. ]

From (4.3b) it is clear that we require n ~ 3 to avoid a
large-R divergence in the Q (z) integral. Thus one



DAVID E. LOGAN AND PETER G. %'OLYNES 31

predicts that dipolar excitons (corresponding to n=3) lack
an Anderson transition, so that states at the band center
are always extended. As we discuss in the fina1 section,
one finds, in general, that dipolar excitons are predicted to
be always delocalized.

For n & 3 we find that

y —3/n
Q(z) = dV,

(a+A, ) +4V z

where y* =ycr ". Using the fact that3'

1 =F(1,1;—,; —a )
~ 3 ~ 2

(zz 1 )1/2( 2+ 2)

sinh a
a(1+a)'

(4 4)

(4.5)

n ~3, C=sinh
A'+ A,

2
I
r*

I

(4.6)

pz ——pro is the dimensionless reduced Anderson density.
Consider now the case A, =O, where the site-diagonal dis-
order is absent and we have lateral disorder alone. Note
that since

J(p) ~ +"
2

I
x*

I

=~p* J dygo(y)y"' "'

(4.7)

pz as determined by (4.6) is independent of y . With
negligible numerical error, we can set the lower limit of
the integral in (4.6) to zero, and with go(y) =e(y —1) we
find

where F(u, P;y;z) is the Gauss (nondegenerate) hyper-
geometric function, the first-order Fredholm equation,
(4.3a), becomes

' —3/n

f (s h )(3 n)/nd—

full go(R) in the calculation of J(p), as extended virial ex-
pansions for the I2„(p*) integrals [cf. (4.7) and (3.19)] are
available. For n=5 and 7, correspondingly, respective-
ly, to pure quadrupolar and octupolar excitons, inclusion
of such has a minor effect on the predicted Anderson
transition density, essentially because this occurs at a very
low reduced density.

For n&12 (and, in particular, for the case n=14,
which may be of relevance to the localization of high-
frequency phonons in amorphous materials' '3), the
predicted p~ is sufficiently large, so that a more realistic
assessment of the effects of including fluid structure
would likely be better achieved by using a more adequate
representation of the pair correlation function go(R) in
(4.1).

To investigate the relative influence of site-diagonal dis-
order on the predicted Anderson transition density, we re-
turn to (4.6). If A, /

I
y'

I
is large, it is not a good approxi-

mation to set the lower limit of the integral to zero; we
have therefore solved (4.6) numerically. Further, note
from (3.8) that

' j/2

(4 9)

whence pz depends solely on the dimensionless parameter
D =1,/

I

y'*
I
. For all n (n & 3) we find that, as the de-

gree of site-diagonal disorder embodied in the parameter
D increases, the Anderson density increases commensu-
rately; explicit results are shown in Fig. 1 for n=5 In.
this case we may relate y* to the parameters of the mean
spherical model for pure quadrupolar electronic exci-
tons, as given by (3.20). Typically Co =-10, and for
an electronic transition, eo is typically of the order of 10
cm '; thus y' is of the order of 40 cm '. The parameter
I, is the half-width at half-height of the broadening of the
electronic quadrupole-allowed resonance, arising from

I
2m1= 'Jg
Pl 2' —3

—3/2n

8(3/2n; (n —3)/2n )tan
3m

2' 0.4—

n & 3 (4.8)

where 8( yx)=l (x)I (y)/I (x+y) is thebeta function.
Values for the reduced Anderson density predicted by

(4.8) are shown in Table I for n)5. As expected, on
physical grounds, we see that as the transfer-matrix ele-
ment becomes shorter ranged, the Anderson density pro-
gressively increases. It is straightforward to include the

0.3

TABLE I. Anderson transition density p& as a function of n
for V(R) -R ", and for pure off-diagonal disorder.

O. I

5
7
9

12
14

0.0174
0.0825
0.1690
0.3120
0.4107

5
D= X/ yI

IO l5

FIG. 1. InAuence of site-diagonal disorder on the Anderson
transition density pz as a function of D =I,/I y I

for
V(R )—R ', corresponding to pure quadrupolar excitons.
D=O corresponds to the case of pure off-diagonal disorder.
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mechanisins not involved in the excitation transfer under
investigation, such as Doppler broadening or interatomic
broadening processes other than those which arise from
the quadrupolar transfer-matrix element. For a gas con-
sisting of atoms with hard-sphere diameter of cr=3.4 A
(as appropriate to argon ), at a pressure of 1 atm and at
T=273 K, the reduced density p*=10; thus the value
of p~ predicted from (4.6) with A, =O, namely p~ ——0.0174,
corresponds to a pressure of about 17 atm. At such a
pressure we expect the site-energy distribution to be deter-
mined primarily by collisional broadening, dominated by
short-ranged, repulsive interatomic forces, and we typical-
ly expect A, to be of the order of 1—2 cm '; thus D « 1,
and the influence of site-diagonal disorder on pq should
be very small.

In certain circumstances, of course, A, /~ y'
~

may be
large. For example, if one considers an electronic transi-
tion in an atom of species 2, embedded randomly at low
concentration in a host matrix of species 8, the influence
of the host-matrix atoms on the distribution of site ener-
gies in species A may lead to large values of A, , thereby in-
creasing the relative importance of site-diagonal disorder
in determining pq.

Present work
Elyutin'
Elyutin
Ching and Huber'
Fertis et al. d

Puri and Odagaki'
Odagaki

0.144
0.076

0.17+0.02
0.37+0.08

0.10

0.12
0.09

0.16
. 0.25

'Reference 4.
Reference 10.

'Reference 9.
Reference 8. The form of the modified exponential transfer-

matrix element used is, in fact, slightly different from our (4.13).
'Reference 5.
Reference 6.

TABLE II. Calculated values of p& aH ——R~ '(0) for the pure
exponential transfer-matrix element, {3.16), and for the modified
exponential form, (4.13), with off-diagonal disorder alone and
hard-sphere diameter o.=0.

I /3 I /3
Pw &H Pa &H

{pure exponential) (modified exponential)

)& sinh
J

2
f
V(R)/

(4.10)

For the simple exponential transfer-matrix element given
by (3.16), and with go(R) =e(R —cr), Eq. (4.10) becomes

+ ~ (in[(2 Vo/J)sinhy] I
1=8(p~aII)

C sinhy

C =sinh J
exp

CT

2VO ~H
(4.1 1)

where J (p) is given by (3.17). By virtue of the fact that
J/Vo is independent of Vp, we see that the Anderson
transition density for exponential transfer, as given by the
solution of (4.11), is also independent of Vo (cf. the case
of multipolar excitons where pz is independent of y). In
agreement with Puri and Odagaki, ' ' and in contrast to
other approaches, ' our model has two dimensionless
parameters, namely pea~ and cr/aH. The approximation
inherent in most traditional approaches is that of implicit-
ly setting o.=0, an approximation which is clearly justi-
fied if o./a~ && 1. For example, in discussing the
phenomenon of metallic condensation of a lattice of im-
purity centers in a host material, a~—estfi /m*e, where

e„ is the static dielectric constant of the host material, and
m' is the effective mass of an electron in the host con-
duction band. For many systems exhibiting a metal-
insulator (M I) transition, e„-is very large and cr/aH « 1

is indeed satisfied (for a comprehensive review of effective

B. Transfer-matrix elements of exponential form

From Eqs. (4.3) and (4.6), and in the absence of site-
diagonal disorder (A, =O), the first-order Fredholm equa-
tion may, in general, be cast in the form

2 1/2

1=8pz I dR R go(R) 1+
0 2[ V(R)

[

Bohr radii in systems exhibiting a M-I transition, see Ref.
34). For M Itrans-itions occurring in low-dielectric-
constant host materials, however, the condition o/aH « 1

is not satisfied. For example, for the Xe:Hg system,
aH ——1.3 A, for the Ar:Cu systems, a~ -—0.9 A, and
for Ar:Na, a~—-2.08 A; typically, we expect the hard-
sphere diameter of the impurity species, o, to be 3 or 4 A.
The formulation we have given enables us to assess the
relative influence of the competing length scales, aH and
CT.

The solution to (4.11) may be cast in the form

p~ =R~ (o /aH )aII
—1/3 (4.12)

where pz
' is essentially a measure of the mean separa-

tion between atoms at the Anderson transition; numerical
solution of (4.11) gives the function Rz(o/aH). For
cr =0, we may compare our calculated value of
Rz '(0)=0.144 with those obtained from a variety of oth-
er studies; the results are displayed in Table II. We see
that our predicted value of Rz (0) falls fairly well within
the domain of previously estimated values, although it is
considerably less than that of Ching and Huber obtained
from a numerical study of the inverse participation ratio
for a spatially disordered system with the exponential
transfer-matrix element, (3.16). Elyutin, ' however, sug-
gests that the Ching-Huber result is too large, arid points
out that their numerical results are actually compatible
with a lower value of R~ ', in the region of -0.17.

In Fig. 2 we plot the function Rz(o./a~) obtained from
(4.11). For cr/aH & 1, the influence of cr becomes rather
more important. For fairly large values of cr/a~ (as ap-
propriate to M-I transitions occurring in low-dielectric-
constant host materials), .of the order of 3—5, the predict-
ed pz value differs by a factor of 2—3 over that obtained
by setting o =0; for example, with cr/aH ——5 we find
pz a~ ——1.56 &( 10, whereas for cr =0 we have

pz a~ ——2.96& 10 . As pointed out by Puri and
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8.5—

8.0
Ka
b

7.5

Odagaki, ' ' one should note that because of the hard-core
condition the density is limited by its maximum value,
given by p*,„=2'~ (p',„=3 ~ /4) in the case of face-
centered-cubic (body-centered-cubic) close packing. From
(4.12) this condition imposes a minimum physically per-
mitted value of Rz(o/aH) for a given o and aH', the
values of R& displayed in Fig. 2, however, all lie well
above the minimum permitted value.

We have also determined p~ for the frequently studied,
modified exponential transfer-matrix element of the form

7.0

V(R) = —Vp 1+ R
aH

exp( —R/aII) . (4.13)

FIG. 2. R~ ——p&' aH' as a function of o./aH for the pure
exponential transfer-matrix element V(R) = —Voexp( —R /aH );
a~ is the effective Bohr radius and o is the hard-sphere diame-
ter.

To compare our results with previously estimated values,
we consider explicitly the case where 0.=0; this should
lead to a reasonable estimate of pz, provided that
cr/aH «1, a condition which will, for example, be satis-
fied in most doped semiconductors exhibiting a M Itran--
sition. For this form of transfer-matrix element, the
first-order Fredholm equation is given from (4.10) by

1=8pzaH dy. y sinh
~exp(y)

2 1/2Iexp(y)1+
2VO(1+y)

(4.14)

where

J'(p. ) =7Vop"H (4.15)

Since J/Vo is independent of Vo, the solution to (4.14)
again depends solely on the dimensionless parameter
p~aH. Numerical solution of (4.14) yields the result

pg a~ =0.12 (4.16)

which is lower than the value p„' aH =0.14 obtained for
the simple exponential transfer-matrix element, reflecting
the fact that the latter is essentially of shorter range than
the modified exponential form (4.14). Equation (4.16) is
the specific result for o =0, and, in general, the solution
may be cast in the form (4.12). For the modified ex-
ponential transfer-matrix element, (4.13), Puri and
Odagaki~'"' have calculated the function Rz(o./aH) by
numerical solution of a double-site version of the
homomorphic coherent-potential approximation, cou-
pled with the L(E) criterion for the mobility edges.
The qualititative dependence of Rz on cr/aH found by
Puri and Odagaki for the modified exponential form
(4.13) is very similar to that shown in Fig. 2 [which ap-
plies to the simple exponential form (3.16)], although as
seen from Table II the value of Rz(0) found by these au-
thors differs by a factor of -2 from the present result,
(4.16). In Table II we compare our calculated value,
(4.16), with other previously estimated values of pz aH
obtained by setting o.=O. From a detailed analysis of ex-
perimental data for a wide variety of systems exhibiting a
M-I transition, Edwards and Sienko have demonstrated
the empirical validity of the relation p' aH ——0.26+0.05.

I

For both forms of exponential transfer-matrix elements,
our results, together with the majority of other estimates
collected in Table II, are lower than the empirical value,
implying that lateral disorder alone does not account for
the observed M Itransition i-n impurity bands of uncom-
pensated semiconductors. Fertis et aI. have observed
that while the observed M-I transition in impurity bands
of uncompensated semiconductors does not therefore ap-
pear to be a pure Anderson transition, it does not appear
to be a pure Mott transition either, and may be of mixed
Mott-Anderson type. Our discussion of exponential
transfer-matrix elements has, however, been confined to
the situation where site-diagonal disorder is absent. In the
presence of diagonal disorder, p~ depends on Vo, solely
through the dimensionless ratio A, /Vo (analogously to the
case of multipolar excitons), and the predicted Anderson
transition density is an increasing function of A, /Vo in a
manner qualitatively similar to that shown in Fig. 1 for
the case of quadrupolar excitons. Insofar as the
M-I—transition density is an indication of the existence
of a mechanism, the presence of site-diagonal disorder
therefore enhances the relative role of the Anderson tran-
sition. For example, compensation of doped serniconduct-
ors will tend to increase the degree of site-diagonal disor-
der, and, as pointed out by Fertis et al. , it is possible
that the observed M-I transition is some compensated
semiconductors will be almost entirely of Anderson type.

Finally, we have also calculated the Anderson transition
density in dimensionality 2 for both the pure exponential
transfer-matrix element, (3.16), and the modified exponen-
tial form, (4.13). For lateral disorder alone, and with
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o =0, we find

p„' a~=0. 19 (pure exponential),

p~ an't ——0. 15 (modified exponential) .

(4.17a)

(4.17b)

The latter result is generally lower than previously es-
timated values obtained by Elyutin' (p~ aH ——0.25+0.2),
Puri and Odagaki (p~ a~ ——0.2—0.3), and Debney '

(p~ ~H-—0.36).

V. MOBILITY-EDGE TRAJECTORIES FOR MULTIPOLAR EXCITONS

In this section we study the mobility-edge trajectories for transfer-matrix elements of the form (3.18), applicable to
multipolar excitons. We consider the case where lateral disorder alone is present, and study the first-order Fredholm
equation (4.1), with Eo(k) given by (3.3) and a(E) and xo(E) given by (3.9a). The first-order Fredholm equation be-

1=16pa(E) f dz z

+so Q(z.E)
(zz 1)1/

where

Q(z;E)= —, f dRR go I
V(R)

I

1 1

a (E)+[—,E—2
I
V(R)

I
z] a (E)+[ , E+2

I
—V(R)

I
z]

(5.1a)

(5.1b)

For E=0, Eqs. (5.1) reduce to (4.3) in the absence of site-
diagonal disorder. For given p, solution of (5.1) gives the
mobility edge E„or, equivalently, for given E, solution of
(5.1) gives the critical density above which states at the
chosen energy are delocalized.

Equations (5.1) are general for any V(R) and go(R); we
now specifically consider V(R) =yR ". From (5.1b) it is
clear that we require n & 3 to avoid a large-8 divergence
in the spatial integration. One therefore predicts that di-
polar excitons (corresponding to n=3) are always delocal-
ized; this conclusion is not an artifact of our use of first-
order Fredholm theory, for, from (2.19) with P= —,', we

generally require n&3 to avoid a large-8 logarithmic
divergence in the spatial integration. The peculiarities of
the dipolar problem have been known since Anderson's
original paper. Resolution of this issue may be compli-
cated by shape-dependent effects associated with the
long-ranged nature of the dipolar transfer-matrix element
(which are familiar in dielectric theory ), and also by
those effects arising from motion of the atoms in the
liquid, which may be important in localizing states that
would otherwise be extended. %"e note, however, that the
simple introduction of an angular dependence into the di-
polar transfer-matrix element does not appear to mitigate

I

the conclusions reached above. For example, a subject of
considerable current interest in infrared spectroscopy is
that of resonant dipole-dipole transfer of vibrational exci-
tations in a molecular liquid consisting of heteronuclear
diatomics. For this problem the appropriate transfer-
matrix element takes the form

—V(R; RJ ,Qt, Q—i)='f"f'J'Q; T' '(R; —RJ) QJ,
where Q; denotes the orientation of molecule i, and
T' '(R)= —VVR ' is the familiar dipole-dipole —inter-
action tensor. " The oscillator strength f" is proportional
to (0

I Q; I 1), where Q; is the vibrational coordinate of
the molecule, and IO) (

I
1)) is the ground vibrational

state (first-excited vibrational state) of the molecule. With
a minor generalization of the theory given in Sec. II, we
arrive at an equation analogous to (2.19) in which f dR

ieplaced by f dR f dQ& f dQ&, and
I

V(R)
I

&P by

I
V(R;Qi, Q2)

I

2t'. The fact that it is the modulus of the
transfer-matrix element which occurs in the equation
analogous to (2.19) ineans that, with P=P, = —,, we again
predict that vibrational dipolar excitons are always delo-
calized.

For n&3, and with go(R)=e(R —cr), Eq. (5.1b) for
Q(z;E) may be cast in the form

3/n 1 1
Q(z E) I) I

' f dVV —3/n + Q( . E)
n J (p) 2EzV+4z V —J (p)+2EzV+4z V

(5.2)

(5.3)

we find

For n (9, nuinerical analysis shows that we may set the upper limit of (5.2) to + oo with negligible error. With this ap-
proximation, and employing the relation '

+~ x& ' —m sin[(p, —1)t]
26(X = 0&@&2, —1&cost &+1

I+2x cost +x ~ sin(t)sin(op, )

3/n
Q(z. E) Ir I [J(p)] (n+3i n(2z)~ ~ ~[~'+~(E)+~'„-'(E)],

2n

where

(5.4)
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Using

B(3/n;(n —3)/n )sin[(3/n)cos '(+E/2J)]
[1—(E/2J)']'"

(5.5)

(3—n)/nI dz = —'B((n —3)/2n; —'), n & 3
(

2 1)i/2

the first-order Fredholm equation (5.1) becomes

(5.6)

Substituting for a(E) from (3.9a) gives the final result,
' —3/n

B((n —3)/2n; —')csc
~ 2 n

J(p*)
2Ir*

I

n —32 lTp

n

~(E)(2
~ y ~

)' "[J(p)] '"+" "B((n —3)/2n; —,
' )[~'„+'(E)+~'„'(E)].

n
(5.7)

)& 'sin —cos
~ 3

n 2J(p')
+sin —cos

~ 3 -1
n 2J (p*)

(5.8)

20—

IO—
iw I&

O

I

0.030
QOI 0.02

PW

FIG. 3, Mobility-edge trajectory E, /eo (solid line) as a func-
tion of reduced density p* for V(R )=yR, with

~

y*
~

=~14X10 eo,'pg ——1.75X10 and p+=3.66X10
We also plot the band edge obtained from solution of the mean
spherical integral equation for quadrupolar excitons, and the
mobility edge obtained from the upper-limit approximation to
(2.13) (dashed line).

where we use B(A,;1 A)=—mesc(Am) Th.e requirement
that ~E

~

&2J(p*) is simply the condition that the half-
width a(E) in the Cauchy form of Fo(k), Eq. (3.3), be
positive [cf. (3.9a)]. Physically, this is simply the con-
straint that the state of energy E lies within the band of
the Hubbard density of states, (3.13), obtained by employ-
ing the Cauchy form of Fo(k), or equivalently, that E lies
within the band obtained from the mean spherical integral
equation theory at the "two-body" level [i.e., under
neglect of irreducible m-body graphs (m &3), as dis-
cussed in Sec. III). The condition for localization at the
band edges, E+ ——+2J(p'), is given from (5.8) by

1= 2&p
n

J(p')
—3/n

B((n —3)/2n; —,
'

), E=E+ .

(5.9)

By virtue of the fact that J(p )/2
~

y*
~

is independent of
y* [see (3.19)], and, similar to (4.8) for the Anderson tran-
sition, we see that the solution of (5.8) is independent of
y* and depends solely on p*. For p )p+, where p+ is
given by the solution of (5.9), all states in the band re-
sultant from the mean spherical theory are predicted to be
extended.

In Fig. 3, for n=5 corresponding to pure quadrupolar
electronic excitons, we plot the dimensionless mobility-
edge trajectory, E, /eo, as a function of p* and as deter-
mined by solution of the transcendental Eq. (5.8). y' is
given by (3.20), we have chosen Co ——10,and an extend-
ed virial expansion for the integral I io (p'), which deter-
mines J(p ), has been employed. The predicted Anderson
transition density, p~ ——1.75 X 10, differs negligibly
from that determined using the low-density-limit form of
I io (p ) (cf. Table I), reflecting the fact that the Anderson
transition occurs at a low reduced density. We also plot
the spectral band edge predicted from the "full" mean
spherical theory for pure quadrupolar excitons, in which
one explicitly considers irreducible three-body graphs con-
tributing to the density of states; the irreducible three-
body graphs determine the shift and asymmetry in the
density of states. The interesting range of reduced density
from our present viewpoint is, however, p' &p+, and in
this range the density of states resultant from the full
mean spherical theory differs very little from that predict-
ed at the two-body level [Eq. (3.13)], reflecting the fact
that in this density regime the density of states is essen-
tially symmetric with a maximum centered on E=O.

Below the Anderson transition density p~, a11 states in
the band are localized. From Fig. 3 we see that as the
density is increased above p~, the mobility edge initially
moves very rapidly away from the band center; in fact, it
is not difficult to show that, close to the Anderson
transition density [0& (p' —pz ) «pz ], eoE,
—

~

y'
~

(p' —p~ )' for all n & 3, giving rise to a charac-
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teristic square-root density dependence. For
p* &p+ ——3.66)& 10,all states in the band resultant from
the two-body mean spherical integral equation theory are
extended. For a gas consisting of atoms with hard-sphere
diameter o =3.4 A at a temperature of 273 K, this means
that over the relatively narrow pressure range of -20 atm
(cf. Sec. IV), we go from a situation where all states in the
band are localized to one where essentially the reverse is
true; in fact, a majority of states in the band become delo-
calized over a much narrower pressure range ( -2 atm).

In Fig. 3 we also plot the mobility-edge trajectory ob-
tained from the upper-limit approximation to (2.13},
whereby one neglects the real part of the self-energy [this
curve is obtained from the solution to (Sa) of Ref. 13].
We see that for E, &4.2&(10 (or E, /2J &0.3), the
upper-limit approximation makes it more difficult to lo-
calize states, and leads to an excess of extended states; in
contrast, for E, /2J &0.3, the upper-limit approximation
leads to an excess of localized states. The argument given
by Abou-Chacra et al. ' to suggest that the upper-limit
approximation makes it harder to localize the states is
based on consideration of (2.5c) and is, in short, that in-
clusion of EJ increases the denominator of (2.5c) and
therefore reduces the eigenvalue A, . Let us consider the
case where site-diagonal disorder is absent, and, for con-
venience, assume that E=R —eo) 0. Inspection of (2.5c)
shows that if (i) EJ &0 or EJ &2E, inclusion of EJ in
(2.5c} indeed increases the denominator of that equation,
thus reducing the eigenvalue I,; in contrast, if '(ii)
0&EJ & 2E, inclusion of EJ decreases the denominator of
(2.5c) and thus increases the eigenvalue A..

Which of the cases (i) and (ii) above is most probable
will be determined by the distribution of EJ, which, in our
case, is essentially characterized by the Lorentzian proba-
bility distribution fo(EJ. ) of (3.9b). If, for E=E„a large
fraction of the distribution fo(EJ. ) is concentrated in the
ranges Ej &0 and Ej )2E& the upper-limit analysis is
likely to overestimate the true mobility edge E„whereas
if a large fraction of the distribution is concentrated in the
range 0& Ej &2E„ the converse is expected to be true.
From (3.9b) we see that fo(EJ ) is a Lorentzian centered on

EJ = 1/2E with a half-width of 1/2[4J (p) —E z]'~z,

which decreases with increasing E. For E «2J(p), the
vast majority of states in the distribution fo(EJ. ) fall into
category (i) above; thus if the true mobility edge is close to
the band center [0&E,«2J(p)), it is likely that use of
the upper-limit approximation will result in an overes-
timation of the mobility edge and lead to an excess of ex-
tended states. In contrast, as E, moves away from the
band center, a progressively smaller fraction of the proba-
bility distribution fo(EJ. ) falls with the regions E~ &0 and

EJ & 2E„and case (ii) above rapidly predominates; thus,
as the true mobility edge moves away from the band
center, use of the upper-limit approximation will eventual-
ly lead to an underestimation of the mobility edge and to
an excess of localized states. This behavior is clearly
manifested in Fig. 3.

Finally, we have not investigated in detail the influence
of site-diagonal disorder upon the full mobility-edge tra-
jectory. From the discussion given in Sec. IV on the in-
fluence of site disorder on the Anderson transition, how-
ever, it is clear that the presence of site-diagonal disorder
will increase pz and therefore also the density range of in-
terest (in which a significant fraction of states in the band
are localized). For the n=5 example studied numerically
in this section, it is likely that the influence of site-
diagonal disorder upon E, /eo will be very small if we re-
strict ourselves to consideration of a quadrupole-allowed
electronic transition in a pure gas. If, however, the atom-
ic species of interest is diluted in a host liquid, the influ-
ence of site disorder on the mobility-edge trajectory may
be quite pronounced.
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