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Coherence in singlet-exciton motion in anthracene crystals
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We investigate the question of the transport coherence of singlet excitons by carrying out a
theoretical analysis of some recently reported transient-grating experiments in pure crystals of an-
thracene. We calculate the coherence time and the mean free path of the exciton at 20, 10, and 1.8
K from the reported observations, and conclude that the latter indicate exciton motion in anthracene
to be quite coherent at low temperatures. The mean free path is found to be of the order of 100 in-

tersite distances at 20 K and more than 1500 intersite distances at 1.8 K. We suggest further experi-
ments, give explicit predicted signals for specific values of the fringe spacing of the grating, and
show that, on the basis of the reported values of the diffusion constant, one may expect a clearly
nonexponential time dependence —with oscillations —in the signal at 1.8 K for fringe spacings as
large as 1 pm. Signals without oscillations but with clearly discernible nonexponential character are
shown to be expected for 1 pm fringe spacings at 10 K. We also present estimates of the mean free
path of triplet excitons in several crystals including anthracene based on diffusion constants mea-
sured through Ronchi ruling experiments. They show coherence to be lost within distances of the
order of a lattice constant for the temperatures studied, which are all above 100 K.

I. INTRODUCTION

Coherence in the transport of Frenkel excitons in
molecular crystals has been a much debated topic for a
number of years. Several of the major theoretical ques-
tions have been answered and reviewed in the recent litera-
ture. ' However, a clear experimental demonstration of
transport coherence, especially for singlet excitons, is, as
yet, unavailable. Since triplet excitons can be studied
through the use of techniques involvi'ng magnetic fields
which probe their spin, some results concerning their
coherence have been reported on the basis of optically
detected magnetic resonance and spin-echo methods.
However, even for triplets, coherence questions have. not
been answered conclusively. For singlets, the situation is
entirely unclear. It has been sometimes argued that
the temperature dependence of the energy-transfer rate
observed in sensitized-luminescence experiments is an in-
dication that exciton motion is coherent. However, that
those experiments do not contain such information is
clear for two reasons: First, recent work' has shown that
it is quite possible, and indeed highly probable, that
sensitized-luminescence observations in molecular crystals
are capture controlled (rather than motion controlled), and
that therefore the observed temperature dependence is in-
dicative of the actual process of capture of the exciton by
the dopants and not of the motion in the host crystal.
Second, even if the observations were motion controlled
and the observed energy-transfer rate were proportional to
the exciton diffusion constant, a decrease of the diffusion
constant with an increase in the temperature would show
merely that motion is hindered by phonons or intramolec-
ular vibrations in the crystal rather than assisted by them,

as would be the case in an activated situation. Coherence
has to do with the magnitude of the mean free path rela-
tive to the lattice constant and not with whether motion is
assisted or hindered by phonons.

In a recent paper, Rose et QI."have reported an investi-
gation of exciton transport in anthracene crystals at low
temperatures using the method' of picosecond transient
gratings. In this method a picosecond laser pulse is split
into two parts and the two parts are caused to arrive
simultaneously at a variable angle in the crystal. Optical
absorption creates an exciton population which varies
sinusoidally in space as a result of interference of the two
pulses. The subsequent time evolution of the (transient)
exciton grating thus produced is monitored through dif-
fraction of a third laser pulse which is delayed appropri-
ately. The evolution is affected by exciton motion and
can be studied to extract transport parameters such as the
diffusion constant, provided the relevant characteristic
length, e.g., the "diffusion length, " is comparable to the
fringe spacing of the grating. This experimental tech-
nique, which was pioneered by Payer' in the context of
singlets in molecular crystals, is conceptually similar to
the Ronchi ruling experiments developed earlier for trip-
lets by Ern et al. , ' and has also been recently used active-
ly by Powell and others in the inorganic realm. ' '

The experiments of Rose et al." constitute, to our
knowledge, the first direct measurement of the diffusion
constant for singlets in a pure molecular crystal. The dif-
fusion constant they have reported varies from (10+2)
cm /s at 1.8 K, through (1.3+0.4) cm /s at 10 K, to
(0.8+0.2) cm /s at 20 K. They have touched on the
coherence issue by suggesting that a quasicoherent trans-
port might account for the increase of the diffusion con-
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stant at lower temperatures. The argument is similar to
the one that was applied to the early energy-transfer
rates and which we have mentioned above to be not valid
since it is certainly possible to have diffusion constants
that decrease with increasing temperature even when the
mean free path of the moving particle is of the order of
the lattice constant. ' ' However, we shall show below
that the conclusion of partial coherence is very probably
correct, although for quite different reasons. We use the
theory of transient gratings developed by Kenkre
et al. ' and address the following issues:

(i) Does the magnitude of the reported diffusion con-
stants contain sufficient information to answer the coher-
ence question?

(ii) Should the large values of the reported diffusion
constant D give cause for concern? To be noted here is
the fact that a "hopping rate" I' calculated from the ex-
pression D=Fa from the values given in Ref. 11 (a is
the nearest-neighbor distance) is of the order of 3 X 10'
s ' (about 40 times larger than the Davydov splitting),
even at 20 K.

(iii) If exciton motion is partially coherent at the tem-
peratures studied, why are the signals not indicative of the
oscillations or shape characteristics predicted by theory,
as in Refs. 19—22?

%'e obtain an affirmative reply to the first question above,
conclude that the large values of D/a relative to the
Davydov splitting involve no inconsistency and, indeed,
are an indicator of coherence, and show under what exper-
imental conditions explicit manifestation of coherence
may be expected in the shape of the time dependence of
the grating signal.

II. COHERENCE PARAMETERS
FOR SINGLETS IN ANTHRACENE

The theory for transient gratings' shows that, if the
observed transient-grating signal exhibits no discernible
nonexponential character, i.e., can be described by
exp( —Kt), the decay constant K is given by

Here, n is the reciprocal of the scattering time,
=b4 sVin(g 2/)=4 Va/d, g is the dimensionless wave

vector of the transient grating, d is the fringe spacing, a is
the intermolecular distance, ~ is the exciton lifetime, and
V is the matrix element of the intersite-transfer interac-
tion, assumed to be effectively nearest neighbor for com-
putational convenience. We take this opportunity to
correct an error in the expression for K that has been
given earlier ' and also used' in the analysis of experi-
ment. The erroneous expression is

K=2[(a +b )'~ —a+ I/r] .

It is identical to the correct expression (1) in the limit of
complete incoherence, or in the absence of exciton decay,
or generally when ar)) 1, and may be converted to (1) by
the simple replacement of o, by o.+1/~. The difference,
which is negligible in many practical cases, arises from a
subtlety (see Appendix) in the connection between partial-
ly coherent exciton dynamics in the presence and absence
of exciton decay. The correct expression (1) has also been
given earlier in Refs. 21 and 22.

Since the grating signals in Ref. 11 have been reported
to be exponential in time, we apply Eq. (1) to their data
and construct Table I below. We take the intersite-
transfer matrix element V to be 50 cm ', i.e., equal to
roughly —, of the observed exciton bandwidth. This as-
sumption involves an approximation which will be com-
mented upon in detail below. Given a value of V, the only
unknown in Eq. (1), viz. , the scattering rate a (and there-
fore the mean free path of the exciton and the degree of
its coherence), can be extracted from the experiments of
Ref. 11 simply from the magnitudes of K. Neither the
temperature dependence nor a nonexponential character of
the signal is necessary for the purpose.

The first four columns of Table I contain experimental
information from Ref. 11, d and K being, as stated above,
the fringe spacing and the signal decay rate, respectively.
The last three columns contain our deductions concerning
the coherence parameters of the system. These are o, , the
reciprocal of the time between scattering events; A/a, the
number of nearest-neighbor distances over which the exci-
ton moves coherently, i.e., without being scattered; and A,
the mean free path. We cal.culate the latter as the product
of the average group velocity Va v 2 and the time between
scattering events 1/a, and take the nearest-neighbor dis-
tance a to be 0.524 nm. It is calculated as
a= —,'(ao+bo)'~ where ao and bo are the anthracene lat-
tice constants in the a-b plane.

TABLE I. Scattering rates a and mean free paths A for singlet excitons in anthracene as obtained
from the transient-grating experiments of Ref. 11.

T (K)

20

~ (ns)

10

d (pm)

3.2

K (10' s ')

7.6

cx (10 s ')

17

A/a

125

101

W (nm)

10 10
4.1

9.6

10

3.1

7.4

8.7 243

150

128

1.8 ( 1.2 & 1770 & 930



2432 V. M. KENKRE AND D. SCHMID 31

X=2[(b /2u, ')+1/r], (2)

the quantity b /2u, ' being identical to 4~ D/d with the
correspondence D=2V a /u. Equation (2) is obtained
from Eq. (1) through a simple binomial expansion ' in
powers of b/u, ', and the subscript i refers to the in-
coherent limit being involved. By u,' we mean u;+1/r.
Since the correct interpretation of the observed K should
be carried out by equating L to the right-hand side of Eq.
(1), the relation between the correct u and the u; obtained
from the simplified procedure used above for T=1.8 K is
obtained simply by equating the right-hand sides of Eqs.
(1) and (2). The result is

u'/u, ' =2(u'/b) I[1+(blu') ]'~ —1) . (3)

It is easy to see that the right-hand side of Eq. (3) lies be-
tween 0 and 1 for all values of cx' and b. This shows ex-
plicitly that u cannot exceed u;. Inverting (3) gives the
prescription

u'=u, '[1 (b/2u, ') ], —

which allows one to obtain a from a; if the fringe spacing
required to obtain b from V and a is known. From Eqs.
(3) and (4) it thus follows that the use of the simplified
procedure, which has been used to obtain the coherence

The first two rows of Table I show the results of a de-
tailed direct application of Eq. (1). In particular, the
values for d and K given in the second row (T=10 K)
were taken from the examples for the transient-grating
signals presented in Fig. 2 of Ref. 11, while those in the
first row (T=20 K) were obtained from the diagram
presented in their Fig. 4(b). For T=1.8 K, signal details
are unavailable, but the value of D has been reported
directly" as being 10 cm /s. We cannot, therefore, use
Eq. (1) to extract u, but it may be estimated from the re-
ported D through the well-known relation D=2 V a /a.
Because the diffusive-motion assumption made in Ref. 11
to extract D from E is not necessarily accurate, the result-
ing numbers are not as reliable as the others. This simpli-
fied procedure of obtaining u and A from the D's report-
ed in Ref. 11 rather than from Eq. (1) involves an a priori
assumption of transport incoherence (on the length scale
of the fringe spacing) and yields, for the other tempera-
tures studied, u(20 K) = 1.6 && 10' s ' and u(10
K) =1)&10' s '. The latter values are not very different
from the results in Table I obtained from the exact
prescription of Eq. (1). This fact should not be used to
lend support to the validity of applying the simplified
procedure at 1.8 K. The procedure is obviously expected
to be less reliable than the use of Eq. (1) when exciton
motion is substantially coherent, as is expected to be the
case at T=1.8 K. Nevertheless, we show that the simpli-
fied procedure yields a reliable upper bound on the values
of u. The experimental observable in a grating experi-
ment is K. When values of D are reported directly in
such an experiment under the diffusive-motion assump-
tion, the observed E is interpreted through the incoherent
limit of Eq. (1),

parameters for T=1.8 K, cannot overestimate the mean
free path, i.e., the degree of coherence, and that the more
incoherent the motion the smaller the error involved in
using that procedure.

Two further comments concerning Table I need to be
made. The lifetime of the exciton at 10 K given in the
second column of Table I was obtained by extrapolating
the diagrams in Figs. 3(a), 3(b), and 4(a) of Ref. 11 to
d= oo. Equation (1) shows that, for this limiting case, K
should assume the value 2/r, yielding r(10 K)=10 ns.
For T=20 K, their Fig. 4(b) yields r(20 K)=30 ns, if the
same extrapolation procedure is applied. In this case,
however, the extrapolation seems to be subject to rather
large uncertainties. On the other hand, Braun et al.
have determined the exciton lifetime in pure anthracene
crystals by using two-photon excitation to avoid the influ-
ence of surface traps and exciton-exciton annihilation and
by correcting for reabsorption effects. Their results are
that ~ depends only weakly on the temperature between 10
and 20 K. This agrees with the findings of Logan et al.
We have therefore taken the same lifetime for 10 and 20
K (r= 10 ns) in Table I. This uncertainty in r does not af-
fect the results for u significantly. Had we taken v=30
ns, the corresponding values of a would have been
1.4&10' and 1.3)&10' s ' instead of the respective en-
tries 1.7&10' and 2. 1& 10' s ' in Table I.

Gur use of Eq. (1) involves the replacement of long-
range dipole-dipole interactions responsible for singlet-
exciton motion by effective nearest-neighbor ones. We do
this because theoretical calculations of the signal are con-
siderably more complex for the former, and because the
long-range character has, at least qualitatively, the same
kind of effect on both the motion and extent of the ob-
served bandwidth [which we use to deduce the nearest-
neighbor matrix element V in Eq. (1)]. Thus, the V in our
analysis does not equal the nearest-neighbor dipole-dipole
matrix element, but is larger than the latter. The'value we
have used in constrgcting Table I is 50 cm ', which cor-
responds to 1.5&& 10' s '. This is roughly —,

' of the exci-
ton bandwidth. While such a prescription for obtaining
the interaction matrix element is known to be valid for
triplet excitons, the presence of long-range interactions for
singlets excitons complicates the situation. A clear state-
ment of its precise range of validity is unavailable and
must await an exact treatment of long-range interactions.
Meanwhile, we use the prescription in the spirit of
representing the long-range interactions by effective
short-range ones in the same way as for motion. W'e
would like to point out that considerable uncertainty ex-
ists ' in an unambiguous effective V for long-range in-
teractions. If the number of nearest neighbors involved in
the transport interaction is taken to be four, as would be
the case in a simple two-dimensional crystal, the value of
50 cm ' we have used appears to be compatible with the
experimental finding of Glockner and Wolf, who report-
ed that the sum of the squares of the interaction matrix
elements was equal to 9600 cm +50%. If one replaces
the value of V we have taken by one a factor of f larger,
one obtains a value of u which is f times larger and a
mean free path A which is 1/f times smaller than the
values reported in Table I.
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III. NONEXPONENTIAL SIGNALS
AND PREDICTIONS OF THEORY

The answers to questions (i) and (ii) posed in Sec. I
should now be clear. If V is known independently, the
magnitude of the observed K is indeed sufficient to obtain
coherence information because the theory of transient
gratings ' gives a directly through Eq. (1). The
quantity D/a, which equals 2 V /a in general, need not
be restricted to be of the order of V. Since
Vv'2/a =A/a, it is only for completely incoherent
motion, wherein A(a, that D/a is bounded above by
Vv 2. That D /a obtained from the observations"
exceeds this bound appreciably is an immediate indication
that the mean free path is appreciably larger than the lat-
tice constant, and, alternatively, that the motion is
coherent over an appreciable distance.

Question (iii) may be addressed by using the theory of
Kenkre er al. ' to calculate the explicit time-dependent
transient-grating signal. It is generally given as

S'(t) —e 2 i Jo(bt)e —~ + du e
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where the symbols have the same meaning as in Eq. (1).
In Fig. 1 we show the observed signal of Ref. 11 for
T=10 K and a fringe spacing of 4.1 pm (curve C) along
with the theoretical result (curve A) from Eq. (5), as well
as the exponential approximation e ' (curve B) with K
reported in Ref. 11. As expected, the latter two coincide
almost exactly and are in complete agreement with the
data. The reason for no vestiges of coherence being
present in the signal, despite the fact that the mean free
path is of the order of 100 intersite distances, is that,
while the inequality V»a holds here, b »a does not.
As has been explained in detail elsewhere, ' the quantity
b, which is essentially V reduced by the ratio (a/d) of the
intersite distance to the fringe spacing, plays the role of an
effective V in the grating experiment. It appears that, for
T) 1.8 K and the fringe spacings used in Ref. 11, the in-

I.O

FIG. 2. Predicted transient-grating signals at 10 K with
g=1~10 s, 0,=8~10 s ', and V=1.5&&10' s '. Fringe
spacings of 1 and 0.2 pm are assumed, respectively, in (a) and
(b). The exponential approximation (curve 8) to the signal
(curve A) is also plotted in (a). A slight departure from the ex-
ponential is seen in (a) and oscillations are clearly visible in (b}.

'

teresting relation V»a»b prevails for singlets in an-
thracene. The first part of the inequality corresponds to
the fact that the exciton moves coherently over many lat-
tice constants, and the second part corresponds to the fact
that its motion is, nevertheless, incoherent on the length
scale of the fringe spacing. The absence of nonexponen-
tial character in the signal, despite the large value of A/a,
is thus understood completely.

We use the a's obtained in Table I to predict the expli-
cit time dependence of the grating signal. For T=10 K,
Fig. 2 shows the signal calculated from Eq. (5), a fringe
spacing of 1 pm being used in Fig. 2(a) and one of 0.2 pm
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FIG. 1. Transient-grating signal observed in Ref. 11 for sing-

let motion in anthracene at 10 K (curve C, dotted) and compar-
ison to the prediction of the exact theory of Refs. 19—22 (curve
A), as well as to the exponential approximation (curve 8,
dashed). The experimental signal corresponds to a fringe spac-
ing of 4.1 pm. Curve A is computed from Eq. (5). Curve 8 is
an exponential with exponential given in Ref. 11, and,
equivalently, by Eq. (1). Parameters used in the calculation are
from Table I.
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FIG. 3. Predicted transient-grating signals at 1.8 K with
~=2~10 9 s, a=1.2&(109 s ', and V=1.5~10' s '. Fringe
spacings of 4.1 pm and 1 pm are assumed, respectively, in
curves A and 8. It is to be noted that oscillations are discerni-
ble at this temperature for a fringe spacing as large as 1 pm, and
that at 4.1 pm some nonexponential character in the shape ap-
pears.
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in Fig. 2(b). In Fig. 2(a) we also display the corresponding
exponential e '. The signal (curve A) departs from the
exponential (curve 8) already for a fringe spacing of 1

pm, and the characteristic curvature natural to coherent
motion is visible. The fringe spacing of 0.2 pm brings out
the expected oscillations in the signal explicitly. The high
resolution and fine fringe spacings that are necessary to
actualize Fig. 2(b), while possible in principle, may be dif-
ficult to achieve in the laboratory. However, for T=1.8
K, Fig. 3 shows that the case d=4. 1 pm already begins to
show some characteristics of coherence in the signal
shape, and that oscillations are clearly visible even for
d=1 pm. %'e stress that the latter value of the fringe
spacing appears to be within the reach of present-day ex-
perimentation and that the former value was actually used
in Ref. 11, at least for T=10 K.

IV. RELATED CONSIDERATIONS
FOR TRIPLET-EXCITON MOTION

The Ronchi ruling experiment' ' ' plays the same
role in investigations of triplet-exciton motion which the
transient-grating technique" does in the singlet-exciton
realm. Although it uses delayed fluorescence (rather than
diffraction) as a probe of the evolution of the spatial inho-
mogeneity of the excitons, and involves an initial square-
wave (rather than sinusoidal) exciton population, the kind
of information that the Ronchi ruling technique provides,
and the theoretical considerations it requires, are identical
to those for transient-grating experiments. The necessary
theory for coherence investigations has been given recent-
ly, ' and it has been shown that coherence effects, if
present, will be manifested measurably at low tempera-
tures. Unfortunately, experiments using this technique
have been carried out so far only at temperatures higher
than 100 K. From the wealth of such data obtained by
Ern and collaborators, we select naphthalene and 1,4-
dibromonaphthalene (1,4-DBN) at 300 K, and anthracene
at four different temperatures, and extract the relevant
coherence parameters for triplet-exciton motion by using
considerations similar to those in Sec. II. The results are
compiled in Table II.

For naphthalene and anthracene, the diffusion is effec-
tively two-dimensional, whereas in 1,4-DBN it is one di-
mensional. The values quoted for D in Table II are,
therefore, the average of D, and D~b in the case of na-
phthalene and anthracene, but the principal value D„ for
1,4-DBN. By the same token, Vis taken as —,

' of the opti-
cally determined Davydov splitting for naphthalene and
anthracene and —,

' of the exciton bandwidth for 1,4-DBN.
For napththalene and anthracene, the nearest-neighbor
distance a is given by —,(ao+bo)'~2 as in Table I. For
1,4-DBN, it is the lattice constant co. The respective ex-
perimental information is given in the first five columns
of Table II along with the sources of information about a
and V. The resultant values of the coherence parameters
0. and A/a appear in the last column. We obtain them
from the respective expressions a=2V a /D and A/a
=W2V/a. Absence of detailed information concerning
the specific ruling periods d used (which are analogous to
the fringe spacings in the transient-grating experiment)
forces us to use the simplified procedure of obtaining a,
or what we have called a; in Sec. II, directly from the re-
ported D. However, the correction term given in Eq. (4),
which distinguishes the correct a from the a;, is com-
pletely negligible in the present case. Except for a propor-
tionality constant of the order of 10, the quantity b/2a, '

appearing in Eq. (4) equals the product of V/aI and 0/d.
An estimate of the former is available from the last
column of Table II, and we see that it is of the order of 1.
Ruling periods are of the order of 10—50 pm, while a is
smaller than 1 nm. Consequently, (a/d) is smaller than
10, and we see that a is indistinguishable from a,'. We
conclude that triplet motion in the systems studied is
highly incoherent, the mean free path being smaller than,
or at most of the order of, the nearest-neighbor distance.
This conclusion is not surprising because the results
presented in Table II were all obtained at relatively high
temperatures. It is, no doubt, highly desirable to extend
the Ronchi ruling experiment to low temperatures, partic-
ularly in view of recently reported observations of highly
coherent triplet-exciton motion at low temperatures, and
of questions regarding the interpretations of related ex-
periments.

TABLE II. Coherence parameters for triplet excitons as obtained from the Ronchi rUling experi-
ments of Ref.33.

Crystal

Anth racene 371
298
160
118

D
(10 " cm /s)

1.6
1.5
2.5
4.0

a
(nm)

0.524'

V
(1010 s

—1)

6.75'

( 1010 —1)

16
17
10
6.3

0.6
0.6
1.0
1.5

Naphthalene

1,4-dibramonaphthalene

'Reference 34.
Reference 35.

'Reference 36.
Reference 37.

-'Reference 38.

300

300

0.3

3.5

0.510'

0 409

3.75

22 2'

24 0.2

0.7
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V. DISCUSSION

In the light of the present application of existing
transient-grating theory to experimental findings in an-
thracene, we believe that the observations reported by
Rose et al." strongly indicate the existence of coherent
transport of singlet excitons at low temperatures. In ar-
riving at this conclusion, we have not used arguments
based on the temperature dependence of the observables,
but have deduced the values of the exciton mean free path
from the magnitude of the observed decay exponent of the
grating signals and from known values of the exciton
bandwidth. Our analysis is based on what appears to be
an effectively one-dimensional transport equation, the as-
sumption of an initially site-diagonal exciton density ma-
trix, and nearest-neighbor transfer interactions. The first
is not an approximation because the grating experiment is
effectively one dimensional. ' A detailed discussion of
this point and application to anisotropic crystals has been
given by Fort et al. The changes that a different initial
density matrix would involve have been discussed in Ref.
21. However, while certainly of theoretical interest, this
issue seems to have little practical relevance at the present
time, unless excitons can be created with definite phase re-
lations in the experiment. The uncertainty ' in the
transfer interactions deduced from observed singlet-
exciton bandwidths, on one hand, and our use of effective
nearest-neighbor matrix elements, on the other, do intro-
duce some numerical uncertainty into the deduced coher-
ence parameters for singlets. Nevertheless, we expect the
conclusions drawn to be basically valid. For triplets, the
analysis is practically exact.

The explicit predictions for transient-grating signals
given in Figs. 2 and 3 are specific to anthracene at the
temperatures indicated, and are based on our application
of the theory to the observations in Ref. 11. We em-
phasize that they show that oscillations and nonexponen-
tial character, which would be unequivocal signatures of
coherence, might be observed for T=1.8 K for fringe
spacings as large as 1 pm. Such experiments, when car-
ried out, would remove the uncertainties mentioned above
in the deduced values of coherence parameters.
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APPENDIX

The generalized master equation

dP (t)/dt = f, dr' g [~ „(r t'—)P„(t')

—M„(t—t')P (t')] (Al)

governs the evolution of the probabilities P~ of a moving
particle of arbitrary coherence, the ~'s being responsible
for describing the coherence features. If the moving par-
ticle can. also decay during motion with a decay rate 1/~,
a term P /r is appended to the left-hand side of the
equation:

t
dP (t)/dt+P (t)!r= I dt'g[~ „(t t')P„(—r')

—~„(t—t')P (r')] .

(A2)

It is natural to suppose that, the decay and motion pro-
cesses being independent of each other, the ~'s in (A2)
are the same as those in (Al). This supposition, which ap-
pears entirely reasonable, is actually incorrect and leads to
the erroneous expression

K=2[(a +b )' —a+I/r]

reported in Refs. 2 and 20 for the exponent of the
transient-grating signal in a simple linear chain. The
subtlety lies in the fact that the physics of the situation
demands that the solutions of (A2) for P~(t) equal those
of (Al) multiplied by the factor e '~'. Differentiation of
such a product and the use of (A 1) show immediately that
the ~(t)'s in (A2) must therefore equal the product of
the ~(t)'s in (Al), and the same factor e '~'. When cal-
culations of X (t)'s are carried out from the microscopic
evolution, this factor must be taken into account explicit-
ly. It is clear that the multiplicative factor can make little
contribution if the M(t)'s decay very rapidly. Thus, for
completely incoherent motion, for which the memory
functions are 5 functions, no correction factors appear.
This is reflected in the fact that, for the simple linear
chain, the difference between the above-mentioned result
and the correct expression given in Eq. (1) of the text
disappears whenever a~&&1. It is trivial to show this ex-
plicitly by expanding the expressions in powers of I /a~.

'Permanent address: Department of Physics and Astronomy,
University of New Mexico, Alburquerque, New Mexico
87131.

R. J. Silbey, Annu. Rev. Phys. Chem. 27, 203 (1976).
V. M. Kenkre, in Exciton Dynamics in Molecuar Crystals and

Aggregates, edited by G. Hohler (Springer, Berlin, 1982).
P. Reineker, in Exciton Dynamics in Molecular Crystals and

Aggregates, Ref. 2.
4C. B. Harris and D. A. Zwemer, Annu. Rev. Phys. Chem. 29,

473 (1978).

5A. J. van Strien, J. F. C. Kooten, and J. Schmidt, Chem. Phys.
Lett. 76, 7 (1980); A. J. van Strien, J. Schmidt, and R. J. Sil-
bey, Mol. Phys. 46, 151 (1982).

P. E. Parris and V. M. Kenkre, Chem. Phys. Lett. 107, 413
(1984).

V. M. Agranovich and Yu. V. Konobeev, Fiz. Tverd. Tela
(Leningrad) 5, 1373 (1963) [Sov. Phys. —Solid State 5, 999
(1963)].

H. C. Wolf, in Advances in Atomic and Molecular Physics, edit-
ed by D. R. Bates and I. Esterman (Academic, New York,



2436 V. M. KENKRE AND D. SCHMID 31

1967), Vol. 3, p. 119.
A. Braun, H. Pfisterer, and D. Schmid, J. Lumin. 17, 15 (1978).
OV. M. Kenkre and D. Schmid, Chem. Phys. Lett. 94, 603

(1983).
T. S. Rose, R. Rigghini, and M. D. Fayer, Chem. Phys. Lett.
106, 13 (1984)~

M. D. Fayer, in Spectroscopy and Excitation Dynamics of Con
densed Molecular Systems, edited by V. M. Agranovich and
R. M. Hochstrasser (North-Holland, Amsterdam, 1983); J.
Salcedo, A. E. Siegman, D. D. Dlott, and M. D. Fayer, Phys.
Rev. Lett. 41, 131 (1978).
V. Ern, P. Avakian, and R. E. Merrifield, Phys. Rev. 148, 862
(1966).

~4J. K. Tyminski, R. C. Powell, and W. K. Zwicker, Phys. Rev.
B 29, 6074 (1984); C. M. Lawson, R. C. Powell, and W. K.
Zwicker, ibid. 26, 4836 (1982); Phys. Rev. Lett. 46, 1020
(1981).
P. F. Liao, L. M. Humphrey, D. M. Bloom, and S.
Geschwind, Phys. Rev. B 20, 4145 (1979).

~6R. J. Silbey and R. W. Munn, J. Chem. Phys. 72, 2763 (1980).
P. Reineker, R. Kiihne, and V. M. Kenkre, Phys. Lett. 84A,
294 (1981);H. Sumi, J. Chem. Phys. 70, 3775 (1979).

8J. Andersen, C. B. Duke, and V. M. Kenkre, Phys. Rev. Lett.
51, 2202 (1983);Chem. Phys. Lett. 110, 504 (1984).

V. M. Kenkre, Phys. Rev. B 18, 4064 (1978); in Exciton
Dynamics in Molecular Crystals and Aggregates, Ref. 2, p. 43.

2 Y. M. Wong and V. M. Kenkre, Phys. Rev. B 22, 3072 (1980);
V. M. Kenkre, Phys. Lett. 82A, 100 (1981).
V. M. Kenkre, V. Ern, and A. Fort, Phys. Rev. B 28, 598
(1983); V. M. Kenkre, A. Fort, and V. Ern, Chem. Phys. Lett.
96, 658 (1983}.
A. Fort, V. Ern, and V. M. Kenkre, Chem. Phys. 80, 205
(1983).

A. Braun, U. Mayer, H. Auweter, H. C. Wolf, and D. Schmid,
Z. Naturforsch. 37a, 1013 (1982); see also A. Braun, disserta-
tion, -Universitat Stuttgart, 1981.

24L. M. Logan, I. H. Munro, D. F. Williams, and F. R. Lipsett,
in Molecular Luminescence, proceedings of an International
Conference held in Chicago (1968), edited by E. C. Lim (Ben-
jamin, New York, 1969), p. 773.

25E. Glockner and H. C. Wolf, Chem. Phys. 10, 479 (1975).
26D. P. Craig B.nd S. H. Walmsley, in Physics and Chemistry of

the Organic Solid State, edited by D. Fox, M. M. Labes, and
A. Weissberger (Interscience, New York, 1963), Vol. 1, p. 585.
G. D. Mahan, J. Chem. Phys. 41, 2930 (1964).
A. S. Davydov and E. F. Sheka, Phys. Status Solidi 11, 877
(1965).
R. J. Silbey, J. Jortner, and S. A. Rice, J. Chem. Phys. 42,
1515 (1965).

R. M. Hochstrasser, Annu. Rev. Phys. Chem. 17, 457 (1966).
M. R. Philpott, J. Chem. Phys. 50, 5117 (1969); 54, 111 (1971).
P. Avakian and R. E. Merrifield, Phys. Rev. Lett. 18, 541
(1964).

3V. Ern and M. Schott, in Localization and Delocalization in
Quantum Chemistry, edited by O. Chalvet (Reidel, Dordrecht,
1976), Vol. 2, p. 249.

R. W. G. Wyckoff, Crystal Structures (Interscience, New
York, 1960), Vol. V.
J. Trotter, Can. J. Chem. 39, 1574 (1961).
R. H. Clark and R. M. Hochstrasser, J. Chem. Phys. 46, 4532
(1967).

7D. M. Hanson and G. W. Robinson, J. Chem. Phys. 43, 4174
(1965).
R. M. Hochstrasser and J. D. Whiteman, J. Chem. Phys. 56,
5945 (1972).


