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We present two-photon magnetoabsorption measurements of the 2 P-exciton system in ZnSe. The
measurements were carried out in Faraday (k||B) and Voigt configurations (K1B) in fields up to 9
T. By various combinations of the polarization states of the two photons involved (o ,,0 _,0,7), up
to 22 different magnetic substates can be selectively excited. The Zeeman splitting is highly non-
linear and critically dependent on the set of effective-mass parameters and g values. The large num-
ber of magnetic components allows a very precise determination of all relevant mass parameters
(mZ,2.,71,¥27Y3,k). The theoretical data presented in this paper are based on the effective-mass

* theory for degenerate bands and result from a numerical calculation of the eigenvalues of a set of
coupled eigenvalue equations. The Hamiltonian describing the motion of electron and hole in the
presence of an external magnetic field is fully expressed by means of spherical tensor operators.

I. INTRODUCTION

In the last ten years there has been a controversial dis-
cussion of the correct numerical values of the band pa-
rameters of ZnSe. Most of them were deduced from ex-
perimental data of excitons. Especially the 1.5 exciton has
been studied in detail by several methods. Venghaus' and
Feierabend and Weber? investigated the S-exciton spectra
by magnetoreflection. Recently Sermage and Fishman®
reported experiments using resonant Brillouin scattering.
Unfortunately the 1S-exciton binding energy is not only
affected by the complex valence band structure which is
known to lead to a nonhydrogenic exciton series but also
by a number of additional correction terms (exciton-
photon, exciton-phonon, and exchange interaction) which
are of similar importance. In particular, these measure-
ments give only information about the reduced mass so
that additional information about the effective mass of
the conduction band is needed to get the complete set of
mass parameters. The reliability of the valence-band pa-
rameters, therefore, depends critically on the accuracy of
the conduction-band mass which has to be taken from
some other independent experiments.*~7 ‘Magnetic field
measurements on P excitons allow the simultaneous deter-
mination of all band masses since the linear Zeeman split-
ting of the P envelope is proportional to the difference of
the reciprocal band masses (y, — ), whereas the diamag-
netic shift depends on the sum (y,+7,). The 2P exciton
was first investigated by Sondergeld and Stafford.® They
found a pronounced fine structure with three distinct
peaks due to the coupling between the angular momentum
L (L =1) of the envelope and the hole spin J (J =2,
The three coupled states of the 2P exciton are highly de-
generate and thus we expect a splitting in a magnetic field
into 24 components. From the magnitude of the splitting
one can calculate the Luttinger’ parameters and g values.
~ The P-exciton states in ZnSe are not directly allowed
for optical transitions. Two-photon absorption (TPA)
spectroscopy, however, is an appropriate technique for in-
vestigations of the P exciton. It offers the possibility of a
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selective excitation of substates with different magnetic
quantum numbers by a suitable choice of the polarizations
of the two light beams. Similar measurements on the less
complicated exciton system in ZnO by Dinges et al.!” and
CdS by Damen et al.!! and by Seiler et al.'? have already
demonstrated the advantages of this spectroscopic tech-
nique for investigations of excitonic fine structures. In
our experiments we have resolved most of the 24 com-
ponents of the 2 P exciton using magnetic fields up to 9 T.
Owing to this large number of experimental data we can
deduce the band masses and g values with much higher
accuracy than before. Parameters are obtained from a
comparison of our experimental data with numerical
values calculated within the effective mass theory. Our
magnetic field Hamiltonian contains full information
about the complex valence-band structure in the vicinity
of the T point. The eigenvalues are calculated variational-
ly by an exact diagonalization in the appropriate subspace.
We do not use a perturbational approach. The Hamiltoni-
an describes the motion of the mutually interacting elec-
tron and hole in the presence of an external magnetic field -
within the axial approximation.

II. EXPERIMENT

The two-photon magnetoabsorption measurements on
the P-exciton fine structure of ZnSe were carried out with
an experimental setup similar to that of Sondergeld and
Stafford® described in detail in Ref. 13. As a high-power
laser we use a Raman-shifted (H, gas at 40 bars) Nd-
doped YAG (yttrium aluminum garnet) laser which yields
pulses up to S MW at 0.649 66 eV. The tunable lasér con-
sists of a dye oscillator (Rhodamine-6G) pumped by a
YAG laser (second-harmonic of 1.06 pum wavelength).

The two-photon signal I, is monitored as a change in
transmission for the tunable dye laser (halfwidth 100 ns).
As shown schematically in Fig. 1 the signal can be identi-
fied as a small dip on the dye laser pulse. This dip fol-
lows in'its temporal behavior the short YAG laser pulse
(halfwidth 7 ns). To detect the small absorption quantita-
tively we have applied a differential technique: The dye
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FIG. 1. Schematic diagram of the two-photon setup and the
time dependence of the relevant signals; the high-power beam
(I.) is positioned to be collinear with the signal beam (Ig) by
means of a dielectric mirror (DM).

laser output is split into two components (signal and refer-
ence beam). While the signal beam passes the crystal and
is attenuated due to the two-photon absorption the refer-
ence beam bypasses the crystal. To assure that the differ-
ence between the electronic signals of the reference beam
and the signal beam vanishes as long as the high-power
laser is switched off, the delay time and the intensity of
the reference beam is controlled by means of a delay
prism and a variable attenuator. The two-photon absorp-
tion coefficient!® is proportional to the nonlinear absorp-
tion signal IA =IR -——Is.

For our magnetic field measurements we used the same
polycrystalline sample as Sondergeld and Stafford.® The
crystal is mounted in a helium cryostat with a supercon-
ducting coil allowing fields up to 9 T. The sample is
thermally coupled to the liquid helium by low-pressure
helium gas. The polarization states of the two laser
beams can be changed automatically by rotating quarter-
wave or half-wave plates. Because of different selection
rules for the substates the measurements are performed in
Faraday (k||B) and Voigt (K1B) configuration.

III. THEORY

In Sec. IIT A we will give a magnetic field Hamiltonian
for excitons originating from a T’y valence band. The for-
malism is analogous to that of Altarelli and Lipari,'* with
the difference, that we use irreducible spherical tensor
operators, which are easier to handle. In Sec. III B we will
construct the eigenstates and derive the corresponding
eigenvalue equations of the P excitons in a magnetic field.
In the last part we will discuss the TPA selection rules in
the axial model.

A. The magnetic field Hamiltonian

We present an effective mass Hamiltonian for excitons
of degenerate bands in the presence of a magnetic field.
Following Baldereschi and Lipari'®> and Altarelli and
Lipari'* we will write the Hamiltonian in the formalism
of irreducible spherical tensor operators. By means of a
finite-element technique we will exactly diagonalize the
Hamiltonian in a suitable subspace to get the eigenvalues
as functions of the band parameters.

ZnSe is a direct-band-gap material crystallizing in the .
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zinc-blende structure. The s-like I'q conduction band is
twofold degenerate due to spin degeneracy. The upper
valence band has I'y symmetry and is fourfold degenerate.
The excitons originating from these band states- have a
binding energy which is about 25 times smaller than the
spin-orbit splitting of the I'; and I'y valence bands which
allows to neglect the influence of the split off T'; valence
band. Since the P excitons in ZnSe are not dipole allowed,
we do not have to take into account their coupling to the
radiation field. Contrary to investigations of S excitons
we do not have to include central-cell corrections!® be-
cause P excitons have a more extended wave function
with a zero at the origin.

As was shown by Baldereschi and Lipari!® the Hamil-
tonian consists of the following three terms:

H:Hs +Hd,sph+Hd,cub ) (la)
2
2
HF%‘? ’ (1b)
Hyon= __9%(2(2).1(2)) - (10)
8 v 70
Hy o= o [ PO x g1+ Y pary g
HEPxz . 1o
— 6y3+4v2 Y372
Svetr) Ve+71

The parameters ¥, ¥, and 5 are the Luttinger parame-
ters of the I'y valence band. The I' conduction band is
described by y,=my/m.. Energies and lengths are ex-
pressed in units of the effective Rydberg and the exciton
Bohr radius: ‘

1
— = R
(Yetre

aex=(y.+v1)€ap

The H,; terms represent a coupling between the angular
momentum of the electron-hole motion and the hole spin.
This interaction is given in the form of scalar and tensor
products of the irreducible spherical tensor operators!®
P and J'?, We include into the Hamiltonian the effects
of an external magnetic field by substituting the operator
P of the momentum by the canonical momentum
P—(e/0)A.

We choose for the magnetic field the gauge

———(B><r) with B=(0,0,B). From the H; term two
parts arise which depend linearly or quadratically on the
magnetic field B:

Regr=

Hs,mag=Hs +Hs, 1 +Hs,dia ’ (2a)
Hs,l =ugB(y.,—v1)L,+upBg.S, —2ugBkJ, , (2b)
H = 5p5BX 7. +7 0% (x> +37) . (2¢)

The Zeeman term of the envelope is proportional to the
difference of the reciprocal band masses of the conduction
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and the valence band. This part is characteristic for the
magnetic field behavior of P excitons since it represents
the significant splitting into three components according
to the projection of the angular momentum on the axis of
the magnetic field. S excitons cannot show this splitting
because the angular momentum is zero. In the H; term
we have furthermore considered the Zeeman term associ-
ated with the electron and hole spin. The diamagnetic
shift, given by H, 4,, depends quadratically on the mag-

]
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netic field and the sum of the reciprocal band masses. In
the presence of an external magnetic field the cubic Hy
term becomes partially quenched. For this reason we con-
sider in the following only axial contributions to the
Hamiltonian. The spherical and the axial H, terms are of
the same structure besides numerical factors, which de-
pend only on the difference in the magnetic quantum
number M;. These factors are given in the Appendix.
The spherical H; term consists of the following terms:

H,,,1=——;—(ye+y,>m/5'/6”#33{[u_zm><13<“>“>xg‘l)]g“_x/?[u_em><1_>‘”>‘2>><1<2’1E,"} , . 3)
Hd,dia=l_(l)_§(7/e+7/l)2'u“§BZ{B(2).1(2)_}_1/-12[1_{(Z)XJ(Z)]E)Z)_*_\/Z_/::”.ZJ(OZ)} . (4)

Similar to the H term there are also two magnetic con-
tributions. The first is linear in B and can be compared to
the Zeeman term, whereas the second is a diamagnetic
term, which depends quadratically on the magnetic field.
Both parts depend on the spherical parameter p as well as
on the sum of the reciprocal band masses (Y, +71). These
additional terms in the Hamiltonian describe the effects of
the complex valence-band structure on the magnetic field
behavior of the 2P excitons. We want to emphasize that
our Hamiltonian, which includes the axial contributions
of the cubic term, is equivalent to the Hamiltonian given
by Altarelli and Lipari!* in terms of Cartesian tensor
operators. Contrary to the case, where one uses Cartesian
operators, the evaluation of matrix elements using spheri-
cal tensor operators is simple and can be done very easily
by using the Wigner-Eckart theorem!” and applying the
technique of reduced matrix elements. We have listed the
reduced matrix elements for all operators in the Appen-
dix. By means of 6j and 9j symbols the reduced matrix
elements of tensor products can be deduced from those of
the operators themselves.

B. Construction of eigenstates
and eigenvalue equations

In high magnetic fields the 2P exciton splits into 24
magnetic substates. In order to understand this complex
splitting pattern we will first construct the eigenstates of
the coupled envelope-hole system without external pertur-
bation. Then we will include the magnetic field and dis-
cuss the behavior of the excitonic states in the axial ap-
proximation described above. Within the spherical model
the 2P exciton, being composed of a p-like envelope
(L=1), Ty valence-band states (J=3), and T
conduction-band states (S = %), splits into three
envelope-hole coupled states Pp with F=+, 3, and &
(F=L+7J). Since the coupling between the electron spin
S and the angular momentum Fis negligible, the electron
spin can be separated. We have to keep in mind, however,
that the electron spin doubles the degeneracy of the exci-
tonic states Pr. In the presence of an external magnetic
field an additional Zeeman splitting due to the electron g
value (g.) is thus to be expected. The spherical H; term
couples states with the same angular momentum F.Ina
magnetic field, states with different angular momentum F

I

will be mixed. The magnetic quantum number My, how-
ever, remains a good quantum number. Thus the eigen-
states in the presence of an external magnetic field can be
written as linear combinations of product functions:

[Mp,Mgs)= 3 grr(r)| L,J,F,Mp) | S,Ms) . (5)
LF

The g r(r) are radial functions and the |L,J,F,Mp)
and | S,Ms) are angle- and spin-dependent parts defined
in the coupling scheme as mentioned before. For the cal-
culation of the magnetic field dependence of a state
| Mp,Ms) one has to include correctly all states with the
same magnetic quantum number. For an exciton in a
magnetic field, parity is still a good quantum number.
Therefore, only states with odd angular momentum
(L =3,5,7,...) are mixed to the P excitons. For our nu-
merical calculations we have included only f-like states
(L =3) neglecting contributions from excitons with
higher angular momenta. The coupling scheme for the

TABLE L. Construction of M, from the magnetic quantum
numbers of the envelope M, of the hole spin M, and of the
electron spin Mjg; in the general case only Myr=M; +M; and
My are good quantum numbers, but in the limiting case of the
excitonic Paschen-Back effect the magnetic substates can be
classified by M, M;, and My themselves.

Mg M, M, M Mo
: 1 : L 3
: 1 : 4 2
: 0 3 : 2
: 0 3 1 1
: 1 3 . 2
: 1 4 4 1
3 -1 3 } 1
3 -1 : -t 0
p 0 3 3 1
3 0 3 -4 0
! 1 - - 1
; ! -4 -4 0
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magnetic substates is given in Table I. Within this cou-
pling scheme we have solved the angular part of the eigen-
value problem analytically as is demonstrated in the Ap-
pendix. The resulting systems of radial differential equa-
tions are treated numerically by the finite element
method. The numerical calculations were performed in
the same way as described by Mattausch and Uihlein.'®
We want to point out that we have solved the eigenvalue
equations numerically exactly within the axial model.
The energetic levels of the magnetic substates depend on
the set of free parameters vy, V2, ¥3, My, 8, K, and Rg
and can be fitted to the experimental results as discussed
later.

C. Two-photon absorption selection rules
in an axial model

The two-photon selection rules follow from a considera-
tion of a combination of two one-photon absorption pro-
cesses, each of which gives rise to a change of the magnet-
ic quantum number by 0 or +1. Depending on the polari-
zation directions of both lasers one gets different selection
rules: In Faraday configuration (K||B) circularly polar-
ized light is used which leads to transitions into states
with total magnetic quantum number M, =0 and +2. It
should be noted, that the selection rules only depend on
the helicity of the electric field vector with respect to the
magnetic field. Working with two circularly polarized
beams of opposite helicity one can excite states with
M, =0. With two beams of the same helicity transitions
into magnetic substates with M, = +2 are possible. Ad-
ditional measurements in Voigt configuration (K1B) with
linearly polarized light allow the observation of states
with M, =0, *1, and *2. The polarization axis of
linearly polarized light is oriented either parallel () or
perpendicular (o) to the magnetic field. States with
M,;==*1 are excited by a combination of - and o-
polarized light. If the directions of the polarizations of
the two photons are parallel there are two possibilities: If
they are polarized parallel to the magnetic field B, transi-
tions to M, =0, and if they are perpendicular to B, tran-
sitions to M,,;=0 and %2 are possible. The different
combinations are listed in Table II.

TABLE II. Two-photon selection rules in the axial model;
the first sign refers to the polarization of the dye laser, the
second to the high power YAG laser.

Polarization state Mo
f{ lﬁ 0404 2
oL0_ 0

o_o, 0

o_o_ -2

oT +1

o +1

T 0
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IV. EXPERIMENTAL RESULTS

In this section we will present our two-photon results
for ZnSe.!” The experimental results are compared to en-
ergy valués calculated within the preceding model using
the best set of parameters. We investigated the 2 P-exciton
fine structure in magnetic fields up to 9 T with eight dif-
ferent polarization combinations in Faraday and Voigt
configuration, respectively. Figure 2 shows a typical
series of measurements in Faraday configuration. Owing
to the helicity of the photons relative to the magnetic field
(04,0_) only transitions to states with M, =0 are al-

lowed. It is seen that the magnetic fine structure of the
2P exciton strongly depends on the magnitude of the
magnetic field. At 8 T the magnetic-field-induced split-
ting of 5 meV is considerably larger than the initial split-
ting due to the envelope-hole coupling (1.7 meV). The
separation of the spectra into three principal structures at
high magnetic fields suggests that the dominant splitting
is determined by the orientation of the angular momen-
tum of the electron-hole motion {(M; = —1,0,+1). This
means that the coupling of the angular momentum L to
the magnetic field is much stronger than the coupling to

P12 B =0T (0, 0)

B =2T (0,0

B=6T (0,0)

-+
<

Two-photon absorption (arb. units)

=il e 1
2.818 2820 2822
Energy (eV)

FIG. 2. Two-photon absorption measurements of the 2P ex-
citon in Faraday configuration up to 8 T with (o0, ,0_) polari-
zation; the first sign refers to the polarization of the dye laser,
the second to the high power YAG laser; in the upper panel the
fine structure is shown for the field-free case. The lines result
from a line-shape fit using up to six Lorentz functions.

1
2824
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Faraday Configuration (kIIB) 8T 22K Voigt Configuration (k1B) 8T 22K
(G0 (ma k
M'rof =2

@m Moy =0

Two-photon absorption (arb. units)

2818 2820 2822 262 2818 2820 2822 282
Energy (eV) Energy (eV)

FIG. 3. 2P-exciton fine structure at 8 T for the eight different polarization states of the two beams in Faraday (left) and Voigt con-
figuration (right).

the hole spin J, which can be interpreted as an excitonic  states exceeds the number of free parameters. Thus an
Paschen-Back effect. In Fig. 3 the TPA spectraat 8 T are  unambiguous determination of the parameters is possible.
shown for all possible polarization configurations. The  Fitting the theoretical values to the experimental results
pOSSibllity of selective excitation allows to distinguish be- for all measurements upto 9 T we receive a reliable set of
tween the various states. A calculation of the two-photon parameters:

oscillator strengths gives an unambiguous assignment of

*
the peaks. All experimental results are summarized in me =(0.14710.003)m,, ,

Fig. 4. The experimental results (dots) are compared to ¥1=2.45+0.05
the energy values (lines) calculated within the axial model - ’
using the best set of parameters. The number of excitonic 72=0.61%+0.12 ,
2.825 L
Miot =0 Mot =21
; N
Z 2823
>
e
& 2.821
wi
2.819
2.817
A 1 I 1 A 1 1 1 1

Magnetic Field B (tesla)

FIG. 4. Magnetic field dependence of the 2 P multiplet; lines: theoretical results, dots: experimental results.
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y3=1.1140.10 ,
2. =0.96+0.06 ,
k=0.20+0.04 ,
Rer=17.35+0.6 meV .

The procedure of fitting the parameters is particularly
sensitive to m. and y;, so that they can be determined
with very small errors. The difference of the Luttinger
parameters ¥, and ¥3 is deduced from the zero-field split-
ting of the P/, exciton into a I'; and a I'g component.

Using our set of parameters we have calculated the rela-
tive TPA-oscillator strengths for different magnetic fields
and polarization configurations. The agreement with the
experimental data is a justification of the axial model and
gives further confidence in the evaluated set of parame-
ters. The fact that some of the states listed in Table I are
not observed in the experiments can be understood be-
cause of vanishing oscillator strength.

V. DISCUSSION

The strong magnetic field dependence of the 2 P-exciton
fine structure in the TPA spectra of ZnSe reveals infor-
mation about the complex structure at the top of the I'g
valence band. Besides the valence-band parameters one
can deduce from our measurements the effective mass of
the conduction band, the g values of electron and hole,
and the Rydberg energy of the exciton series. In this sec-
tion we will discuss the advantages of investigations of the
P excitons in contrast to measurements of the S-exciton
series. We will compare our parameters with data pub-
lished by other authors (Table III).

As we have pointed out in the Introduction investiga-
tions of ZnSe concerning the fundamental gap were most-
ly performed on the excitonic ground state, i.e., the 1.5 ex-
citon. In this case one has to take into account that the
1.5 exciton is strongly coupled to the photons which leads
to polaritons. The polariton dispersion was investigated
by Sermage and Fishman® using resonant Brillouin
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scattering. S excitons are also affected by the exchange
interaction, which enforces a splitting between the F,,, =1
and 2 components without any additional external pertur-
bation. In one-photon experiments only the F,,;, =1 com-
ponent can be observed. Therefore, it is very difficult to
deduce the strength of the exchange interaction. The
F,, =2 state becomes allowed in a high magnetic field
and can be extrapolated to the field free case. For the
case of the S exciton one can only see a diamagnetic shift
and a small splitting due to the electron and hole spin.
The magnetic field behavior of the S exciton in ZnSe was
investigated by Feierabend and Weber? and by Venghaus!
with magnetoreflection measurements.

For determination of the band parameters Feierabend
and Weber included the exciton-photon interaction,
whereas Venghaus took polaron effects into account.
Since the diamagnetic shift depends only on the sum of
the reciprocal band masses, in both papers the authors
had to assume a numerical value for the conduction-band
mass to get the mean mass of the valence band described
by the Luttinger parameter ¥,. Contrary to these mea-
surements of S excitons we get an appreciable splitting of
the P envelope, which depends on the difference of the re-
ciprocal band masses (y,—v;). From both, the diamag-
netic- shift and the envelope Zeeman splitting, we can
deduce the conduction- and valence-band masses. The nu-
merical values of the conduction-band mass from other
authors range from 0.13mg to 0.17m, with an error of
approximately 15%. From our measurements we derive
my =0.147 with an accuracy of 2%. It is obvious, that
the sets of parameters given by Feierabend and Weber?
and by Venghaus' are influenced by their models and the
special choice of the conduction-band mass. Sondergeld
and Stafford® measured the 2P-exciton fine structure of
ZnSe without any external perturbation. For the deter-
mination of the valence-band parameters from the fine
structure they also had to assume values for the
conduction-band mass and the effective Rydberg energy.
Finally we want to point out again that our parameter set
gives a consistent description of all the features observed
in our experiments, explaining the 2 P-exciton fine struc-

TABLE III. Comparison of our numerical results with data published by other authors.

m 71 V2 V3 & K Rer (meV)
This paper 0.147 2.45 0.61 1.11 0.96 0.20 17.35
Venghaus (Ref. 1) 4.3 0.59 1.34 1.37 —0.28 16.8
Feierabend and Weber (Ref. 2) 4.32 0.66 1.13 1.2 —0.12 19.1
Sermage and Fishman (Ref. 3) 4.30 1.14 1.84
Aven and Segall (Ref. 4) 0.15
Segall and Marple (Ref. 5) 0.16
Marple (Ref. 6) 0.17
Wang and Klein (Ref. 7) 0.13 ‘
Sondergeld and Stafford (Ref. 8) 3.23 0.69 0.90 19.9
Lawaetz (Ref. 20) 3.77 1.24 1.67
Dunstan et al. (Ref. 21) 1.115
Cavenett and Hagston (Ref. 22) 1.22 —0.20
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ture and the magnetic field behavior of it. The experi-
ments on S excitons should be reinterpreted with particu-
lar consideration of the conduction-band mass given in
this paper.

VI. SUMMARY

The 2P-exciton system is characterized by a high
orbital- and spin-degeneracy which is as a result of the
symmetry properties of the valence band partially lifted
by the presence of an effective spin-orbit interaction. The
Zeeman splitting of the 2 P exciton is highly nonlinear and
depends sensitively on the ratio between Zeeman terms,
diamagnetic terms, and the magnitude of the initial spin-
orbit splitting. The Zeeman splitting of the 2P-exciton
system depends in fact so critically on the choice of the
effective-mass parameters that the good agreement be-
tween experiment and theory is not only a rigorous test
for the liability of the presented mass parameters but also
an excellent proof for the validity of the effective mass
approximation in the presence of a highly degenerate
valence band.
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APPENDIX

As an example we demonstrate the determination of the
eigenstates for the My=+ 3 states. The derivation fol-
lows the procedure of Baldereschi and Lipari'® using ir-
reducible spherical tensor operators. The eigenfunctions
of the Hamiltonian described above are constructed in the
following manner:

| Mp,M; )= grr(r) | L,J,F,Mg) |S,M,) . (A1)
LF

For the M=+ states there are four contributions:

MWL=1,J=3 M, =1, M;=3.
@QL=3,J=3, M, =1, M;=3.
BG)YL=3,J=%, M, =2, M;=+.
@ L=3,J=3% M, =3, M;=—+

The matrix elements of the Hamiltonian can be calculated
with the reduced matrix element technique using the
Wigner-Eckart theorem.!” The residual radial differential
equations can be solved numerically by the finite-element
method as discussed by Mattausch and Uihlein.!® For the
matrix elements we get

_ [1+%‘P“—% SVI/TduPy,  —V3/21uPy  $V57T4uPy
)
£/ T/TduPy, —{1—% P33—% —1VEAuPy,  —2V1/5uPy
_ A2)
H+Hg o= 2 (
e —SV3/3uPy,  —VE/3uPy, —Py— 0
v 2 L p 2
5 5/14[.LP31 -3 1/5‘UP33 0 — 1+ 3 33— ,
with
d> 2d 2
Pll dr2+rdr_r2’
13 drz r dr r2 ’ (A3)
d> 3d 3
31 a2 r dr+r2 5
p._d’  2d 12
33’—dr2 r dr 2
+ —=+=Vv2/7 0 0
L 2
Hoo (7e+7’1)211%32r2 —wv2/1 ’5 00 (Ad)
s,dia=™ Reff 0 0 'é’ 0 s
0 0 o %
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with

(73*7’1)“3K_%gc 0 0 0
0 (Ye—71)—3k— 38 0 0
H, ,=ugB
s1=Hz 0 0 2ye—¥1)—K— T8 0
o 0 0 3(Ye—v1)+K—Tg.
1 0 V3/35K 3
0 1 —3V5/6+4V'6/5K 3
Hy; = B
a1=(Ye+v1)upp 3/35K;,  —3V'5/6—-:V6/5Ks; 1
—3V2/35K;, —3V'1/5K3; 0
' d
K =3 2_—_y
n=s3+ " ar
d
K3=4 o
13 +rdr
d
Ky j=1—r— ’
31 rdr
d
K;3;=3 2—’
33=3+ " ar
L —%V2/7 0 V2735
1 1
. et - — V277 L 0 —6vV1/5
d,dia=™ Reff M7 B 0 0 -_‘le 0
VI3 —6VI/3 0 5

(L=1! ‘[B(l)xB(l)](Z)l lL=1>=i3‘/1/5
(L=1| |[RVXRMV]?| |L=3)=—i3V6/5

(L=3]|[RV"XRV]P||L=1)=i3V6/5 ll—r d

(L=3||[RVXRMV]?P||L=3)=—iV14/5

d
3+2rdr

’

d
4 —_—
+rdr

’

’

dr

d
3+2rdr ] ,

<L=1[ [[B‘”XI_’(”]“)I iL=1)=i3\/§ ,

<L=3| |[B(1)X£(“](“| |L=3)=i31/42 ,
<L=1| ‘[B(I)XE(”](”] ]L=3)=<L=3| |[B(1)X£<l)](l)l |L=l)=0,

(J=3|[L?]|J=3)=3V30,
(L=1||R?||L=1)=—6V1/5r2,
(L=1||R?||L=3)=3V6/5r%,
(L=3||R?||L=1)=3V6/5r2,
(L=3||R?®||L=3)=-2V14/5¢%.

H. W. HOLSCHER, A. NOTHE, AND CH. UIHLEIN

For the calculation we have used the following reduced matrix elements:

—3v2/35K ;
+V1/5K 33
0

3
2

’

(AS5)

(A6)

(A7)

(A8B)

(A9)
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The matrix elements of the axial H; terms are of the
same structure. To get these matrix elements one has to
substitute the spherical parameter p by an expression con-
taining 8. The following substitutions have to be made
for the different AM; values:

2387

AM;=0: p—55,

AMp=%1: p—>—38, (A10)

AM; =+2; ,u—»%& .
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