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Shallow-impurity states in semiconductor quantum-well structures
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The ground-state energy of a shallow impurity in a semiconductor quantum well of finite barrier
height is calculated using a variational method. The binding energy U is obtained as a function of
the well width L, the impurity position z;, and the height of the potential barrier Vo. The behavior
of the variational parameter k, which determines the extension of the wave function around the im-

purity, is also studied. The maximum binding energy corresponds to the minimum value of A, .
Larger values of Vo result in faster variation of U with z;. Our results agree very well with pub-
lished experimental data.

I. INTRODUCTION

The development of molecular beam epitaxy (MBE) in
the last few years has made it possible to fabricate systems
consisting of alternate layers of two different semicon-
ductors with similar lattice structure and matching lattice
parameters. These new periodic structures, which can
have spatial periods considerably greater than the lattice
constants, are referred to as superlattices. ' Two types of
superlattices have so far been studied in great detail. One
of these (referred to as type I) is exemplified by the
GaAs-Al„Gal „As system in which the band gap of
GaAs is contained entirely within the band gap of
Al„Gal „As. The discontinuities of both the conduction-
and valence-band edges at the interfaces give rise to poten-
tial wells for both electrons and holes in the GaAs layers.
These potential wells are separated by potential barriers in
the A1~Gal „As layers, whose height depends on the Al
concentration (x value). The other type of superlattice
system (referred to as type II) is typified by an InAs-GaSb
system. Here the band match is such that the
conduction-band minimum of InAs is below the valence-
band maximum of GaSb. Thus, in this case, a spatial
separation of electrons and holes takes place due to the
transfer of electrons ( —10' cm ) from GaSb to InAs.

This investigation of shallow impurity states in the su-
perlattice has recently attracted considerable attention.
Bastard has calculated the binding energy of the ground
impurity state as a function of the layer thickness and the
impurity position assuming an infinitely deep potential
well. Mailhiot et al. have studied the energy spectrum of
shallow donor states in a quantum well. They considered
two cases, the donor at the center and at the edge of the
quantum well. Greene and Bajaj have reported a calcula-
tion of the binding energy of the ground donor state as a
function of the potential barrier height and of the width
of the quantum well under the assumption that the posi-
tive ion is located at the center of the well.

In this paper we report a calculation of the binding en-
ergy of the ground state of an impurity in a potential well
of finite depth as a function of the well width, the impuri-
ty position within the well, and the potential barrier
height. We also study the behavior of the variational pa-

rameter A, , which determines the extent of the wave func-
tion around the impurity, with well width for different
values of the barrier height when the impurity is located
at the center of the well. We find an interesting relation
between the variation of the binding energy and the varia-
tion of the parameter A. with the well width; namely, the
maximum value of binding energy corresponds to the
minimum value of A, . Its physical meaning is clear; the
more tightly bound the electron, the smaller its extension
about the impurity. In addition, we find that the larger
the barrier height Vo, the more rapid the variation of the
binding energy U with position z;, as would be suspected
intuitively. Our results agree very well with the experi-
mental data of Miller et al.

II. THEORY

H=
2m 2 1/22+ ( )2]1/2

Here V(z) is the potential-energy barrier which confines
the carrier in the well of height Vo and width L; we as-
sume that

0 if /zf( —,I.
2'

V(z)= .

Vo if ~z~)—I
2

The origin of a Cartesian coordinate system is chosen at
the center of the well, p =x +y is the distance in the
layer plane measured from impurity site, and z; is the
coordinate of the impurity site along the superlattice axis.

We will consider only those superlattices whose barrier
layers are sufficiently wide that the quantum wells can be
treated as independent potential wells. For the sake of
definiteness, we assume the impurity is donor, although it
is clear that our results also apply to the acceptor sites
provided the parameters of the electron are replaced by
ones of a hole. Within the framework of the effective-
mass approximation, the Hamiltonian H of an electron
around the hydrogenic donor attached to the first conduc-
tion subband in the quantum well can be written as

2
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Hf(r)=EQ(r) . (3)

Equation (3) probably cannot be solved exactly, because
the transverse and longitudinal variables (p,z) do not
separate. %'e use the variational method to obtain an ap-
proximate solution to the problem, taking the electron
wave function as the product of two factors

The effective mass m' and dielectric constant e vary
across the interface between the semiconductors. For the
GaAs-Al„Ga& „As (x & 0.4) superlattice, the differences
between the values of m* and e in the well material and
the corresponding values in the barrier material are very
small. Because the electron is largely confined to the well,
it should be a reasonably good approximation to use the
values of m and e in the well.

The wave functions associated with Hamiltonian (1) are
a solution of the Schrodinger equation

(2m E )' [2m*( Vp —Eo))'
(6)

where Eo is the electron energy in this state. The boun-
dary conditions that f and df /dz be continuous at
z =+L/2 require that Ep(Vo, L) and the coefficients A
and B satisfy the equations

Vo Eo — (2m*Eo) ~
=tan (7)

Eo 2

B/A =cos a—e~ ~I./2
2

the impurity. The parameters a and P are defined by the
following equations:

P(r)=f(z)g(p, z) .

The function

(4) We make the assumption that the function g(p, z) can be
expressed as a simple one-parameter exponential

f(z)=
3 cos(az), Iz

I

&—I
2

Be Pl I Iz
I.
2

is the ground-state wave function of the electron in the
one-dimensional square well potential in the absence of

g(p, z) =exp ——[p +(z —z;) ]
1 2 2 1/2

Here A, is the single variational parameter which deter-
mines the extent of g(p, z) around the impurity. The coef-
ficient A is determined by the normalization condition
(g I g) = 1. This condition gives the complicated relation

2 2z.
1 —cosh exp ——+ 2 z 2 cos(2az; )(1+a A, )

1 I 1

2 2 z + 2 2 [aA, sin(aL) —cos(aL)]+ sin(aL) ——czi, . L,

(1+a A, ) 2~ 1+a2A, 2( 1+a A, ) 2A,

2z 1 2'' I
0( cosh exp ——+

1+a; A,
[cos(aL ) AL sin(aL —)]+1 —sinh exp

2 I. 1 2zl1+—+ cosh
I+A,

2zg 2zg
sinh

1
exp — —+P L

A,
(10)

The ground-state energy E of a hydrogenic donor in the quantum well is E = (p I
H

I 1( ), and the binding energy U is
equal to Ep E, where Ep is the solu—tion of (7). With the trial wave function (4), U can be obtained in a closed form

r

2 2
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Maximizing U (i.e., minimizing E) with respect to A, , we
obtain the binding energy U( VO, L,z; ) as a function of the
barrier potential Vo, the well width L, and the impurity
position z; along the superlattice axis.

With L = ao and z; =0, the wave function (4) becomes
the ground state of three-dimensional hydrogen impurity
(bulk donor) with A, =a and U=R', where a' is the ef-
fective Bohr radius and R* is the effective Rydberg,
namely

) ta"

I.O

0,9

z, =o

a'=e'er /m*e

R*=e /2ea' .

(12)

(13)

0,8

For the limiting case, Vo ——ao, we have a=m. /L and
P= ao', our Eqs. (10) and (11) reduce to those of Bastard. 2

Eo decreases as L is increased. When L ~&a*, then
Eo « Vo and Eq. (7) reduces to that of Greene.

III. RESULTS AND DISCUSSIONS

0.70
L/a

FIG. 2. The variation of the reduced variational parameter
A, /a* as a function of the reduced well width L/a* for several
values of Vp. The impurity is at the center of the well.

The GaAs-Al„Ga& „As structure is one of the most ex-
tensively studied superlattices. The band-gap difference
EEg between GaAs and Al„Ga~ „As is a function of Al
concentration x, which is reasonably well approximated
by the relation

EEg ——(1.155x+0.37x ), (14)
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FIG. 1. The variation of the reduced binding energy U/R. *
of the impurity state as a function of the reduced well width
L/a for several values of the barrier height Vo. The impurity
is at the center of the well.

in units of eV.
For Al concentration less than about 40 at. % (x =0.4),

Al„Ga& „As has a direct band gap at the I point. The
conduction-band offset is about 85% of the band-gap
difference between the two semiconductors; the valence-
band offset is about 15%. With GaAs as the quantum-
well material, the effective mass of the electron in the
conduction band and the dielectric constant are
m*=0.067mo and @=13.1, respectively. Then for the
donor in the GaAs well, the effective Bohr radius and the
Rydberg value are a =103.4 A and R*=5.29 meV,
respectively.

We first study the case in which the impurity is at the

center of the quantum well (z;=0). Figure 1 shows the
variation of reduced binding energy U( VO,L,O)/R* with
the reduced well width (L/a') for several different bar-
rier heights, namely. Vo ——10R*, 30R*, and 50R*. For
GaAs-Al„Ga~ „As structure, these barriers correspond to
Vo ——52.9, 158.7, and 264.5 meV, respectively. For a given

value of Vo, the binding energy U increases as L is re-
duced until it reaches a maximum, whose value depends
on the Vo. Figure 2 shows the variation of the reduced
variational parameter A, /a with L /a* for different
values of Vo. This curve has a minimum at small but fi-
nite values of L/a . Comparing Fig. 1 with Fig. 2 it is
quite clear why a maximum of binding energy occurs for
finite potential barrier. As the well size L is reduced, A,

decreases, and the electron wave function is compressed
nearer to the donor. The stronger Coulomb attraction
leads to stronger binding of the electron to the donor ion.
When L/a* becomes smaller than a certain value, which
varies with barrier height Vo, A, increases, and more and
more wave function leaks out of the well, so U decreases.
The minimum of A, /a* corresponds to the maximum con-
finement of the wave function and therefore to the max-
imum of the binding energy. For instance, for Vo ——30R*,
when L =0.035a*, A, and U reach minimum A, ;„
=0.79a* and maximum U,„=2.27R*, respectively.
Figures 1 and 2 also present the effect of the barrier
height. Greater Vo results in the smaller A, and therefore
in greater U. With the increasing of Vo, the well size L
for which the maximum of U occurs decreases. When Vo
tends to infinite, this well size tends to zero. Because the
electron around a donor in the center of the quantum well
is far away from the barrier, for very large values of L,
the effect of Vo is greatly reduced; the curves for different
values of Vo cannot be distinguished. A, and U tend to a*
and R*, respectively, corresponding to the values for a
bulk donor. In Fig. 3 we display the dependence of
U(Vo, L,O) upon Vo for a given L (L =a*). U/R*
varies linearly with (Vo/R )

'~ in agreement with the
result of Greene. We extrapolate U to Vo~ oo and find
it to be about 2.25R*, agreeing with Bastard's value for
infinite barrier.
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FIG. 3. The variation of the reduced binding energy U/R*
of the impurity state as a function of the inverse of the square
root of the reduced barrier potential Vp/R*. for a well width
L =a . The impurity is at the center of the well.

FIG. 5. The variation of the reduced binding energy U/R*
of the impurity state as a function of the impurity position
along the z axis (0 &z;/L & 1) for a potential barrier Vp ——50R*
fora well width L =a .

We have also calculated the binding energy U( VO, L,z; )

as a function of the position z; of the impurity along the z
axis for L=a" for several different values of Vo. As
shown in Fig. 4, U/R has a maximum at z; =0, and de-
creases as the impurity moves from the center to the edge
of the well. This is due to the repulsive barrier potential
which tends to push the electronic charge distributions
away from the donor, thereby leading to a reduced
Coulomb attraction. The larger the barrier height Vo is,
the more rapid the variation of the binding energy U with

2.2

impurity position z;. If the impurities are randomly dis-
tributed within the quantum well the confinement effect
results in a spreading of the donor levels which depends
upon the donor position. Figure 5 shows the variation of
U/R* with z; /L in the range where donor position varies
from the center to a position outside of the well
(z;/L =0-1) for Vo ——50R* for L =a*. For large values
of Vo the situation for (z; /L & 0.5) corresponds to that of
a donor in the barrier material binding an electron which
is mainly in the quantum well, a problem of some impor-
tance for modulation-doped materials.

Miller et al. have used extrinsic photoluminescence
spectroscopy to estimate the variation of the binding ener-
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FICs. 4. The variation of the reduced binding energy U/R*
of the impurity state as a function of the impurity position
along the z axis (0&z;/L &0.5) for several different values of
Vp and a well width L =a~.

FIG. 6. The variation of the binding energy of acceptors with
the well width for GaAs-Al„Cia~ „As superlattices. The experi-
mental values are measured by Miller et al. The lowest single
circle corresponds to the binding energy determined from a
second shoulder of photoluminescent spectrum. The upper and
lower dashed curves represent the theoretical prediction of Bas-
tard for the binding energy of carbon acceptors in the center of
the well and at the interface, respectively. The solid curve is
what we calculate theoretically.
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gy of acceptors, presumably carbon, with the well size for
GaAs-A1~Cia& „As superlattices. The Al concentration
in their samples is about 30%. They find that U increases
as L is reduced from 300 to 50 A. The valence band of
GaAs is complicated, so the hole effective mass must be
expressed with a tensor. However, we can use a scalar m.'
to approximate it. From the experimental value of bind-
ing energy of a carbon acceptor in bulk GaAs

U=R*=m e /2e fi =26.0,
in units of meV, and e= 13.1, we obtain the hole effective
mass m'=0. 33mp and a*=etri /m*e =21.1 A. This
value of m' is very near the heavy-hole effective mass
m~ ——0.35mp For x =0.3, the barrier height is

Vp ——0.156Eg ——56.97 meV =2.19'* .

We have calculated U as a function of I. for Vp ——2. 198*
for z;=0. As shown in Fig. 6, the curve we calculate
agrees very well with the data determined experimentally
over the range of L used in these measurements. The
theoretical results of binding energy calculated with infi-
nite potential barrier by Bastard are considerably larger
than those measured. Since L/a* ~ 2, the effect on bind-
ing energy for impurities at the interface is small.

IV. CONCLUSION

The binding energy U( Vp, L,z; ) of the impurity states
in the quantum well is a function of the barrier height Vp,
the well width L and the impurity position z;. For a
given value of Vp as L is reduced, U increases and the
variational parameter k decreases until they reach a max-
imum and a minimum, respectively. The maximum of U
corresponds to the minimum of I,. Larger values of Vp

result in the smaller A, and, therefore, in the greater U.
With the increasing of Vp, the well size L for which the
maximum of U occurs decreases. When Vp ——Do, this well

size tends to zero so that no maximum occurs. For a
given L, U varies linearly with ( Vp) '~ . U has a max-
imum at z; =0 and decreases as the impurity moves from
the center to the edge of the well. The larger Vp is, the
faster the variation of U with z;. The results we calculate
agree very well with the experimental data of Miller et al.

After this paper was submitted for publication, the re-
cent work of Tanaka et at'. ' was brought to our attention.
Like us, these authors have used a very simple variational
function to study the donor binding energy as a function
of donor position relative to the center of a quantum well
of finite depth. Our investigation of the dependence of
the donor energy on the depth and width of the quantum
well shows that the simple variational wave function gives
results which are in good agreement with the more
elaborate functions used by other authors. ' Our result
for the binding energy versus donor position for
Vp=SOR'=0. 265 eV (in Figs. 4 and 5) is in good agree-
ment with the results of Tanaka et al. ' for Vp=0. 318 eV
(their Fig. 3). In addition, the curves in their Fig. 10 cor-
responding to type-I and type-IV barriers (the symmetric
barriers) are qualitatively similar to the set of curves for
binding energy versus position in the quantum well shown
in our Fig. 4. However, we have demonstrated explicitly
that the simple variational wave function gives results for
the binding energy which are well fit by U =2
+BVp ' (Fig. 3) for the case in which L=a'. We have
also shown that the experimental results of Miller et aI.
can be well described by our simple model if the parame-
ters appropriate to acceptors in GaAs/Gap 7Alp3As are
used.
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