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Position-dependent effective masses in semiconductor theory. II
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We consider a compound semiconductor possessing a slowly varying position-dependent chemical
composition. We derive an effective-mass equation governing the dynamics of electron (or hole)

motion using the Kohn-Luttinger representation and canonical transformations. We show that, as

long as the variation in chemical composition may be treated as a perturbation, the. effective masses
become constant, position-independent quantities. The effective-mass equation derived here is iden-

tical to the effective-mass equation derived previously by von Roos, using a Wannier representation.

I. INTRODUCTION

Effective-mass equations applicable to graded, mixed
semiconductors have been derived by several authors. ' In
all cases the variation of the chemical composition (the
grading) was considered to be slow enough so that
changes of composition become appreciable only over dis-
tances large compared to the lattice constant. Gora and
Williams' (GW) as well as van Vliet and Marshak' (VVM)
start with the Schrodinger equation of the compound
semiconductor in the Wannier representation as did von
Roos (VR).' During the course of the derivation a certain
matrix element appears which was manipulated in a dif-
ferent way by these authors. Here is not the place to go
into the details of the algebra. The reader is urged to con-
sult the original literature. ' The effective masses derived
by GW as well as VVM exhibited explicitly a position
dependence, whereas the effective masses derived by VR
did not. ' lt was later shown that the GW or VVM
effective-mass Hamiltonians are not unique. This fact
was later disputed. But as was pointed out by Morrow
the nonuniqueness of the GW and VVM Hamiltonians
still persist when the wavelengths of the envelope func-
tions are not smaH compared with the distance over which
the chemical composition changes appreciably. But this is
precisely the case for wave functions of excited shallow
impurity states which extend over hundreds of lattice
sites. The derivation by VR is, however, unique. We
now come to the work of Leibler. ' Rather than using a
Wannier representation, he proceeded to derive an
effective-mass equation for graded semiconductor materi-
al with the aid of the Kohn-Luttinger (KL) method.
Leibler's calculations resulted in an effective-mass equa-
tion for the envelope function which is quite similar to the
corresponding equations of GW and VVM, but not identi-
cal with either. Again, the effective masses became posi-
tion dependent. The KL method" leads to a unique result
and should therefore lead to the same result as VR, ' in
particular to position-independent (constant) effective
masses. We have therefore investigated this problem
again, using the KL technique and found a number of

mathematical and physical errors in Leibler's work.
Eliminating these errors, we can show that the KL
method leads to the same result as the derivation by VR. '

This we shaH do in the next section.

II. THEORY

'rI'+f pV~+(1 fp)&s-
2m

+[f(r)—fp]( Va —Va)+ U

Hp +L (r)S(r) + U(1 ) (2)

with L =f fp and S= Vz —V~—. For a sufficiently slow-
ly varying composition, f fp may be considered s—mall
and the term LS of Eq. (2) may be treated as a perturba-
tion. By writing the Hamiltonian in the form given by
Eq. (2), we have managed to split the Hamiltonian (1) into
a large, periodic part Ho and a small nonperiodic part
IS+ U. The task we are confronted with now, consists in
solving Schrodinger's equation

HQ=(Hp+LS+ U)Q=Eg,

We start with the Hamiltonian of a binary alloy in the
one-electron approximation:

fiH= — V +f(r)V&(r)+[1—f(r)]V&(r)+ U(r), (1)
2m

where f(r) is the position-dependent concentration of 2
atoms in a regular lattice consisting of 3 and B atoms,
and U is a slowly varying potential. To facilitate compar-
ison with Leibler's work, ' we use largely his notation.
The Hamiltonian (1) has been used by Leibler' and in-
dependently by von Roos' and the reader is referred to
these references for details. If f=fp ——const and U=O,
the Hamiltonian (1) would be periodic in the underlying
Bravais lattice. With a suitably chosen fp, the Hamiltoni-
an (1) may be rewritten as

31 2294 1985 The American Physical Society



31 POSITION-DEPENDENT EFFECTIVE MASSES IN. . . . II 2295

where E is the total energy of the system. We now
proceed with Leibler' to introduce the set of Kohn-
Luttinger functions

& n, k
~

U
~

n 'k, ') =4'(k —k')5„n (14)

provided that U is also slowly varying. Again, 2 is the
Fourier transform of U, viz. ,

g„k=e'"'i'„k =
~

n, k),
where the Bloch functions 1(nk satisfy

(4)

k(k)= —f e '"'U(r)d r .
V

(15)

Ho((' k E (ko)e ko

We assume further that there exists a simple minimum of
the band energy E„at k=ko.

Expanding f of Eq. (3) into the complete orthonormal
set of Kohn-Luttinger functions, with

n, k

It is now convenient to split the matrix element (11)
into diagonal and off-diagonal elements in the band in-
dices

W(k k—')u„„=W(k k—')[A3unn, 5n„+Apu„„, (1—5„n )] .

(16)
The constants A,2 and A, 3 have been introduced for the
same reason as the constant A, 1 above. we define

we obtain from Eq. (3) the set of equations

y &n, k ~H
~

n', k'&A„(k')=EA„(k) .
n'k'

(7)

H =H„k
~
„k =W(k —k')u„„( 1 —5„„). (17)

Introducing a compact notation, .we obtain as a starting
point the following expression for Eq. (7):

The Hamiltonian H consists of three parts according to
Eq. (3). The matrix elements of the unperturbed Hamil-
tonian Ho are given by

A' k
&n k IHo In' k'&= E (ko}+ 2'

+~1 k Pnn'~k~k'

~nk
(
n'k'+~1~nk

(
n'k'

=Ho+a, H' .
Here p„„ is defined by

p
fl 3

l

with the important property

Pnn=O ~

(8)

(10)
/

since we have assumed a minimum of E„at k =ko.
The constant A, i has been introduced for convenience.

Since we will perform successive canonical transforma-
tions later on, it is indeed convenient to keep track of
terms of order A, „A,i, etc. After all calculations are done,
A, i may be set equal to 1. The matrix elements of the
remaining terms of the Hamiltonian (3) are given by

& n, k
~

LS
~

n', k') =u„„W(k—k'),

where

HA =(H o+A, , H' +A,, H' +A, 3
V' +k )A =EA . (18)

Equation (18) constitutes a matrix equation. We have
omitted all matrix indices, so, for instance, k A stands for

O' A = g k„k
~
„kA„(k )

n'k'

= g +(k—k')A„(k')

B=e A,
it follows that

e He ~B=H,ffB =EB,

(20a)

(20b)

from Eq. (18}. We expand the effective Hamiltonian H, ff
in commutators

according to Eq. (14).
We note, that the matrices H, V', and + are diagonal

in the band index, whereas H' and H possess off-
diagonal elements only So fa.r, the problem at hand has
only been defined by Eq. (18) and nothing new has yet
emerged. In fact, Eq. (18) constitutes the starting point of
Leibler's further analyses. ' For the clarity of exposition
and for the comfort of the reader, we felt it worthwhile to
explain once more the steps which led to Eq. (18) and to
define concisely all quantities involved.

In order to eliminate the interband matrix elements H'
'

and H from the Hamiltonian H of Eq. (18) we proceed,
with KL (Ref. 4) and Leibler (Ref. 1), to introduce a
canonical transformation, which removes the interband
terms H' and H to first order. With

unn~= f d r Sitnkogn'k

and the Fourier transform of L is denoted by W, viz. ,

(12) H, ff =H + [H, T]+—,
' [[H,T],T]+

and put with Leibler (Ref. 1)

(21)

W(k) =—f e '"'L(r)d3r,1

V
(13)

Stipulating that

(22)

where V is the quantization volume. Equation (11) is
valid if L is slowly varying (see Leibler for details ). Fi-
nally,

(23a)

(23b}
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~1 ~ Pnn'+nn' ~k
~

k' ~

m
(24a)

T = —A2vnn W(k —k')ink'~nk . (24b)

Here, T„n = Tnn =0 and the energy denominators are de-
fined by

Wk
~nk~nk= En«O)+

2m

—1

fi (k')—E„(ko)—
2m

and

—1 —1
Enn' ~nk

~

n'k (25b)

we have eliminated the first-order interband matrix ele-
ments as promised. The solutions to Eqs. (23) are given
by

For wide-band-gap semiconductors and for sufficiently
slowly varying chemical composition, both T' and T
may be considered as small compared to 1 [Eqs. (30) and
(32) of Leibler']. In this case, the only terms which
should be retained in the expansion, Eq. (21), other than
the zero-order terms, are those proportional to k1, A, ]A,2,
and A, ~A, 3. Terms of the order of A,2 and A, ~A,2 should be
neglected. The former, those of order X2, being propor-
tional to W have consistently been neglected by Leibler,
but the latter, those of order X1A.2, have been retained by
Leibler. This procedure is inconsistent, since by the same
token, terms of order A,

~
should also be retained, terms,

which, however, have been discarded by Leibler (Ref. 1)
on the same grounds as was argued by Luttinger and
K.ohn. 4

Retaining then only terms up to order A, 1, A, 1k2, and
A ]A 3 the effective Hamiltonian matrix (2 1 ) becomes, us-
ing T' and T defined in Eqs. (24),

2

Heff H +~3+ + ++~1 (k k ) Pnn'+(k k )~nk~ kn'+~1 2 g k Pnn"k'Pn"n''(Enn" +En'n" )5k~k'
0 1

m 2m n"

+A, ~A,3 (v„„k—v«k') P«W(k —k')E„„'
m

+A)A2 g[k P„„V„„(1 5n n )(En—n'+e'nk ~„-k)+k' P„„.V„„'(1—5nn )(enkIn k+Enn' ]W(k —k') .
2m (26)

It is possible to eliminate the off-diagonal matrix elements linear in W of Eq. (26) by means of a further transformation
T . The complete canonical transformation now becomes

T=T'+ T'+ T',
where T' and T are given by Eqs. (24) and T3 is defined by the commutator

A2[H, T ]= — [H' T ] [H T'] —X3—[V', T']

(27)

+~14 ~(0) g [Vnn"( 5nn )Pn"n +"Pnn" n "n( 5n"n )] " ' k ~k'
—1

n "~n
(28)

We note that Eq. (28) is quite similar to Leibler's expression for the additional canonical transformation T [Eq. (33) of
Leibler (Ref. 1)]. In fact, if we omit the last term on the right-hand side (RHS) of Eq. (28), it becomes identical with
Leibler s corresponding equation. But because all matrix elements of T must be finite, in fact small, and because the di-
agonal matrix elements of the commutator [H, T ] vanish, the diagonal matrix elements of the RHS of Eq. (28) must
also vanish. But the first two commutators on the RHS of Eq. (28) possess nonvanishing diagonal matrix elements.
They must therefore be subtracted in order to make Eq. (28) consistent. Hence we have the last term on the RHS of Eq.
(28). Performing now the full transformation (27) on the original Hamiltonian defined by Eq. (18), or equivalently per-
forming the transformation T on the effective Hamiltonian (26), removes all off-diagonal elements of order A, ,A, 2 and
A 1A3. It does not remove the off-diagonal elements of order A, 1 and those containing the potential + . But these off-
diagonal elements have been shown to be small by Luttinger and Kohn (Ref. 4) and may be omitted. The final result
of the calculations is then given by the following expression:

(30)

where pnn, defined by Eq. (9), is the a component of the momentum matrix element of band n, and E„„ is given by Eq.
(25b). The vector b„ in turn is given by

Huff = En (kO) + g k~kff+ Y(0)k b„5k k + +(k —k')+ Vnn Y(k —k')1
(29)2 ap mn p

m

Here, k~ signifies the a component of the vector k in a Cartesian coordinate system. The effective-mass tensor (m„) p
of Eq. (29), identical to the Luttinger-Kohn mass tensor (Ref. 4), is defined by

t
1 1 2 1 P5ap+ 2 g Enn'pnnpn'n

n p n'~n
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—1
bn ~ Enn' (unn'pn'n +pnn'un'n )

n'Qn .

(31)

We note that the effective mass, Eq. (30), does not depend on position and represents the effective mass associated with
the Hamiltonian of Eq. (5).

Using Eqs. (20a) and (27), we find that

8 =e A =(1—Ti —T2 T—)A =A

since T&, T2, and T3 are small quantities. Defining the envelope function via

An(k)= I d rF„(r)e

we find with the help of Eq. (29) that F„satisfies the following Schrodinger equation:

1 + U(r)+u«L(r)+ W(0)bn V F„=(E E„)F—„.
2 p ppz~ Ox~Ox p lPl

(32)

(33)

(34)

Finally, the transformation

F„=exp[ —(ilfi)W(0)c„r]G„(r) (35)

W=[f(r) —fo] f d" y*.k,(V, Vg)Q— (38)

Equation (37) differs from Eq. (37) of VR, Ref. 1, only in
the matrix element of V~ —Vz. To be more specific, the
expression of VR corresponding to Eq. (38) above reads

W=[f(r) —fo] J d r an'(r)(uz —u~)a„(r) . (39)

The connection between Vz and uz is given by [see VR
(Ref. 1); Eq. (26)]

V„(r)= g u„(r—R~), (40)
J

where the sum runs over all lattice sites RJ. The connec-
tion between the Bloch functions gnq and the Wannier
functions a„(r) occurring in Eq. (39) is well known to be

gn&=N ' g e 'a„(r—RJ ) (41)
J

with X being the number of unit cells within the quanti-
zation volume.

removes the gradient term, the last term on the left-hand
side of Eq. (34), provided that the vector c„satisfies the
set of equations

c„13 m 'b„——- (36)
P n ~p

and that quadratic terms in W may be neglected. Equa-
tion (36) always has a s'olution, since the matrix of the in-
verse mass tensor is nonsingular and terms of order W
have been neglected throughout. With the definition (12)
and the definitions for L and S given by Eq. (2), G„satis-
fies

1 82
+ U(r)+ W(r) G„

~p ~pg p
~&~~&p

= ( E E„)G„, (3—7)

where 8'is given by

Inserting expressions (40) and (41) into the matrix ele-
ment of Eq. (38), and utilizing the facts that the Wannier
functions are localized about their lattice sites and that
the potential terms uz (r—RJ ) and u~(r —RJ ) also tend to
be large for small arguments, it can easily be shown that
the matrix elements of Eqs. (38) and (39) are identical to
all intents and purposes. Thus we have shown that the
same effective-mass equation is obtained, regardless of the
method employed to derive it.

III. SUMMARY

On the preceding pages we have shown that the
effective-mass equation for semiconductor material pos-
sessing a slowly varying chemical composition, derived
via the method of Luttinger and Kohn is identical with
the effective-mass equation derived via the Wannier-Slater
method [VR (Ref. 1)]. This is in itself not surprising,
were it not for the fact that a previous attempt showed
otherwise [Leibler (Ref. 1)]. However, we have exhibited
in Sec. II a number of errors (retention of higher order
terms inconsistently and incorrect commutator relations)
in that work, which, when corrected, led to the expected
equivalence of the effective-mass equations. Within the
approximations involved, essentially the same as those
discussed by Luttinger and Kohn as well as by Leibler,
the effective-mass tensor is position independent in con-
trast to the findings of Gora and Williams or von Vliet
and Marshak (Ref. 1). But we have shown earlier that
the work of these authors led to ambiguities and must
therefore be rejected. It seems to us that the effective-
mass equation (37) is the correct one within the frame-
work of the underlying approximations.
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