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Domain motion and threshold behavior of charge-density waves
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The relationship between the various computer-simulation theories of charge-density-wave motion
is discussed, and some new simulation results in one and three dimensions are presented, which pro-
vide evidence that the motion near threshold proceeds by domains analogous to the Lee-Rice
domains becoming unstable and jumping rapidly. The consequences of a model based on this pic-
ture are then discussed. This model leads to a threshold field which is different from the Lee-Rice
depinning field (which is argued to be the field necessary to depin a typical domain but not neces-

sarily sufficient to cause sustained motion of the charge-density wave), for strong pinning.

I. INTRODUCTION

In recent years, the realization of Frohlich conductivi-
ty, ' i.e., electrical conduction due to the motion of a
charge-density wave, has been discovered in NbSe3, TaS3,
and several other compounds. Although such systems
are not superconductors (as it was originally thought that
Frohlich conductors would have high conductivity), they
exhibit interesting nonlinear conduction and an interesting
noise spectrum above a well-defined dc threshold electric
field. Theories of Frohlich conduction are of two types:
classical models, in which classical equations of motion of
the charge-density wave are solved, ' and quantum-
mechanical models, " in which a macroscopic chunk of
the charge-density wave tunnels through a potential bar-
rier. Aside from the trivial single-particle classical
model, which can be solved exactly, nontrivial models,
i.e., models in which internal distortions of the charge-
density wave are taken into account, have only been
solved analytically near threshold in mean-field theory
which is valid in four or more dimensions. Far above
threshold, perturbation theory has been done to lowest
two orders in powers of the reciprocal of the applied
field. Even in this order, evidence of nonlinearity has
been found. Fisher has devised a scaling theory based on
this perturbation theo''y and has stressed an analogy of
the threshold behavior of a charge-density wave to critical
phenomena, The only nonperturbative methods valid
near threshold have been computer simulations, done pri-
marily on one-dimensional systems. ' '

Computer simulations have been done on both models
in which a rigid charge-density wave interacts with a dis-
tortable lattice containing random substitutional impuri-
ties ' and on a model based on the Fukuyama-Lee
model, ' in which the lattice is rigid and the charge-
density wave distorts. The two models are shown in Sec.
II to be equivalent, and the question of whether the
charge-density wave or the lattice distorts more is dis-
cussed. Computer simulations performed on both the
one-dimensional and three-dimensional models are report-
ed in Sec. III and give evidence that just above threshold,
motion occurs by Lee-Rice-like domains becoming unsta-
ble and moving, followed by other domains becoming un-

stable at other points in the crystal, etc.
An argument is given to show that in greater than two

dimensions, a model in which the motion occurs adiabati-
cally at slow speed (i.e., by taking an equilibrium configu-
ration solution and translating the origin by Vt, where V
is an average center of mass velocity) will have a zero
dynamical threshold field (i.e., the value of the applied
field below which motion ceases). Since the molecular-
dynamical calculations show that the motion occurs by
nonadiabatic motion, a model based on the unstable
domain picture is used to calculate the dependence of the
threshold field on the impurity potential strength. The
expression found is different from the Lee-Rice field, for
strong pinning.

II. MODELS FOR COMPUTER SIMULATIONS

In this section, the relationships between the various
models for computer simulations of sliding charge-density
waves are discussed. Some computer simulations are
based on discretized versions of the one-dimensional
Fukuyama-Lee model, ' and some are based on a rigid
charge-density-wave model. ' %'e shall see, however,
that the two approaches lead to similar models. The hope
is that one-dimensional models are sufficient to give much
of the physics of the problem.

In the Fukuyama-Lee model, the charge-density wave
is assumed to produce a charge density given by

pocos[gx +P(x)],
where Q is the wave vector of the charge-density wave, po
is the amplitude, which is assumed to be constant, and
P(x) is the phase, which is assumed to vary slowly over a
distance comparable to the range of the impurity poten-
tial. Under these circumstances, if V(x —xJ) is the po-
tential due to an impurity located at site xJ. , the interac-
tion with the impurity is given by

pp f dx V(x —xJ)cos[gx+(P(x)]

=ppu ( Q)cos[gxj +P(xj )], (2)

where U(Q) is the Fourier transform of V(x). To treat
the distortion of the charge density wave, the phase is
treated as an elastic medium. Then, the total energy of
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the system is given by
2

+ g u(Q)cos[Qx+P(x)]5(x —x ) Fx—, (3)

where j is summed over impurity sites, F is an external
field, and a is the force constant. Most models assume
that when the charge-density wave is moving, there is a
damping force due to the excitation of electronic excita-
tions and that this damping force dominates over the in-
ertial term, which is neglected. The justification for this
is that optical experiments show that the zero-wave-vector
phason mode is overdamped. ' Pietronero and Strassler, '

in order to simplify the equations of motion, assume that
the damping force only acts at the impurity positions.
That is, they write their damping-force density as

—y g $(x)5(x —x )

J
(4)

where y is a constant. They obtain the equation of
steady-state motion by setting the damping-force density
plus the negative of the derivative of the energy density
with respect to P(x) equal to zero. This gives

y g P(x)5(x —xj )

J
Q2p= —u —u (Q) g cos[gx +P(xj )]6(x —xj ) .

J

and replacing u(Q) by u(g)cj in Eq. (2), where cj has one
value on an impurity site and a different value on a
nonimpurity site. If we neglect the lattice potential and
consider only the impurity potential, cJ. =1 on an impuri-
ty site and zero otherwise. Then, Eq. (8) becomes

J J(24 —0 +i —0 -i)

cj.sin(gaj +p/)+
u( ) . . Fa
y /ex

(9)

mco=Vs q =
Pl m

(10)

where QJ ——p(ja). Equation (9) is identical to the model
used in Refs. 9 and 10, even though in those references it
was assumed that the charge-density wave was rigid but
the lattice distorted so that the wave could accommodate
the impurities, which is the opposite of what was assumed
in deriving Eq. (9). Therefore, it appears that whether it
is the lattice, the charge-density wave or both which dis-
tort, all the models that have been used in molecular-
dynamical calculations describe all of these possibilities.

Actually, the experimental results of Ong and Maki'
favor a model in which the charge-density wave is quite
rigid, whereas most workers in the field assume that the
lattice is rigid and the wave distorts. In order to deter-
mine which picture is more correct, we will estimate an
effective force constant for the phason mode and compare
it to that for the lattice. This can be done using the work
of Lee, Rice, and Anderson. ' The effective force con-
stant K is defined by

Between impurity sites Eq. (5) reduces to

+F=0,
Bx

I

which is trivially integrated to yield

P(x)= ——x + ———(x +x i)
I F 2 1F
2o. 2a

p(xj ) —$(xj i) x+C

(5)

(6)

where nz and I are the electron mass and the effective
mass for the phason and Vz is the Fermi velocity. Then,
taking

2 2 2
cu =c

M

for the phonons, where M is an ionic mass and c is the
phonon velocity, we obtain

p2
(12)K' g2 M

xJ —xJ

for xj i &x &xJ, where C is an arbitrary constant. If we
integrate Eq. (5) from x~ i+@ to x~+& —e where e is a
small number and substitute for the value of BPIBx using
Eq. (7), we obtain

P(x i) —P(x. ) P(x ) —P(x i)
H'J =+~

xJ —xJxJ+ &
—xJ.

1 F—gu (g)sin[gx, +y(x, )]+——(x, +, —x, , ) .
2 0,'

This is the model first introduced by Teranishi and
Kubo' and is the starting point for Pietronero and
Strassler's calculations. We can also treat the case of sub-
stitutional impurities in a periodic lattice by substituting
ja, where a is the lattice constant, for xJ in Eqs. (2)—(4)

Taking V~ —10 cin/s, c —10 cm/s, and M/I —10 we
obtain

—10K'

which favors the stiff charge-density-wave model.
If we set cj =1, Eq. (9) is just the pure Frankel-

Kontorova model. ' ' As in Ref. 16, it was found useful
to study the lattice dynamics of these models when near
threshold. As in the case of the incommensurate
Frankel-Kontorova model, the 1ow frequency modes will
be found to be highly localized for fields near threshold
and the lowest mode will become unstable. The localiza-
tion length for the lowest frequency modes must be of the
order of the relevant domains in the problem (perhaps the
Lee-Rice domains). In order to study the vibrational
modes we replace P(x) by $0(x)+5/(x) in Eq. (5), where
$0(x) is an equilibrium solution to Eq. (5), and linearize in
5$. Using Eq. (5), we obtain
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y5$(x)5(x —x )

~ Q (25) 5$ +—, 5$—, )
ay ' '+

—Q y 'u (Q)cjcos(Qja +QOJ )5p (14)

Diagonalizing Eq. (14) gives the relaxation mode decay
constants (i.e., the squares of the phonon frequencies).
When one of these decay constants becomes negative (i.e.,
the frequency becomes imaginary), that mode will grow
instead of decaying, signifying the situation in which a
domain becomes depinned.

A natural generalization of Eq. (9) to three dimensions
1s

Pjkl = — (6$jkl —fj + I k, l 4j —1,k, t

0j,k+ 1,! 0'I', k —1,1 fj,k, 1+1 Pj, k, l —1)

u(Q) . . Fa
Qcjklsin(ai a + Pjkl ) +

y
(15)

Here j,k, l label the lattice vectors [i.e., Rjkt=(j, k, l)a],
and t"~kl ——1 only on impurity sites and is zero otherwise.
Although the computational time could be reduced con-
siderably if we generalized Eq. (8) to three dimensions in-
stead, its generalization has a volume instead of a length
multiplying F, and this volume is not easy to determine
for general impurity configurations.

III. COMPUTER-SIMULATION RESULTS
FOR UNSTABLE DOMAINS

In Ref. 9, it was postulated that at threshold for sliding,
a phonon mode in a charge-density-wave system becomes
unstable. Previous computer-simulation results on the
pure incommensurate Frankel-Kontorova model for the
case of a strong sinusoidal potential have shown that such
a picture also holds for this model. ' The unstable pho-
non mode was found to be highly localized. This suggests
a picture of sliding near threshold in which a small local-
ized region of the system becomes unstable and jumps to a
new configuration. Computer simulations will be present-
ed in order to verify that this picture also holds for the
problem of a charge-density wave interacting with impuri-
ties. It appears to be reasonable to associate these unsta-
ble regions with the Lee-Rice domains that have been dis-
cussed by many workers. These calculations were per-
formed for the substitutional impurity model given by Eq.
(9) because the lattice vibrations are then easily deter-
mined using Eq. (14).

The following procedure was used. First the equilibri-
um configuration in zero applied field was determined by

, —Qu (Q) g cjsin[Qx. +Po(xj ) ]5(x —x ) .8 5(p

J

(13)

Applying the procedures in Eqs. (5)—(7) to Eq. (13), we
find

Lp

ca
4m ac

3 au(Q)

2/3

(16)

where c is the impurity concentration. Using the values
for the parameters in the calculations reported here, we
find that the Fukuyama-Lee domain size is about 200 lat-
tice constants. The actual domain size, however, was
found to be about 20 lattice constants, as seen in Fig. 1.
Similar molecular-dynamical runs were also made for
u(Q)/aa equal to 0.1. In this case, the size of the unsta-
ble domain was found to be around 5 lattice constants,
whereas the value found for the Fukuyama-Lee formula
was found to be about 41.6. Thus these domain sizes ap-
pear to be proportional to the Lee-Rice domain sizes, al-
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FIG. 1. The lowest three phonos eigenvectors are shown for
a one-dimensional charge-density-wave model in a 100-atom lat-
tice with 20 random substitutional impurities, for impurity po-
tential V/aa =0.01, and applied field F/a =0.007 85 (just
below threshold). The modes shown have 0, co =0.007 75a; &,
co =0.0124; 4, co =0.0220. The horizontal axis labels the
atoms along the chain.

integrating Eq. (9) numerically, as has been done by the
author in previous work. The external field was then in-
creased to a point just below threshold. After the system
reached an equilibrium configuration for a field just below
the sliding threshold, Eq. (14) was diagonalized to find the
lattice vibrations. As the field approached threshold, the
lowest phonon mode frequencies decreased, and the lowest
mode appeared to drop to zero frequency as threshold was
approached. The lowest phonon mode eigenvectors are
plotted in Fig. 1. It should be noted that the modes are
localized. The degree of localization did not appear to
change significantly as the threshold field was ap-
proached. The occurrence of a localized mode which goes
unstable near threshold is like that found for the pure
Frankel-Kontorova model. ' The field was then raised
slightly above threshold. The motion was found to
proceed by a region whose size was of the order of the
spatial extent of the lowest phonon mode eigenvector,
becoming unstable and jumping to a new configuration.
The process then repeats itself for another region in the
crystal. This is similar to the behavior found previously
except that here the phonon modes were calculated for
comparison. These calculations were performed for a
100-atom lattice containing 20 impurities. The ratio of
the impurity potential to aa in Eq. (9) was taken to be
0.01. If we apply Fukuyama and Lee's formula for the
domain size, we obtain in terms of the notation of this pa-
per
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though the Lee-Rice domain sizes found for their formula
are much larger.

Molecular-dynamical calculations were also done on the
three-dimensional model described by Eq. (15). The sam-
ple size in these runs was 7 & 7 X7 atoms with 120 impuri-
ties distributed at random. As with the one-dimensional
system, the equilibrium configuration in zero field was
first found by integrating Eq. (15). Runs were then made
with an applied field and the field was increased until a
point slightly above threshold was reached. In this run
U(Q)/aa was chosen to be D.6, as smaller values gave
domains which were larger than the sample size. It
should be noted that the three-dimensional system is
much stiffer than the one-dimensional system since for
the one-dimensional system U(Q)/aa equal to D. l gave
domain lengths of the same order of magnitude. This is
expected because the Lee-Rice domain length is propor-
tional to [aa /U (Q) ] ~' "' and hence we expect the
domain length to be much larger for a given value of
v (Q)/ua in three dimensions than in one dimension. The
unstable domain structure found right above threshold in
this three-dimensional calculation is shown in Fig. 2.
Thus the picture of motion occurring by successive local-
ized domains becoming unstable right near threshold ap-
pears to hold in three dimensions. Lattice dynamical cal-
culations were not done for the three-dimensional system.
Since the domains in these calculations are only a few
atoms in size, it is difficult to determine whether the pic-
ture of large well-defined domains found in the one-
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FIG. 2. Domain motion just above threshold for the three-
dimensional model. The second and third atomic layers from
the bottom of a 7&7&7 crystal. The circles denote atomic posi-
tions. The shaded circles are sites at which the charge in the
phase which occurs during a time equal to 0.2 of the decay time
constant y . The direction of the applied field is indicated.

dimensional model for much weaker impurity potential
persists for the three-dimensional case. To ascertain this
it would be necessary to repeat these calculations on much
larger systems for a smaller value of v (Q)/ua.

IV. THE DYNAMICAL THRESHOLD FIELD
AND DOMAIN MOTION NEAR THRESHOLD

In Ref. 9, it was argued that the motion of a charge-
density wave near the threshold for sliding could be
characterized by the occurrence of quasistable vibrational
modes. These modes are unstable, and hence grow ex-
ponentially with time, but the growth exponents are very
small, and hence the system can remain in an unstable
configuration for a long time. The growth exponents
were found to be proportional to the square root of the
difference between the applied field and a threshold field
at which this mode becomes unstable. This result was
then used to argue that the mean charge-density-wave
current should have a square-root dependence on the
difference between the applied and threshold fields for a
finite system. The argument could be applied to a finite
system, where there is only one unstable mode near
threshold, but not for an infinite system where there could
be an infinite number of such modes.

The molecular-dynamical calculations presented in Sec,
III of this paper showed that these modes are highly local-
ized and play the role ascribed to the Lee-Rice domains by .

many of the workers in the field. The calculations also
showed that it was possible for one domain to become un-
stable and jump to a new configuration without the oc-
currence of sustained charge-density-wave motion. For
such a case the unstable domain argument discussed in
the preceding paragraph would not be expected to tell us
anything about sustained charge-density-wave motion.
The threshold field for the instability of a typical domain
should be identified with the Lee-Rice depinmng field.
Thus it appears that there exists another threshold field,
the dynamical threshold field, above which the applied
field does enough work on the charge-density wave to
overcome the energy lost due to the creation of internal
vibrational excitations and the phenomenological
damping-force term in the equations of motion. An ap-
plied field below this value is not able to sustain the
motion.

The treatment of the dynamical threshold field present-
ed here is essentially an extension of the procedure used in
Ref. 17. That is, the mean work per lattice site done by
the external field, F.V, where F is the external field
[which must be equal to Fa in Eq. (15)] and V is the mean
center-of-mass velocity of the system, is set equal to the
mean rate at which work is done by the impurity and/or
lattice potentials in creating internal vibrational excita-
tions of the system and the phenomenological damping
term. Let us transform Eq. (15) to a Galilean reference
frame in which the charge-density-wave center of mass is
stationary on the average (i.e., a frame moving with velo-
city V relative to the old frame). This simply adds a term
—QVt to the argument of the sine and a constant —y V to
the right-hand side of Eq. (15). Then, we have
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T/2F.V= —J T/~ct g (p(R~ t(t)u(Q)CJ, t(, t
j,k, l

&&sin[QI'a+/(RJ t, I)

—Qut] ) +y V, (17)

where ( ) denotes an impurity average and T is some
long time over which the averages are taken. For high-
velocity motion, we neglect ())(RJ t, t) in the argument of
the sine in this equation, and we get a result which is
equivalent to the zero-temperature limit of the result of
Ref. 17 for the frictional force for the case in which the
system is overdamped. [If the damping term were not in-
cluded in Eq. (15) but the inertial term was, we would
have precisely the results of Ref. 17.] The first term on
the right-hand side of Eq. (17) is in this case simply the
rate at which work is done on a collection of overdamped
harmonic oscillators (i.e., the internal vibrations of the
system) by the impurities. Substituting for P from Eq.
(15) and carrying out the averages, we obtain

sine in Eq. (17), the argument of the sine will cease to de-
pend on time as V approaches zero. Since the first term
on the right-hand side of this equation is the work done
on a collection of driven harmonic oscillators (i.e., pho-
nons), the driving term will only be able to excite zero fre-
quency vibrations as V approaches zero. Since in three or
more dimensions the phonon density of states goes to zero
at least as the square of the frequency at zero frequency,
the force F, given by Eq. (17), must vanish as V ap-
proaches zero. Sneddon has presented a solution of the
form of Eq. (20) for the pure Frenkel-Kantorova model,
however. '

To be more precise, if p(r, t) only depends on r and t in
the combination r —Vt, the sine term on the right-hand
side of Eq. (15) can be written as

sin[Q R +())(R~—Vt) —Q Vt]= g/I (k)e
k

(21)

where a denotes the indices j, k, l and /1 (k) is the spatial
Fourier transform of the sine on the left-hand side. Then,
the time Fourier transform of this equation is

F V= —[u(Q)]-0
2 B (co) = g A (k)

~
g.v

k
(22)

V 2
—v Q +~,(k) tyvQ—2 2 2 +@V

(18)

where c is the impurity concentration, and co0(k) is the
frequency of the phonon mode whose polarization is along
Q. Using the Debye model to do the summation over k
in Eq. (18), we obtain

Since the sine term is a finite quantity (at worst it has
step-function-like singularities, as was shown to occur for
the Frenkel-Kontorova model ), A (k) must decay to zero
for large k. Then as V approaches zero, the range of fre-
quencies for which B(co) is large shrinks to zero [because
of the restriction k.V=(o on the summation over k in Eq.
(22)]. If we substitute for (() in Eq. (17) using Eq. (15) and
use Eq. (21) to substitute for the sine terms, we obtain

F c [ Q ] 1/2Q3/2V1/2+y V
32V2 co()

(19) F.~ 3 C [u Ql Jd B( )
1/2 3/2

32 V2
(23)

P(r) =f(r—&t), (20)

where f(r) is the solution to the equilibrium equations for
P for fields just below threshold. The physical reason
why such a solution cannot give a nonzero threshold field
is that if this solution is substituted in the argument of the

where (uc is the Debye frequency for the phonon mode po-
larized along Q. Using the fact that the first term on the
right-hand side is much smaller than the second, we may
solve this equation for V to lowest order in F to obtain
precisely the result found by Sneddon, Cross, and Fisher,
which indicates that their work is equivalent to applying
the methods of Ref. 17 to a system in which the phonons
are overdamped (or at least the long-wavelength ones are).
Since this result gives I'=0 when V=O, implying zero
dynamical threshold field, it cannot be correct near
threshold. Of course, we expect the approximation of
neglecting P in the argument of the sine to break down
near threshold because, as we have seen in Sec. III, (t( can
undergo quite large motion there. Therefore, a way must
be found to include P in the argument of the sine.

It can be shown that an adiabatic approximation' for ()(

cannot be correct because it results in a zero dynamical
threshold field. An adiabatic approximation means that

P(R t) =$0(R )+ g gp(R Rp t —tp )
P

(24)

Since A (k) falls off with increasing k at least as k ' (the
behavior for a step function),

~

B(co)
~

converges when
integrated over all co. Since we have just argued that the
width of B( )(uapproaches zero linearly with V, we find
from Eq. (23) that I' approaches zero as V approaches
zero, implying that dynamical threshold field is zero.

In order to have a nonzero dynamical threshold field,
the system must exhibit local motion which does not cease
in the limit as V approaches zero. A clue to this motion
is given by the molecular-dynamical calculations reported
in this paper and in previous work. They show that
motion just above threshold consists of domains becoming
unstable and jumping to a new configuration, with most
of the system remaining in its original configuration.
This is then followed by another domain jumping to a
new configuration, etc. The local velocities occurring
during such a jump are not extremely rapid, as the term
"jump" would imply, but they do not scale to zero as V
approaches zero, as would occur in the adiabatic approxi-
mation solution. Then, a model suggested by the
molecular-dynamical calculations is the following: Let
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where $0(R ) is the value of the phase before a time inter-
val of length T running from t = —T/2 to T/2 and the
function g approaches zero for

~

R—Rz ~

~ oo. Here a is
short-hand notation for (j,k, l). The g's describe the hop-
ping domains and we take —T/2 & tz & T/2. We will as-
sume that g (R~,R~, t tz) i—s only nonzero for one value
of p, for a given choice of R~ and t. Then we have

fz(R~, R&, t tz—) =sin[Q. R +Pz(Ro)+V Qt

+g~(R, R~, t —t )]
—sin[Q. R~+Q&(R )+Q.Vt],

where

(26)

sin[Q. R~ +Q( R~, t) +Q Vt]

-=sin[Q. R +$0(R )+Q Vt]+ g f~( R, Rz, t —tz),
P

(25)

where

Pq(R~)=go(R~)+ g gp(R, Rp, oo) .
P &P

We will now work out the consequences of this model.
Substituting into Eq. (17) for P from Eq. (17) (and since
we are interested in lowest order in the impurity concen-
tration, we replace c c~ by c5~tt), we obtain

1 T/2 ooF.V= c g ~
U(Q)

~ f dt f dt'sin[Q R +P( R, t) +Q.Vt] G( Ot —t')sin[Q. R +P(R, t') +Q.Vt'], (27)

where G(R —Rz, t t') is the —Green's function of the
system in the absence of the sinusoidal potential and G is
its time derivative. Substituting for the sine term from
Eq. (25), replacing f using its time Fourier transform, and
doing the integrals over t and t' we obtain

F.V= c
(
v(Q)

( g f dcog
) fz(R, R&,co)

~

a P

N ~ ~o«)'+1'~'
(28)

in the large- T limit, where p is summed over. those values
of p for which —T/2&tz & T/2, and where f(R,co) is
the time Fourier transform of Eq. (26), N is the number
of atoms in the system, and coo(k) is the frequency of the
phonon mode polarized along Q. We have assumed in ob-
taining this equation that fz(R, R&,co)fz(R~, R&,co) is
negligible unless p =p' (i.e., the domains do not overlap
significantly) or one of the f's is constant and the other is
varying rapidly. The contribution to Eq. (27) in such a
case is zero since a constant f gives no contribution since
it does not create excitations. Using the Debye model to
do the sum over k, we obtain

F.V= c
i U(Q)

iTX

to another such configuration. During this rapid motion,
the unstable mode moves essentially freely under the ap-
plied field, and hence its velocity scales as F/y. There-
fore, the jump time is proportional to 1/F. Then
(~d/z ) Fd/2 The sum

g f ~
fz(R~, R~, co)

~

de

= g f dt
i fp(R, Rp, t tq) i

—(31)

F.V c
~

U (g)
~

2+1/ZN N Fd/2 —1
1

TS d J (32)

Using the fact that the mean center-of-mass velocity V is
proportional to

we obtain

~

U (g)
~

2y I/2Fa/2 —I

or

over t for which fz is not constant or zero is of the order
of the product of the number of sites in the pth domain,
N~, and the time it takes for the pth domain to jump,
which is -F ' in the large-T limit. Then,

x g g f de
~ f~ (R,R~, co)

~

y'/'cod/',
2/(4 —d) I r ~x ) 4/(4 —d) ]/(4 —d) (34)

d6) P Ra —RP, QP QP
d/2)

f de
i fp(R Rp, co)i—(30)

is 2m divided by the time it takes for a domain to jump
raised to the d/2 power. It is expected that near threshold
the domain will spend most of its time in a long-lived un-
stable configuration and then will move relatively rapidly

p a

where d is the dimensionality of the system. A good esti-
mate for the average

for d&4 and F=O for d &4 [although there exists a
nonzero solution for d&4, it decreases with increasing
U(Q), and hence, is discarded as nonphysical], the thresh-
old field found by Fisher, and earlier by Lee and Rice, in
the weak-coupling limit had the same c and U(Q) depen-
dence. An earlier paper by this author' gave a different
result for F, which is now believed to be erroneous.

Fisher has presented an argument for the existence of a
nonzero threshold field in greater than four dimensions,
where naive scaling theory predicts that it is zero. It is
based on the existence of large but improbable regions in
which the phases are locked together so as to produce a
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great deal of pinning. The arguments presented in this ar-
ticle for the dynamical threshold field, however, will be
applicable even when such strongly pinned regions exist.
This implies the existence of a dynamical threshold field
which is zero but a static threshold field which is nonzero
in greater than four dimensions. Furthermore, even in
three dimensions, the arguments presented in this paper
apply in both the strong and weak pinning regimes and
give the same concentration and potential dependence for
the dynamical threshold field, whereas the static'threshold
field estimated by Lee and Rice has a different depen-
dence in the strong-coupling regime. Then, for sufficient-
ly low impurity concentrations, the dynamical threshold
field could be smaller than the static threshold, implying
the existence of hysteresis effects like those observed in
experiment. In the weak-coupling regime, in fewer than
four dimensions, since both static and dynamical thresh-
old fields have the same dependence on potential strength
and concentration, it is not possible to determine from the
present treatment whether there exists hysteresis in this
regime.

V. CONCLUSEONS

We conclude that at least in greater than two dimen-
sions, charge-density-wave motion just above threshold
must occur by nonadiabatic motion in which localized
domains throughout the system are continually becoming
unstable and jumping to new configurations. It is argued
that if the motion occurred adiabatically, the dynamical
threshold field (i.e., the field below which all motion
ceases) would have to be zero. A model based on the
above localized domain picture is studied. On the basis of
this model, a dynamical threshold field equal to the Lee-
Rice field for the weak coupling is found.
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