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We extend earlier calculations of the temperature dependence of the electronic states at the I
point of Si and Ge to other points of the Brillouin zone. Thus we are able to calculate the tempera-
ture dependence of gaps and critical-point energies: the indirect gap and the E~ and E2 critical
points, as well as the Eo gap of Si and the Eo gap of Ge. Both the Fan self-energy and the Debye-
Waller terms of the electron-phonon interaction are included. The theoretical results, corrected for
the contribution of therma1 expansion to the temperature shifts, show satisfactory agreement with
experimental data.

I. INTRODUCTION

The energy bands of semiconductors, and therefore the
various absorption edges and interband critical points, ex-
hibit large shifts with temperature at constant pressure.
Two effects contribute to these shifts. The first is due to
the thermal expansion of the lattice coupled with the
change of the electron energies with volume. The second
contribution is the direct renormalization of band energies
by electron-phonon interactions. ' The total shift can be
expressed by the derivatives
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where a =L '(BL /BT)z is the thermal-expansion coeffi-
cient and B = —V(Bp/BV)z is the bulk modulus. Hence
the magnitude of the differential thermal-expansion shift
can be calculated by means of experiinental values for a,
B, and (BEg/Bp)7, where care of the fact that a is strong-.
ly dependent on T, and even reverses sign at low T, must
be taken.

This paper presents theoretical calculations of the effect
of the electron-phonon interaction on the temperature
dependence of the bands for several absorption edges.
Two types of electron-phonon interactions must be dis-
tinguished, the Debye-Wailer terms and the "self-energy"
terms. Both terms arise from a perturbative calculation
of the electron self-energy to second order in atomic dis-
placement u. The Debye-Wailer terms are obtained from

the electron-phonon Hamiltonian of second order in u.
The self-energy terms correspond to the first-order
el'ectron-phonon Hamiltonian taken in second-order per-
turbation theory. The coupling constants for the Debye-
Waller terms depend only on the electronic state and not
on the phonon under consideration. They are relatively
easy to evaluate. The self-energy terms are different for
each electronic state and phonon involved. Their evalua-
tion requires tedious numerical integration for all phonons
and all possible electronic intermediate states. This is the
reason why the self-energy terms, proposed earlier by
Fan, have been ignored in most of the existing calcula-
tions of the temperature dependence of the band structure.

In a previous paper, hereafter denoted II, calculations
were performed for the temperature dependence of the
lowest direct gaps of germanium (Eo gap) and silicon (Eo
gap). In the present work we extend these calculations to
transitions along the (111) directions (the Ei critical
points), and the E2 critical points which contain most of
the oscillator strength for interband transitions, as well as
to the indirect gap, the Eo gap of Si, and the Eo gap of
Cxe. The results are compared with experimental values.
For all investigated transitions, with the possible excep-
tion of the E2 gap, which is not weil localized in k space,
we find 'a satisfactory agreement between theory and ex-
periment.

II. THE MODEL

The same method is used as in II. Only the Inost im-
portant ideas are reviewed here. We assume a rigid-ion
model and calculate the band structure with the empirical
local-pseudopotential method. All phonons Q,j
(Q=wave vector, j=branch) contribute to the energy
shift bE),„.

r)Ehn
&Eh„(T)= g [nq (T)+ —,],

Bn~
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where nQ is the occupation number of the phonon mode.
By introducing a temperature-independent electron-
phonon spectral function g F,

g F(k, n;Q)= g 5(Q —co~), (4)
BnQ.

with coQ- the phonon energy, one has

bEk„(T)= J dQg F(k, n;Q)[(e ~ —1) '+ —,'] .

The total contribution to the spectral function from pho-
non Q,j is the sum of the Debye-Wailer (DW) and self-
energy (SE) contributions, given by
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Ek is the electron energy in state k, n Th. e displacements u ( ) are the even and odd combinations of displacement of
the two atoms in the unit cell which are easily obtained from the phonon eigenvectors. The Pth component of I was
evaluated to be

I p(k, n, n';Q)—:$ Ck+Q (6')Ck„(6)(G'—6+Q)pV(6' —6+Q) cos[(6' —G).r]; (8)

ep is the same as I ~, except the cosine is replaced by the
sine. The electronic wave functions Ck„(6) are eigenvec-
tors of the secular equation
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where V(G) is the local-pseudopotential form factor and
S(G) is the structure factor given by S(G)=cos(G r),
with r=ri = —72, Ti and ~2 being the locations of the two
atoms in the primitive cell.

III. NUMERICAL CALCULATIONS

The spectral functions g F(k, n;Q) were computed for
valence- and conduction-band states with the use of the
tetrahedron method. The irreducible 4, th wedge of the
Brillouin zone (BZ) was divided into 228 small tetrahedra
which correspond to a discrete mesh of 89 k points. To
calculate the phonon frequencies and eigenvectors, the
bond-charge —model programs of Weber were used. The
band structure was determined from Eq. (9) using Cohen-
Bergstresser' pseudopotential form factors. Equation (8)
requires knowledge of V(Q) for Q not equal to a
reciprocal-lattice vector G. We tested both extrapolations
shown in Fig. 1 of paper II and found the resulting
bE(T) to differ by less than 2% for the Si Eo gap. All
calculations reported here use the potential Vz of II,
which is extrapolated to V(0) = —2'/3.

In Eq. (6) a sum must be performed over the intermedi-
ate states n'. After some tests concerning the contribu-
tions of higher intermediate states, the sum was restricted
to n'=30 in order to save computer time. Some error is

I

also introduced in the electron-state eigenvectors because
of the truncation of the Hamiltonian matrix to 59 plane
waves. The sum of these truncation errors is estimated to
be less than 5%.

With the present computer program it is possible to cal-
culate the renormalization of band energies by electron-
phonon interaction for electronic states k, n at any point
of the BZ. In order to compare the results with present
experimental data, the calculations were done for several
optical transitions in Si and Ge: the indirect gap
(I 25

—+Li in Ge, I 25 ~0.84X& in Si), the second direct
gap (I 25 —+I iq or Eo gap in Ge, I 25 ~I q or Eo gap in
Si), the Ei gap [transitions A3~Ai between
( 2~/a )( —,, —,, —, ) and (2ir /a ) ( —,', —,, —, ) ], and the E2 gap.
The region where the E2 transitions take place is not very
well defined. We use the points (2m/a)(0. 9,0.1,0.1) for Si
and (2m/a)( —,', —„', ~ ) for Ge as representative points. "

Only for the initial k states at the I point can the Q-
sum in Eq. (4) be restricted to the irreducible wedge of the
BZ. For a general k point the sum can also be carried out
over the irreducible part of the BZ, provided one sums up
the contributions of all vectors in the star of k in order to
obtain g F. For instance, for a k point along the A line,
the Q sum in Eq. (4) was carried out in the —„th wedge of
the BZ for the eight points in the star of

l
k

l [l,l, l] and
added.

For one initial state and one point of a star, the calcula-
tions took about 45 min of central processing unit (CPU)
time on a Honeywell-Bull 66-80P computer. This means
that for a transition along A with three initial states
(twofold-degenerate valence band, onefold-degenerate con-
duction band) and eight points of the star of k, the calcu-
lation took about 18 h of CPU time for one k point along
A.

A problem arose concerning the accuracy of the
electron-energy and eigenvector calculations at k+ Q
points outside the first BZ [Eq. (8)]. The summation in
the secular equation [Eq. (9)] is limited to 59 reciprocal-
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lattice vectors G, which correspond to all (000}, ( 111),
(200), (220), (311), and (222) plane waves. This set
of plane waves is closed with respect to the point-group
operations. At a point k near the zone edge, however, the
set (G+k} is not closed: some operations of the group
of k transform some G+k's into G'+k, where G' has
been truncated away in our original Hamiltonian. As a
result, some of the symmetry-imposed degeneracies at the

I

BZ edge are missing. The errors become larger the larger
the k, particularly outside of the BZ. Since electron-
phonon coupling can take us from inside to outside the
BZ, the problem just discussed can introduce large errors
for phonons of large Q. This problem can be reduced by
bringing all states outside of the first BZ to the first BZ
through addition of a reciprocal-lattice vector G. Hence,
instead of Eq. (8), we use

I gk, n, n';Q) =—g C„& „,(G')C „(G)(G'+G—G+Q)~V(G'+G —G+Q) cos[(G'+G —G) ~j .
O';G

(10)

To check the numerical procedure, tests were performed
as described in II and Ref. 6.

One sensitive check is the direct calculation of the
Debye-Wailer effect. In the secular equation (9) the zero-
temperature structure factor S (CJ) can be replaced by'

'S(G) exp( ——,
~

G
~

(u }), (11)

where (u } is the mean-square displacement of the atom.
By doing band-structure calculations with this
temperature-dependent structure factor, the shifts of the
gaps agree with the result obtained by perturbation theory
within a few percent (e.g., 3%%uo for Si, I'25 state). Further-
more, the electron-phonon selection rules have been tested
for electron transitions from X to 1, L to I, and for one
point on A to I and 5 to 1, respectively. The corre-
sponding selection rules are strictly obeyed.

IV. RESULTS

As an example, for the calculated spectral functions
g F(Q}, two sequences of these functions are shown in
Figs. 1 and 2 for initial states along the A direction of Si,
including those for the I and L points.

The highest valence-band states (Fig. 1) show, with in-
creasing separation from the I' point, an increasing con-
tribution from the acoustic phonons, which remains near-
ly constant from midway to the L point. On the other
hand, the contributions from the high-energy optical pho-
nons which are located in the region around the l point
decrease. This is due to the larger energy denominators in
Eqs. (6) and (7). T' he behavior of the conduction-band
states can be seen in Fig. 2. Here the spectral functions
g F(Q} are negative, except for the acoustic phonons at
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FICx. 1. Spectral functions g2E(Q) for the highest valence-
band state (VB) of Si. A sequence of k points from from L to I
is shown.

I I I I I
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0 (meV)

FICi. 2. Spectral functions g F(0) for the ' lowest
conduction-band state (CB) of Si. A sequence of points from L
to I is shown.
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FIG. 3. (a) Energy shifts of states along the A direction for Si

for a change of temperatur'e from 0 to 600 K due to electron-
phonon interaction. The lines are guides for the eye. ,Dashed
hne: shift for states at the highest valence band (VB). Dotted-
dashed line: shift for states of lowest conduction band (CB).
Solid line: total shift to lower energies of the band gap (Gap).
(b) Zero-point shift EE(0) for Si (in meV). The notation is the
same as in (a).

the I point. With increasing distance from I in the A
direction, this contribution also becomes negative, again
remaining nearly constant from A=O.SL to the L point.
Also, the peak due to the optical phonons decreases.

In order to see the resulting dispersion of the tempera-
ture shift of the states along the A line, Fig. 3 shows the
shift of the valence- and conduction-band states as well as
the total shift of the gap for a change of temperature
chosen to be from 0 to 600 K for Si. These shifts were
obtained by means of Eq. (3) after integration of g F(Q).

Ic II [111]
FIG. 4. (a) Energy shifts of states along the A direction for

Ge for a change of temperature from 0 to 600 K due to
electron-phonon interaction [the notation is explained in Fig.
3(a)]. (b) Zero-point shift of b,E(0) for Ge (in meV). The nota-
tion is the same as in Fig. 3(a).

There is a shift of the energy even at T=O. These zero-
point shifts, however, are subtracted out in Fig. 3(a) and
shown separately in Fig. 3(b).

The valence-band shift in Fig. 3(a) increases very slight-
ly when moving from I towards L. there is, from I to L,
an increasing contribution of the acoustic phonons (Fig. 1)
which is only partially compensated for by the decrease in
the contribution of the optical phonons. The slight nega-
tive conduction-band shift at I becomes more negative
with the increasing negative acoustic part of the spectral
function until about 0.5I.. The resulting negative shift of
the gap shows basically the same k dispersion as that of
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the conduction band. The zero-point shifts of the conduc-
tion and valence band in Fig. 3(b) show only slight
changes along the A line. These shifts AE(0) are propor-
tional to the area under g F(Q): the area under the spec-
tral functions remains nearly constant, although there are
changes in their shapes.

In Fig. 4(a) we show the corresponding results for Ge,
again the shift of the electronic states for a change of tem-
perature from 0 to 600 K. In this case, the shifts show
much less dispersion. However, because of the bowing of
the conduction band between 0.25L, and I, no direct com-
parison to the case of Si can be made (note that the order-
ing of the I 2-I ~s conduction bands reverses from Ge to
Si). The zero-point shifts, displayed in Fig. 4(b), are again
almost constant, but lower in magnitude than those for
silicon. This is, in part, a consequence of the smaller
zero-point vibrational amplitude of germanium which fol-
lows from its higher atomic mass.

The temperature shifts of several selected states in the
BZ, from which some gaps and critical points arise, are
shown in Figs. S and 6 for Si and Ge. These shifts in-
clude Debye-Wailer and self-energy terms, but not the
thermal-expansion effect. The zero-point shift b,E(0) is
proportional to the area under g E(Q); however, in the
high-temperature limit there is a factor 2k&T/fiQ in the
integrand which weights the acoustic phonons more than
the optic ones. Hence, the large shifts of the I zs and 1.3
in Si and Ge, and I 2 in Si, indicate large acoustic phonon
contributions. The 0.84X conduction-band state of Si and
the I ~5 state of Ge show small shifts, but this is due to
the fact that a positive shift by the acoustic phonons is

partly cancelled by a negative shift by the optical pho-
nons.

V. SHIFT OF GAPS AND CRITICAL POINTS

Let us now focus our attention on the temperature shift
of the various gaps and critical points in Si and Ge, and
compare them with present experimental data. As already
mentioned [Eq. (1)], the temperature shift from electron-
phonon interaction and the contribution from thermal ex-
pansion must be added to obtain the total thermal shift.

In Table I the values for the calculation of
(BE/BT),q, ,„~ are listed. The linear thermal-expansion
coefficient is temperature dependent; for the calculation
we used the thermal-expansion data of Ref. 12.

A. Indirect gap

The transitions of the indirect gap take place between
the top of the valence band I 25 and the valleys located at
about k=(2n/a)(0. 84,0,0) for Si and k=(m/a)(1, 1,1) for
Ge. The shifts of these gaps with temperature are shown
in Fig. 7, in the upper part for Si and in the lower for Ge.
The dashed curves give the contribution of the electron-
phonon interaction and the solid curves give that of the
total shifts including thermal-expansion effects. The total
shift of the indirect gap of Si is smaller than the electron-
phonon effect because of the negative pressure coefficient
of the indirect gap. ' The dotted curves are from the ex-
perimental data of MacFarlane et al. , ' ' which were fit-
ted by Thurmond' with the expression first proposed by
Varshnl, '

b E(T)=aT /(T+P) . (12)

~ ~~ ~

~ ~
The experimental data are only available from 0 to 400 K.
The theoretical and experimental values show very good

-0.1
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"0 400 800
T {K}

FIG. 5. Temperature-dependent shift hEq„(T) of states at
the I, L, and 0.84X points of Si. The shifts at T=O originate
from zero-point renormalizations due to electron-phonon in-
teraction.

0 400 800
T {K}

FIG. 6. Temperature-dependent shift BED„(T) of states at
the I and L points of Ge.
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TABLE I. Data for the calculation of the thermal shift of band gapsT
(AE),„, ,„=—3B(BE /Bp) a dT.

Si

0.98
Ep 11.6'

Eind ' —1.6
Ei 5.2"
E 2.9"

T
temperature dependent, a d T

p

'Reference 13.
bReference 12.

B (10" N/m )

(BE/Bp)T (10 eV/bar) I »-I 2

I 2s -0.84X)
A3-A)

Ge

II 2s-I is
I 2s-L i

A3-A )

E
obtained from data of

0.75"
0.8'
4.6'
7.5"
5.6b

Ref. 12.

agreement for Ge. For Si, however, there is a discrepancy
of about 40 meV (25%) in the shift for 400 K.

B. Second direct gaps

The second-lowest gaps correspond to transitions be-
tween I 2q-I 2 in Si and I 25-I &z in Ge. In Fig. 8 the cal-
culated temperature shifts are shown. Only two experi-
mental points are drawn in for Si, measured by electro-
reflectance by Aspnes and Studna' at 4.2 and 1.90 K. At
higher temperatures the Eo structure cannot be resolved
because of the dominating E2 structure, which is close by.
The experimental curve for Ge is from recent measure-
ments by Vina et al. ' obtained by averaging the energies
of the Eo and ED+ho transitions. In this case a very
-good agreement between experiment and theory is ob-
tained.

C. E~ critical points

The total shifts of the E& transitions are taken to be the
average of those for k=(m/2a)(1, 1,1), k=(3m/4a)(1, 1,1),
and k=(n. /a)(1, 1,1). Figure 9 again shows the calculated
electron-phonon shifts and the total shift (electron phonon
plus thermal expansion, solid lines). The two dots are ex-
perimental values for Si from Daunois and Aspnes. The
dotted curve for Si is derived from temperature-dependent
ellipsometric measurements of the optical constants by
Jellison and Modine. ' They labeled the peak near 3.4 eV
in the measured real part of the dielectric function e& as
'Eo and thought it to arise from I z~-I ~5 transitions, while
the peak in e2 was attributed to the E& transitions. Fol-
lowing the current ideas, we believe that both these peaks
arise mainly from transitions of the E~ type: as recently
shown for Ge, ' the Eo structure should be much weaker

0 0

0 -0.1
-0.1

—0.1
O

-0.2

o -0

-0.3

-0 .1

-0
UJ -0.2

0 400
T (K)

SOO 0
a I a I a t a i a

400 800
T (K)

FIG. 7. Shift of the indirect gaps of Si (upper part) and Ge
(lower part) vs temperature. Dashed line: shift due to electron-
phonon interaction. Solid line: total shift, including contribu-
tion of electron-phonon interaction and thermal-expansion ef-
fect. Dotted line: experimental results from Ref. 16.

FIG. 8. Shift of the Ep gap of Si and Ep gap of Ge vs tem-
perature. Dashed line: shift due to electron-phonon interaction.
Solid line: shift due to electron-phonon interaction plus
thermal-expansion effect. Dots: experimental points from Ref.
18. Dotted line: experimental results from Ref. 19.
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-0.1 -0.1

-0.1

-0.3

0 400 800
T (K)

FIG. 9. Shift of the E) gap of Si and Ge vs temperature.
Dashed line: shift due to electron-phonon interaction. Solid
line: shift due to electron-phonon interaction plus thermal-
expansion effect. Dots: experimental points from Ref. 20.
Dotted line: experimental results from Refs. 21 {for Si) and 19
{for Ge).

than the EI counterpart, as follows from phase-space ar-
guments. To obtain the temperature dependence of this
transition, Jellison and Modine plotted the peak position
of the features in el as a function of temperature. The
critical-point energy should not occur exactly at the top of
either peak in e~ or e2. ' ' In the absence of a line-shape
analysis of these peaks, of the type performed in Ge, ' we
assume that the EI critical point is close to the maximum
in eI. This assumption follows from the fact that the
peak in e~ is nearly symmetric, while the corresponding
peak in e2 exhibits considerable asymmetry.

The resulting temperature shift up to about 1000 K was
fitted to Varshni s relation [Eq. (12)]. The shift is even
slightly larger than the calculated shift, another hint that
the experimental peak in e& is more related to an EI criti-
cal point, because the Eo gap in Si shows a much lower
temperature dependence (see II).

For Cze, a good agreement with the experimental results
of Vina et al. ' is obtained. These data were obtained
through careful analysis of the line shape of the critical
point by fitting the second derivative of the dielectric
functions to theoretical line shapes.

D. E2 critical points

The temperature shift of the Ez gaps is shown in Fig.
10. As the representative points for these transitions,
we used k = (2n./a )(0.9,0.1,0.1) for Si, ' and
k=(2m. ja)(0.75,0.25,0.25) for Ge." Again, the dotted

a I a I I I I+ I

400
T (K)

FIG. 10. Shift of the E2 gap of Si and Ge vs temperature.
Dashed line: shift due to electron-phonon interaction. Solid
line: shift due to electron-phonon interaction plus thermal-
expansion effect. Dotted line: experimental results from Refs.
21 {for Si) and 19 {for Ge).

curves show the experimental data. For Si we took, as the
E2 energy, the peak in the imaginary part of the dielectric
function, measured by Jellison and Modine ' and fitted by
the Varshni equation, (12). This peak is more symmetric
than the structure in eI.

For Ge we took advantage of the analysis of the
critical-point energies done by Vina et al. ' These au-
thors found that a two-dimensional critical point yields
the best representation of the E2 structure over the entire
temperature range. Their results are described by the cor-
responding dotted line in Fig. 10.

As seen in Fig. 10, in the case of the E2 transitions
there is a considerable discrepancy between the calculated
and experimental temperature shifts. The relative
discrepancy is particularly large for Si. A better agree-
ment is obtained with experimental data from reflectivity
measurements ' (see Table II), but as already pointed
out, ' shifts and broadenings appear mixed in the tem-
perature coefficient, so that a line-shape analysis should
be more accurate. The fact that this analysis has not been
performed for silicon may explain the corresponding
discrepancy in Fig. 10. A qualitative analysis of Fig. 1 of
Ref. 21 suggests that one may have to reduce the experi-
mental shifts for Si in Fig. 10 by as much as 30%. Some
discrepancy may also result from uncertainties in the loca-
tion of the Ez critical points in k space.

VI. DISCUSSION

It is customary to fit the experimental data on the tem-
perature dependence of gaps with the empirical relation of
Eq. (12), as suggested by Varshni. ' However, it is also
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TABLE II. Linear temperature coefficients of interband transitions in Si and Ge in units of 10 eV/K. {EEg/hT)~ are the cal-
culated contributions from electron-phonon interaction. (EEg/AT)„, is the total shift, including the effect by thermal expansion.
The values are shown for the temperature ranges 200—300 and 600—800 K, and are compared with experimental results.

Si
200—300 K

Calc. Expt.
600—800 K

Calc. Expt.
200—300 K

Calc. Expt.
600—800 K

Calc. Expt.

Eo gap (AEO/hT)~
(EEo/ET)t

—4.0
—4.7

—4.9
—6.2

—3.8
—5.4 —4.2'

—4.2
—6.4 —5.9'

Eo gap ( EEO /b, T)v
(3Eo /hT)„,

—1.5
—1.5

—2.3
—2.4

—2.6
—2.7 —2.4g

—3.0
—3.1 —3.2g

E; d gap (~E;.d/~T)y
(~E;~d/~T)tot

—1.8
—1;7

—2.6
—2.4 —4.3"

—3.6""

—3.4
—4.0

—3.8
—4.6 —4.3"

—45'

E~ gap (AEl/b, T)~
(hE, /hT}„,

—3.0
—3.3 —2.2d

—3.6'

—3.7
—4.3 —4.7'

—3.8
—4.7 —4.2

—5.1g

—4.1
—5.4 —6.3g

E2 gap (AE2/hT)~
( ~E2/~ T)tot

—1.3
—1.5 —2.2d

—3.5'

—1.5
—1.8 —3.8' —4.7~ (2D)'

—4.6g (1D)'
—2.4

—2.7
—3.7 —6.9~ {2D)'

—6.1N' {1D)'

'Data of MacFarlane et al. (Ref. 14) fitted by Varshni (Ref. 17).
Data of MacFarlane et al. (Ref. 14) refitted by Thurmond (Ref. 16).

'Empirical formula by Varshni [Eq. (12)j extrapolated to higher temperatures.
Reference 22.

'Reference 21.
Reference 17.
Reference 19.

"Reference 16.
Assumption of a two- (2D) or one-dimensional (1D) critical point for E2.

possible to fit the data with an expression involving a gap
shift proportional to Bose-Einstein statistical factors for
phonon emission and absorption, as shown in Ref. 19 for
the (80—800)-K range. The only significant difference be-
tween these fits occurs at low temperatures ( T~80 K),
where only few experimental data are available. Accurate
measurements below 80 K, particularly for the E~ gaps,
are desirable in order to check with expression fits better.

With the computer program used for the present calcu-
lations, it is not possible to describe the low-tel. perature
behavior very accurately. At low temperature the only
contribution to the temperature shift is due to low-energy
acoustic phonons. Our mesh, chosen to consist of 89
points in the —„th wedge of the Brillouin zone, is too
coarse, since only few mesh points near I contribute at
low temperatures. Besides, the phonon energies are not
isotropic, so that it is necessary to consider all directions
of the irreducible part of the zone. The first small
tetrahedron, with a corner at the I point, contributes
mainly to the low-temperature behavior. For this
tetrahedron our calculation interpolates between only
three directions of the BZ. This interpolation may not
properly describe the strong anisotropy of the acoustic
phonons near Q =0 in the irreducible part of the zone. In
view of this we believe that our calculations cannot, at

this point, distinguish between the Varshni expression and
the Bose-Einstein temperature dependence used in Ref.
19. However, at higher temperatures the results become
more accurate. In Table II we list the average tempera-
ture coefficients of all investigated gaps of Si and Ge.
These coefficients also depend on temperature —values are
given for temperatures between 200 and 300 K as well as
for 600—800 K. For comparison, the experimental values
are listed. The lowest direct gaps (Ep for Si, Ep for Ge)
have already been treated in II.

The Ep gap of Si is nearly degenerate with the E& gap,
but shows a much lower temperature shift. Despite this
difference, there is no experiment resolving the Ep and E&
transitions at various temperatures.

We should mention that a rising temperature not only
shifts gaps and critical points but also broadens them.
Lorentzian broadening parameters versus temperature
have been recently determined for several interband criti-
cal points of Ge. ' The phonon-induced broadenings arise
from the same mechanism which determines the real parts
of the self-energy. Their evaluation requires a separate
double Brillouin-zone integration (one for intermediate
electronic states and one for phonons). Results of these
calculations and comparison with experimental data will
be published elsewhere.
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