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Statistics of solitons in quarter-filled-band, large- U quasi-one-dimensional crystals
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There is evidence that solitons are created by doping in certain of the quarter-filled-band semicon-
ducting molecular crystals having large Coulomb repulsion for two electrons on the same site-("large
U"). Since, as has been shown for polyacetylene, soliton concentrations depend on the concentra-
tions of band carriers, it is necessary to know the chemical potentials of the solitons to find the elec-
tronic Fermi energy. We derive in this work the relations between soliton chemical potentials and
the Fermi energy for quarter-filled-band, large- U semiconductors and use them to find concentra-
tions of solitons, electrons, and holes as a function of temperature and chemical doping. Numerical
results are presented for parameters appropriate to (N-methylphenazinium)„(phenazine)& „tetra-
cyanoquinoditnethanide [(NMP)„(Phen)i „TCNQ] for x =0.50 (exactly quarter-filled band) and
x =0.54 (4% donor doping). The Fermi energy is found to be twice the chemical potential of the
negatively charged solitons. For doped systems, the Fermi energy decreases approximately linearly
with temperature at low temperatures, with a slope depending on the level of doping. At low tem-
peratures we find also that the number of solitons we'll be less than twice the number of dopant mol-
ecules (their number at T=0 K) due to promotion of electrons from soliton levels to the conduction
band and subsequent soliton recombination.

I. INTRODUCTION

It has been shown for polyacetylene, and should be gen-
erally true for soliton-containing semiconductors, that the
soliton concentration in doped samples depends on the
concentration of electrons in the conduction band or holes
in the valence band. ' As a consequence the Fermi ener-

gy depends on the chemical potentials of the solitons. To
determine the Fermi energy it is therefore necessary to
find the relations between the various chemical potentials
and the dependence of the soliton chemical potentials on
the soliton concentration. These relations, together with
the charge balance or electrical neutrality equation, allow
the determination of carrier concentrations. The various
relations were obtained recently by Conwell for the case of
polyacetylene' and used to determine the carrier concen-
trations for samples of different doping. '

In this work we apply this approach to the quarter-
filled-band, large- U molecular crystals. In these systems,
in the limit U~ oo, the electronic states, while they have
a spin degeneracy of 2, can only be singly occupied. For-
mation of a soliton-antisoliton pair involves removing one
(filled) valence-band state and one (empty) conduction-
band state to the middle of the Peierls band gap. The re-
sulting soliton states have effective charges of +

i
e

i /2,
where e is the charge on the electron; the plus sign corre-
sponds to an empty soliton state, the minus sign to an oc-
cupied one. In contrast, in the polyacetylene case, the
charges are +

i
e

~

and 0. In thermal equilibrium,
(+ i

e
i
/2, —

~

e
i
2) pairs of solitons will be thermally

created. Doping the system with a donor will produce,
at T=0 K, a pair of negatively charged
( —

i
e

i
/2, —

i
e

i
/2) solitons for each electron added (ac-

ceptor doping would produce positively charged pairs).
For T)0 K, the solitons can exchange electrons (or

holes) with the conduction band (or valence band); that is,
an electron can be promoted from a —

i
e

i
/2 soliton to

the conduction band, leaving a +
i

e
i
/2 soliton; likewise,

an electron can drop from the conduction band into an
empty soliton. Thus we can consider electrons, holes, and
positive and negative solitons to be a system of interacting
particles; a free energy F can be written for electrons,
holes, and solitons, and a chemical potential p found for
each type of particle. In Sec. II of the present work we
develop the relations between the various chemical poten-
tials, find the free-energy contribution of the solitons to
the system, and express the soliton concentrations in
terms of the Fermi energy. In Sec. III this information is
used, along with the charge-balance equation, to evaluate
the Fermi energy and carrier concentrations for
parameters appropriate to (N-methylphenazinium)„
(phenazine) t „ tetracyanoquinodimethane [(NMP)„
(Phen)& TCNQ], a quarter-filled-band, large-U com-
pound for which it has been shown that solitons exist.
Conclusions are discussed in Sec. IV.

II. THEORY

In a quarter-filled-band, large-U semiconductor con-
taining electrons, holes, and positive (empty) and negative
(occupied) solitons four types of interaction can take
place: (1) a conduction-band electron may recombine with
a valence-band hole; (2) a positive and a negative soliton
may recombine, releasing phonons; (3) an electron may
drop from the conduction band into a positive soliton,
producing a negative soliton; and (4) a valence-band hole
may occupy a negative-soliton state, producing a positive
soliton (that is, an electron may drop from a negative soli-
ton into an empty valence-band state). Each of these reac-
tions will give rise to a relationship between the chemical
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potentials of the constituents. The condition that the free
energy F must be a minimum in equilibrium (we deal only
with thermal-equilibrium situations) requires that

5F= g 5n; = glJ, ;5n;=0,
871;

where n; is the number of particles of type i involved in a
reaction and p; =(r}F/dn;)

~

r. 1 is the chemical potential
of the ith constituent. The reactions (1)—(4) then yield
the relations

Pn+Pp=0 ~

@++p =0,
Pn+9 =P

Pp+P =P

(2.1)

(2 2)

(2.3)

(2.4)

p~ =2p (2.5a)

I p=2P = —Pn .+ (2.5b)

We see that while, according to Eq. (1), electron- and
hole-chemical potentials are equally spaced on opposite
sides of midgap, the chemical potential of a negative (pos-
itive) soliton is halfway between midgap and the electron
(hole) chemical potential.

To find the soliton concentrations in terms of p+ and
p (and thus in terms of p„) we need an expression for
the free-energy contribution Fs of the solitons to the sys-
tem. We can write

Is =nsEc —kT ln8's (2.6)

where ns —=n++n is the total number of solitons in the
system, the sum of the numbers of positive and negative
solitons, E, is the energy needed to create a soliton, and
Ws is the number of distinct ways of arranging ns soli-
tons, n+ positive and n negative, on a chain. It has
been shown by Rice and Mele that E, =b, /rr for the
quarter-filled-band large-U crystals, where b, is half the
Peierls band gap. This expression for Is neglects the ki-
netic energy of the sohtons, which we take to be small for

The fact that the electron-chemical potential (Fermi ener-
gy) p„ is equal to and opposite in sign to the hole-
chemical potential pz, Eq. (1), also follows directly from
the definition of p;; the energy required to remove an
electron from the system is minus the energy required to
add it. p+ and p are the chemical potentials for positive
and negative solitons, respectively. Note that since the
phonon chemical potential is zero, it does not explicitly
appear in (2.2).

At this point we note also that solitons are produced in
these systems in soliton-antisoliton pairs for topological
reasons. Relations (2.3) and (2.4) could be written for an-
tisolitons (P+,P ) as well as for solitons, and relation
(2.2) must involve one soliton and one antisoliton, i.e., ei-.

ther p++p =0 or p++p =0. Elementary manipula-
tion of these relations, however, shows that P+ =p+ and
P =p, . Therefore we will not subsequently distinguish
chemical potentials of antisolitons from those of solitons.
From Eqs. (2.1)—(2.4) we find that

reasons previously discussed.
In calculating 8's it is necessary to ensure that soliton

(S) and antisoliton (S) alternate on the chain. We consid-
er now what is involved in satisfying this condition. The
Hamiltonian for this case may be written

g Pgg pg g g p( ~C~ ~1+C~ ~1C~ ),
where Q„ is the amplitude of the internal mode (we as-
surne there is only one for simplicity) on the nth molecule
or site, P the coupling constant to the internal mode and
tp the transfer integral, independent of n since dimeriza-
tion is negligible. This system does not have charge con-
jugation symmetry, as does polyacetylene, since a nonvan-
ishing ( Q„},which could result from putting an electron
on a soliton or removing it, adds to the soliton energy.
The result is that the energy levels of S+ and S are no
longer at midgap but separated from it by an energy +5.
We have shown that

~

5 I /kT is small for (NMP)„
(Phen)1 „TCNQ over the important range of tempera-
tures. The wave function of a hole or electron on a soli-
ton may be written

@p
—pa+-) m &,

where
~

m } represents a molecular orbital for a valence
electron on site m. Eval)rating (n ~1

~

H
~ gp), neglect-

ing terms of order tp or Ptp, we obtain the recursion equa-
tion:

+ + + ++5an ~ 1 tp ('1m +urn ~ 2 ) +l3gn ~ lan ~ 1

In this equation pg„+1 may be replaced by the staggered
order parameter ( —1)"+'Pg, which for large n, i.e., far
from the soliton, approaches +h. The soliton solution of
the resulting equation may be taken as that for which
Pg~ —6 as n~ —oo, ~b, as n~oo, the antisoliton
solution that for which Pg —++b as n ~—oo, —b as
n~ao. These solutions clearly differ from those for the
bond-distortion case in that there is no separation of even
and odd terms. ' Thus the amplitude of the wave func-
tion does not vanish on alternate sites as in that case.
Nevertheless, when 5/kT is small and tp/4&1, which
should be true for the materials with which we are con-
cerned, the envelope wave function should be given
reasonably well by the continuum model. Thus the
length of the soliton l may be taken as 4tp/b. in units of
the lattice constant.

To calculate Ws we first determine W„, the number of
ways of arranging ns solitons of length l on the chain
without, of course, permitting overlap. If it takes equal
energy to put either an S or an S on any set of l sites, the
number of ways of arranging the solitons so that S and S
alternate is just 2 W„. This is so because once the sets of
sites are selected, the solitons can be put down in only two
ways: SSSS. . . or SSSS.. . . The number of ways could
be different from 28'„ if, for example, an attractive im-
purity ion opposite a set binds S's, for example, much
more strongly than S's. However, the binding energy Eb
of either S or S to an impurity ion is &300 K for the ma-
terials of concern here because l is fairly large. 9 The
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s=28 8(+—) . (2.7)

difference Eb($) E—b(S) must then be small compared to
kT. In addition to determining 8'„we need to consider
the distribution of charge among the solitons; the possible
number of ways 8'„of arranging nz solitons on a chain is
completely independent of the number of ways, 8'~+
of designating n to be negative and n + to be positive.
Thus we can write

The factor (2)" in W(+ ) results from the fact that an
electron can be put into a soliton state either spin up or
spin down, i.e., that there are two ways of creating a nega-
tive soliton. Substitution of (2.8) and (2.9) into (2.6), along
with E, =A/~, gives us Fz in terms of n+ and n . We
can then find the chemical potentials p+ and p by tak-
'ng (()Es/()n )

I T, v and (()Es/(In )
I T, v, respectively.

Use of Stirling's approximation in evaluating factorials
(we assume that N, n+, n && 1) gives

(N ll)!
ns!(N/l ns)—!

For 8'~+ ) we find

(2.8)

If we designate the number. of sites on a chain by N, we
find that

p =b, /vr+kT ln[n l2(N/l n—s)],

p+ =b /m. +kT ln[n+/(N/l ns)] —.

(2.10)

(2. 1 1)

fns.
W(+ )

——(2)"
(n )!(n + )!

(2.9) The relations p++p =0 and n+=n~ —n can now
be used to find n + and n in terms of n~. We find

n =ns/2+ [(ns /2) 2exp(—25/vrkT—)(N/l —ns) ]'~~ . (2.12)

Whether the + or —sign is applicable depends on whether the system in question is donor or acceptor doped. In either
case, n+ is found by taking the opposite sign. For a donor-doped crystal we know that n & n+, so the + sign pertains
to n, the —sign to n . If the crystal is undoped, i.e., if there are thermal solitons only, we know that
n+=n =ns'/2 where ns' is the number of solitons in an undoped crystal. We find this number by equating to zero
the root in (2.12); this gives

ns'/N =(1/l)[l+(1/2M2)e " ]
From (2.10) we know that

n =2(N/l —ns) exp[(p —5/~)/kT] .

(2.13)

(2.14)

(2.15)

This e~p~ession can be equated to (2.12) to find the relation between ns and p for donor-doped (or undoped) crystals:

ns/N =(1/l) t 1+—,exp[(p +6/m)/kT]/[ —, +exp(2p /kT)] J

Comparison with (2.13) for undoped crystals shows that
for the undoped case we must have p = —(kT/2)ln2 rel-
ative to the zero of energy at midgap. From (2.5a) this
implies an electronic Fermi energy p„=—kT ln2. This is
the Fermi energy of an undoped quarter-filled-band
large-U system in the absence of solitons;" as would be
expected, the generation of thermal solitons alone does not
affect the Fermi energy. The use of (2.14) and (2.15) now
permits us to find n in terms of p„alone. The result is

n /N=(1/l)[1+ —,
'

exp( —p„/kT)]

and for n+,

+exp[( 5/m —p„ /2) /k T] (2.16)

n+/N =(1/l)[1+2 exp(p„/kT)]
+exp[(Elm. +p„/2) lkT]
=(n /2N) exp( —p„/kT) . (2.17)

To actually calculate n /N and n+/N for a given
crystal, we need the charge-balance equation. For a
quarter-filled-band large- U crystal with a donor doping of
(N~ electrons)/(lattice constant), charge neutrahty can be

expressed as'

p„+Nd+(n +n+)/2N. =n, +n /N, (2.18)

III. ILLUSTRATIVE NUMERICAL RESULTS

We have used (2.18), with n /N and n+/N given by
(2.16 and (2.17) to calculate electronic Fermi energies and
carrier concentrations for (NMP)„(Phen)& „TCNQ, for
x =0.50 (an exactly quarter-filled band) and for x =0.54
[4% doping, or N~ ——0.04 in (2.18)]. Band electron and
hole concentrations in (2.18) are taken from

where p, and n, are the valence-band hole and con-
duction-band electron concentrations (per lattice con-
stant), respectively. The left-hand side of (2.18) is simply
the total concentration of electrons available for distribu-
tion in the system, since (n +n+)l2N reflects the fact
that one electron (and its electron state) is removed from
the valence band for each pair of solitons created. The
right-hand side of (2.18) expresses the fact that these elec-
trons are distributed on the conduction band and the neg-
atively charged soliton states.
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and

n, =( I/n. ) f fq+d(qa) (3.1)
500

400

m/2

p, =(1/m) f (1 f» —)d(qa),

where

(3.2)
&- 500
CQ
CL'
UJR~ 200
Z
CL
LLI

IOO

fq =
t 1+—,exp[(Eq——p„)lkT] I

and

0 I I 1

IOO I50 200 250 500
TEMPERATURE (K)

Eq =+[(2t) cos (qa)+5 ] ~

(Ref. 7). Here a is the lattice constant, q is the wave vec-
tor, and the bandwidth 4t=4500 K for (NMP)„
(Phen) ~ „TCNQ. The factor —,

' in the distribution func-
tion fq is a manifestation of the doubly spin degenerate
but "singly-occupiable" nature of the electronic states in
large- U systems.

Results of the numerical calculations of n /N, n+/N,
n„and p„ for thermal solitons only (x =0.50) are shown
in Fig. 1. For the undoped case, of course, n, =p, and
n /N=n+/N at all temperatures. Since the numerical
calculations are intended to be illustrative, rather than ex-
act, we have simplified them by keeping a fixed gap of
26=1800 K at all temperatures. The thermal-soliton
concentration is large relative to the band-carrier concen-
tration due to the difference between the creation energy
25/n. for a SS pair and the energy 2b, needed to excite an
electron-hole pair. At 300 K, for instance, ns/N=10
while n, +p„=10 carriers per lattice site. Note that,
according to (2.13), the total soliton concentration ( nz/N)
is increasing at all temperatures, going to a limiting value
of -(1.36l) ' as T~ ao, if the gap is held constant with

FIG. 2. Calculated electronic Fermi energies p„(nq ——2Nd)
and p„ for (NMP)o 54(Phen)o46TCNQ, for different statistics.
Taking the solitons to be 2Nd ordinary impurity states at
midgap leads to p„(n~ ——2Nd ) (dashed curve}; the correct soliton
statistics give p„(solid line) of Eqs. (2.5a) and (2.6). Parameters
of the calculation are 4t =4500 K and 6=710 K.

temperature. If 4 were allowed to decrease with increas-,
ing temperature (thus increasing band-carrier concentra-
tion), however, as would happen in a physical system, I
would increase with temperature, and we would find a
maximum in ns/N for some finite temperature.

If we now consider (NMP)o 5q(Phen)046TCNQ, with
4% donor doping [that is, (0.08 solitons)/(lattice constant)
at T=O K], we find the results in Figs. 2 and 3. For
these calculations the same parameters were used as for
the undoped system, except that 5 was held constant at
710 instead of 900 K. This is a consequence of earlier
work showing that b, is reduced to this value from 900 K
by the free-energy contribution of (0.08 solitons)/(lattice
site) at T =0 K. Figure 2 shows the electron Fermi ener-

gy versus temperature that results from the present statis-
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FICx. 1. Calculated carrier concentrations vs temperature for
the case (NMP)o ~0(Phen)o, oTCNQ {exactly quarter-filled band,
thermal solitons only). Parameters are 4t =4500 K, b, =900 K.
The gap is held constant with temperature.

FICx. 3. Carrier concentrations vs temperature calculated for
(NMP)o 54(Phen}o 46TCNQ (4% donor doping). Parameters are
4t =4500 K and 6=710 K; the gap is kept constant with tem-
perature.
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ties. It also shows, for comparison, the Fermi energy
p„(ns ——2N~) that would result from the usual semicon-
ductor statistics if the soliton level. s were regarded as ordi-
nary impurity levels, fixed at 2Nd in number. It will be
shown shortly that, as anticipated, under the correct
statistics nz does not remain constant at 2%d. Consider
first the behavior of the Fermi energy for temperatures
low enough that holes and positive solitons may be
neglected. For a semiconductor with 2%d midgap levels
the charge neutrality equation is

n=2Nd[1 —f (0)] .

To obtain n as an explicit function of p„we integrate Eq.
(3.1) for the Maxwell-Boltzmann limit with kT &&b. and
f in the form appropriate for large U. This leads to

p„(n~ 2')~=6/2+(kT/2) In[Nd/(kTb/2~t a )'~ ]

as T~OK
after elimination of the effective mass m' from the one-
dimensional density of states by means of m
=A 6/4t a The .correct p„ for the low-temperature
limit may be obtained from Eq. (2.10) with n =nz
=2%d. This leads to

p ~23 /m+2kT ln[Nd/(N/l 2Nd )] a—s T~O K .

In agreement with these equations, it is seen in Fig. 2 that
the correct p, „goes to 25/m. at T=0, while p„(nz ——2Nd )

goes to 5/2 at T=O. As T increases from 0, the latter
p„ increases when (kTb/2mt a )' &Nd, which is for
T &2.7 K for the present case, and then decreases. The
correct p decreases monotonically for Nd &N/3l. It is
seen that except for temperatures T (100 K, the correct
p„ lies below p„(ns ——

2Nd ), with the result that there are
fewer band carriers in the correct case. At the higher
temperatures, the slope versus temperature of the Fermi
energy tends toward —k ln2; the numbers of positive and
negative solitons approach each other, and the situation
"looks" to some extent like the case of thermal solitons
only, for which dp„/d T= —k ln2.

Carrier concentrations for the 4%-donor-doped case are
shown iri Fig. 3. The positive-soliton concentration begins
to become comparable to the negative-soliton concentra-
tion above T—150 K. The negative-soliton concentration
decreases continuously from its T=0 value of n /N
=0.08, while concentrations of positive solitons, elec-
trons, and holes are still rising at room temperature. The
presence of extra electrons in the system drives the Fermi
energy above midgap (at temperatures (350 K) and
causes the band-electron concentration to far exceed the
band-hole concentration. At 100 K, for instance, there
are —2400 times as many electrons as holes. For low
temperatures, the very low concentrations of band holes
versus band electrons and of positive solitons compared to

negative solitons mean that the charge-balance equation
(2.14) can be written as

n /X=2%~ —2n, . (3.3)

Thus the soliton concentration will be less than 2' at
low temperatures; for every electron entering the conduc-
tion band, two soliton states, one positive and one nega-
tive, recombine and are destroyed. The analogous process
has been noted by Conwell' in (CH)„; there two solitons
recombine for every pair of electrons put into the conduc-
tion band.

IV. CONCLUSIONS

Consideration of the possible interactions between posi-
tively and negatively charged solitons, and conduction-
band electrons and valence-band holes in a quarter-filled-
band, large-U system, gives rise to a set of relations be-
tween the chemical potentials of these particles. Expres-
sions for the chemical potentials of the solitons can be de-
rived from an analysis of the possible number of arrange-
ments of a set of positively and negatively charged soli-
tons of finite length on a chain. Using these chemical po-
tentials and the charge-balance equation, we can find the
Fermi energy and carrier concentrations. %'e find the fol-
lowing to be true:

(1) The electronic Fermi energy is twice the chemical
potential of the negatively charged solitons, and the chem-
ical potential of the positive solitons is minus that of the
negative solitons.

(2) In the absence of chemical doping but in the pres-
ence of a thermal-equilibrium soliton population, the Fer-
mi energy is —kTln2; in the presence of donor doping,
the Fermi energy is 2b, /~ at T=0 K and decreases linear-
ly with temperature as -2kTln[Ndl(N/l —2N~)] for
low temperatures. At higher temperatures (such that the
concentration of positive solitons becomes significant
compared to the concentration of negative solitons) the
Fermi energy is also linear with temperature, with a slope
approaching —k ln2.

(3) For low temperatures, such that almost all solitons
are filled, the charge-balance relation becomes
n =2Nd 2n„ for—every electron that goes to the con-
duction band, two solitons are lost. Thus the number of
solitons will be somewhat less than twice the number of
dopants at very low temperatures.

(4) In donor-doped crystals, the fact that the Fermi en-
ergy lies below what we would expect for "ordinary"
midgap impurity states leads to a lower-band electron
concentration at temperatures above —150 K. Concentra-
tions of solitons are considerably higher than band-carrier
concentrations (even in undoped systems) over a wide
temperature range.
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