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In tight-binding theory, the electron-electron interaction enters (1) through an intra-atomic repul-
sion U, which is tabulated for nontransition elements, (2) through an interatomic repulsion e /d,
and (3) through relaxation effects, which are included through a dielectric constant e. For self-
consistent band-structure calculations an effective repulsion U*= U —ae /d, with a the Madelung
constant, enters. For semiconductors, U is ordinarily less than zero, suggesting that Coulomb
shifts should be neglected. In insulators, U is small compared with U, but not negligible. The
photothreshold in covalent solids is predicted to be reduced, in comparison to the tight-binding
valence-band maximum, by U/2 because of dielectric relaxation. The band gap is predicted to be

enhanced, in comparison to tight-binding theory (or density-functional theory) by U/e. Both pre-
dictions are in rough accord with experiment. Similar shifts are expected for ionic crystals. The
cohesive energy is predicted to be given by the change in the eigenvalues of occupied states, but re-

duced in homopolar covalent solids by U*/(2e) (with a Madelung constant a of unity for this

correction). In alkali halides the cohesion is reduced, in comparison to the difference in alkali and

halogen free-atom electron energies, by U* (with the halogen U and the crystalline Madelung con-

stant). In the divalent compounds the cohesion is predicted to be reduced, in comparison to twice
the difference in free-atom energy levels, by 3 times the corresponding U . The intra-atomic repul-

sion can also lead to formation of a correlated state, as in the Mott transition. This is treated in the
unrestricted Hartree-Fock approximation. A condition on the ratio of the appropriate U* and the
interatomic level coupling V is obtained for the formation of the correlated state, that (U*/V)
exceed 4 times the number of coupled nearest neighbors. This is applied also to the ideal silicon

(111) surface, confirming that it should be antiferromagnetic. The prevention of buckling of this

surface by Coulomb effects is also discussed.

I. COULOMB INTERACTIONS
IN TIGHT-BINDING THEORY

The conceptual basis of tight-binding theory is the ex-
pansion of the electronic states in terms of atomic orbitals

~

i ); in terms of these the Hamiltonian may be written in
second-quantized notation as

0= g e(ct c(+ g V;,c; c(+ Q Ultk(c; c(ckc( . (1)
i,j,k, l

A. One-electron parameters (Refs. 1 and 2)

Neglect of the final sum (or its approximate inclusion
in the first sum) corresponds to a one-electron approxima-
tion; the c.; are atomic-state energies, which we take to be
free-atom Hartree-Fock term values, and which are listed
in Table I; to the extent that we can neglect the change in
atomic orbitals when an electron is removed (neglect. re-
laxation), these are the Hartree-Fock predictions of the
free-atom ionization energies.

The VJ are matrix elements between states on neigh-
boring atoms. For these we use universal tight-binding
matrix elements given by

~ll'm Oil'mih ~ nd 2

for nearest neighbors in the solid with 1, I', and m the ap-
propriate angular-momentum quantum numbers. This
was derived by accommodating the free-electron and

tight-binding theory of semiconductors. The geometrical
values of s1(( ~ so obtained were adjusted slightly to fit the
resulting energy bands of germanium, and taken as
universal. The values q„, q,z, g~~, and qz~ equal to
—1.32, 1.42, 2.22, and —0.63, respectively, result. We
shall find shifts in the conduction bands relative to the
valence bands due to the repulsion U, and, to be fully con-
sistent, these should have been subtracted from the ger-
manium bands before fitting, but they are sufficiently
small (0.47 eV) and the universal parameters sufficiently
crude that it is not serious.

B. Electron-electron interactions

The central purpose of the present study is to include
the final sum appearing in Eq. (1), representing the
Coulomb interaction between electrons, approximately in
the theory. This sum includes terms corresponding to a
variety of different physical effects; it will be convenient
to enumerate them at the outset and see how we may
reasonably treat them.

We consider the variety of terms in which all coeffi-
cients i, j, k, and I correspond to states on the same atom.
First, there are the terms with i =j =k =I, which are ex-
actly cancelled by exchange terms in the atomic Hartree-
Fock theory which led to the e( in Eq. (1). Second, there
are terms with i =j and k =1, but j&k. These contribute
to the potential usmc in calculating the s( and sj. (There
are also corresponding exchange terms i =1 and k =j
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TABLE I. Hartree-Fock term values for valence levels (Ref. 3). First entry is —e,, and second is —c~ (values in parentheses are
highest core level). The third entry is U, as determined in the Appendix. All values in eV.

IV VI VII VIII IX X

2He

24.98 5.34

8.17

4Be

8.42
5.81'

10.25

sB

13.46
8.43

10.26

6C

19.38
11.07
11.76

26.22
13.84
13.15

gO

34.02
16.77
14.47

9F

42.79
19.87
15.75

ipNe

52.53
23.14
17.00

iiNa

4.96
(41.31}

6.17

i2Mg

6.89
3 79'
7.28

i3Al

10.71
5.71
6.63

i4Si

14.79
7.59
7.64

is&

19.22
9.54
8.57

16S

24.02
11.60
9.45

i7Cl

29.20
13.78
10.30

isAr

34.76
16.08
11.12

19K.

4.01
(25.97)

5.56

2oCa

5.32
(36.48)

6.40

6.49
3.31'
7.07

3pZn

7.96
3 98'
7.83

3iGa

11.55
5.67
6.61

32Ge

15.16
7.33
7.51

33As

-18.92
8.98
8.31

34Se

22.86
10.68
9.07

3sBr

27.01
12.44
9.78

31.37
14.26
10.48

37Rb

3.75
(22.04)

5.02

3sSr

4.86
(29.88)

5.71

5.99
3 29'
6.34

4gCd

7.21
3.89'
6.95

49In

10.14
5.37
6.00

sosn

13.04
6.76
6.73

siSb

16.03
8.14
7.39

szTe

19.12
9.54
8.00

22.34
10.97
8.58

s4Xe

25.70
12.44
9.13

ssCs

3.37
(18.60)

5.05

s6Ba

4.29
(24.60)

5.70

79Au

6.01
3.31'
6.75

gpHg

7.10
3 83'
7.33

siTl

9.83
5.24
6.30

g2Pb

12.49
6.53
7.03

g38i

15.19
7.79
7.68

s4Po

17.97
9.05
8.28

ssAt

20.83
10.34
8.85

g6Rn

23;78
11.65
9.39

svFr

3.21
(17.10)

4.93

ssRa

4.05
(22.31)

5.54

' Values extrapolated from surrounding values.

which contribute to the potential. ) If the same states were
occupied in the solid as in the atom, these would already
be included. If, an the other hand, there was an addition-
al occupied state in the solid (e.g., in a negative Cl ion),
there is an additional shift in the eigenvalues, which we
may write as UJ. This is the change in the energy eigen-
value for a second electron when the first is added; this
corresponds to the Hartree-Fock prediction (again with
the neglect of relaxation) of the difference between the
first and second ionization potentials (or the. difference be-
tween the electron affinity and the first ionization poten-
tial). Again with the neglect of relaxation corrections,
this becomes the Coulomb repulsion between electrons in
the twa orbitals (minus the exchange attraction). To a
reasonable approximation (see the Appendix) it can be
taken as the same for all pairs of valence states on the
atom. Then we may write it as U and call it the intra-
atomic Coulomb repuls&on. This is the central parameter
of our analysis here. We have provided a systematic set
for the sp-configuration atoms as described in the Appen-
dix, and included them in Table I.

There are also terms with i =j, k&l, etc. which are not
included in Haitree-Fock theory; they would modify both

the free-atom energies and the ionization potentials, but
are appropriately dropped here.

There are also terms involving states on different
atoms. First, there are terms with i =j on one atom and
k =l on another. This is the inter-atomic Coulomb repul-
sion, the shift in the energy of a state on one atom due to
the presence of an electron on the other. To the extent
that the states are spherically symmetric and nonoverlap-
ping, it is related to the internuclear distance d by e /d,
and we make this approximation. If all neighboring
atoms are neutral, these terms are cancelled by the poten-
tial from the corresponding nuclear charge. We will be
interested here, then, only in corrections for chargai
atoms.

It will frequently be convenient to combine these
corrections with the intra-atomic Coulomb repulsion. U
was defined to represent the shift in the energy of an elec-
tronic state on an atom as another electron is brought to
the atom from an infinite distance away. In most applica-
tions we will be interested in the shift as other electrons
are moved from the neighborhood to the atom in ques-
tion, and the net shift will be written as an effective
Coulomb repulsion U*. For example, the shift in energy
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of an atomic state on one member of a diatomic molecule
due to the shift of another electron from the second atom
a distance d away to the first would be U' = U —e /d.

There are also terms with i&j on one atom and k =l
on the other. These give rise to the distortion of the
charge on the first atom due to a charge on the other.
This is essentially a dielectric relaxation, and in most
cases in the solid it will be included using a static dielec-
tric constant e. In particular, we may think of the atomic
state to which an electron is added as a spherical shell of
radius r,z defined so that U =e /r, q since the electrostat-
ic repulsion between two such charged shells would be
this U. The potential arising from such a shell, in the ab-
sence of dielectric relaxation is, of course, e /r outside the
shell, but, with relaxation of the dielectric outside, the po-
tential becomes e /er and a constant e /er, q inside. We
may calculate the total energy of this relaxed state by, for
example, calculating the work done in adding the charge
by infinitesimal increments, requiring a total amount of
work e /2er, s This . is less than the work required if
there were no dielectric medium by what we may call the
relaxation energy,

E„i,„——U(e —1)/2e . (3)

Such corrections are quite important in semiconducting
systems. Note that they come from the relaxation of the
bonds outside the region of the two interacting electrons.

Finally, there are terms with i&j on one atom and k&l
on another. These include the dipole-dipole terms which
give rise to the van der Waals interaction between atoms
which will not be important here and will be neglected.
There are also terms, when the atoms overlap each other,
with a single state on one atom and the other three on
another, or states on three or four atoms, but these will all
be neglected here.

C. The re1ation to density-functional theory

Contemporary theory of the electronic structure of
solids is almost universally based upon density-functional
theory, and, in particular, on some local-density approxi-
mation to it, principally for computational reasons. For
tight-binding theory these computational reasons do not
exist and we have chosen to base the formulation on the
Hartree-Pock approximation. The most important dis-
tinction can be seen in the ionization of a neutral atom.
In Hartree-Pock theory we have seen that in the absence
of relaxation the ionization energy equals the Hartree-
Fock term value. In local-density theory the electron is
removed continuously and at each stage the derivative of
the energy with respect to change in occupation is equal
to the eigenvalue at that stage; the ionization energy is ap-
proximately equal to the average of the eigenvalues ob-
tained before and after the removal of the electron; this is
called a transition state eigenvalue -It will be. very useful
conceptually to use eigenvalues which can be identified
with the atomic ionization energy; atomic transition-state
energies would presumably have served as well as the
values in Table I that we use.

There is a second important distinction between our
treatment of the solid and that of density-functional or

II. SELF-CONSISTENCY IN TIGHT-BINDING
ENERGY BANDS

In universal parameter theory the bands were obtained
using free-atom term values from Table I. In a polar
semiconductor such as GaAs -we may expect charge to be
transferred from the gallium to the arsenic atom, shifting
the values that we use. We consider this problem first.

Placing a fractional number 5Z of additional electrons
on an arsenic atom increases the energy of other electrons
there by U5Z, but when this is simultaneously done for
all arsenic atoms with that charge all being taken from
the gallium atoms, there is a reduction in energy due to
the charge on all neighboring atoms given by the
Madelung energy, —ae /d, where a is the Madelung con-
stant, equal to 1.64 for the zinc-blende structure. Thus
for this problem the shift is U* 5Z, with

U'=U —ae /d . (4)

Such a formula applies to both the gallium and arsenic
shifts, using the appropriate U from Table I; the 5Z's in
this case are equal and opposite.

A. Polar semiconductors
0

For gallium arsenide, with d =2.45 A, the second term
is 9.64 eV, greater than the U value for arsenic (or for gal-
lium) from Table I, giving a negative U .

Taken literally, this would mean that transferring elec-
trons to the arsenic levels would lower their energy still

Hartree-Fock theory. In either of these theories an elec-
tron state in the solid is represented by a wave function
distributed over all of the atoms in the system so that the
removal of one electron from the system causes a negligi-
ble shift in the energies of the others and there is negligi-
ble relaxation. This leads to Koopmans's theorem: In
Hartree-Fock theory the electronic eigenvalues are equal to
the predicted energy it takes to remove an electron from, or
add an electron to, the solid.

This theorem would clearly be inappropriate if the
"solid" consisted of atoms with negligible coupling be-
tween their atomic orbitals. For an array of silicon atoms,
the energy gain in adding an electron to a 3p state (the
electron affinity) is greater than that in removing one
from a 3p state (the ionization energy) by U, equal to 7.64
eV according to Table I. (We neglect, for the moment, re-
laxation. ) The removal energy is to be identified with the
Hartree-Pock s~ of Table I, but the electron affinity is
not. Density-functional theory can lead to a similar un-
physical result. We shall see that it is natural and con-
venient to include the Coulomb repulsion U in tight-
binding theory, although it is not so easy in full band
theory, whether it be of Hartree-Fock or density-
functional type. We shall also need to include the effects
of relaxation, which is accomplished with the use of Eq.
(3).

The physics of these contributions —intra atomic an-d

inter atomic -repulsion, and dielectric relax'ation is quite—
clear in the tight-binding context. Their effects provide
the subject of this paper.
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further, an unstable situation in which the atoms would be
completely ionized. In fact, the meaning is that the atom-
ic states overlap each other so much that the Madelung
calculation (which assumes nonoverlapping spherical
atomic densities) is not applicable. We take this to mean
that when U" is found to be negative, Coulomb shifts in the
levels are to be neglected T.hus the use of atomic term
values from Table I was appropriate in the calculation of
bands for covalent semiconductors, as was confirmed
empirically by studies of the known bands. The present
study confirms that use of free-atom Hartree-Fock term
values is appropriate for the tight-binding calculation of
energy bands in semiconductors.

TABLE II. Band gaps for the alkali halides (M'X ") in eV.
The first entry was obtained as e, (M) —c~(X) from Table I. Ex-
perimental values (Ref. 7) are in parentheses. The third entry is
U; a complete transfer of an electron to X should decrease the
estimate (first entry) by U .

3Li

gF

14.5
(13.6)

3.2

i7C1

8.4
(9.4)
0.5

358r

7.1

(7.6)
0.6

s3I

5.6

0.7

)(Na 14.9
(11.6)

4.9

8.8
(8.5)
1.3

7.5
(7.5)
1.4

6.0

1.4

19K. 15.9
(10.7)

6.4

9.8
(8.4)
2.3

8.4
(7.4)
2.1

7.0
(6.0)
2.1

37Rb 16.1
(10.3)

6.8

10.0
(8.2)
2.6

8.7
{7.4)
2.5

7.2
(6.1)
2.3

B. Ionic crystals

The Madelung constant a equals 1.75 for ionic crystals
in the rocksalt structure, and, with d =2.82 A for NaC1,
the second term in Eq. (4) becomes 8.94 eV. From Table I
we see that for sodium the first term is considerably less
than this; U should be taken as zero and the free-atom
term value is appropriate. This will generally be true for
the metallic atoms in ionic crystals. However, for
chlorine the first term is 10.31 eV. Again, the two very
nearly cancel, with a sufficiently small difference (1.37
eV) that meaningful bands can be obtained for ionic crys-
tals using free-atom term values, as we found earlier. '

The difference, however, is not negative nor zero, so we

may ask if inclusion of U might not improve the
predicted bands in ionic -crystals. In the simplest tight-
binding description of the bands, ' only s states on the
metal and p states on the nonmetal are included, and the
minimum band gap occurs at the center of the Brillouin
zone. The symmetry is sufficiently high that the bands at

TABLE III. Band gaps for divalent ionic compounds
(A "S ') in eV, predicted as for Table II. Experimental values
are in parentheses (Ref. 8). The third value is U from Eq. (2),
the band-gap decrease for transfer of a single electron.

)2Mg

sO

9.8
(7.8)
2.5

4.7

—0.2

34Se

3.8
(5.6}

—0.2

52Te

2.7
(4.7)

20Ca 11.4
(7.7)
4.0

6.3
(5.8)
0.6

5.4
(4.9}
0.5

4.2
(4.1)
0.6

38Sr 11.9
(5.8)
4.7

6.8
(4.8)
1.3

5.8
{44)
1.0

4.7
(3.7)
0.8

56Ba 12.4
(5.1)
5.3

7.3
(3.9)
1.6

6.4
(3.6}
1.4

5.3
(3.4)
1.3

that point become purely p- or s-like, and with only
nearest-neighbor coupling the band gap becomes simply
the difference between the nonmetallic p-state and metal-
lic s-state energies from Table I. This was noted earlier'
and the gaps predicted in this way were found to be in
reasonable accord with experiment, 7 as seen from Table
II.

We may now correct these values using the values of
U obtained from Eq. (4) and U values for the nonmetal-
lic ion from Table I. U* is obtained immediately for each
compound and is listed as the final entry in Table II. If a
full electron was transferred from the alkali metal to the
halogen, the gap should simply be reduced by U*. The
observed gaps are, in fact, smaller than the difference in
term values (except for LiC1 and LiBr), and so the correc-
tions are generally of the correct sign and the magnitudes
are roughly correct. In most cases the difference is small-
er than our U', as is appropriate for a partial transfer of
charge. It would be reasonable to use this U* and the
inter-atomic coupling, such as that from Eq. (1), to self-
consistently calculate the band gap and effective charges.
However, this has not yet been done, and perhaps would
not be appropriate until one has made a more careful
study of the appropriateness of the coupling, Eq. (2), to
ionic crystals.

The same comparison can be made for other ionic com-
pounds. In Table III we give the predictions of the band
gap for the alkaline-earth chalcogenides obtained by sub-
tracting the term values from Table I, the experimental
values, and the value of U obtained from Eq. (4). In
this case the corrections appear frequently to correspond
to a transfer of about one electron, or an effective charge
of the ion of about 1.

55Cs 16.5
(9.9)

10.4
(8.3)
3.2

9.1
(7.3)
2.6

7.6
(6.2)
2.8

III. CORRECTIONS TO THE PHOTOTHRESHOLD

Having obtained the energy bands, we may turn to a
number of properties of the solid, paying particular atten-
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tion to the effects of Coulomb interactions. We might ini-
tially think that the calculated valence-band maximum
should be a prediction of the photothreshold, the energy
required to remove an electron from the solid, since the
valence-band maximum is based directly on the term
values which represent the energy required to remove an
electron from the atom. We may see immediately that,
because of dielectric relaxation, this is not the case. We
first consider an atom lying a short distance z outside a
solid with a large dielectric constant. The ionization ener-

gy may be seen to be reduced by —e /4z by proceeding in
steps. We first carry the neutral atom to infinity, costing
no work against Coulomb forces, use the free-atom ioniza-
tion energy to remove an electron, and then gain an ener-

gy e /4z from the image force ( —e /4z ) in returning
the atom to its initial position near the surface. This re-
duced energy corresponds more closely to the energy re-
quired to remove an electron from the solid than does the
free-atom ionization energy.

We may obtain the corresponding value for the solid
using the relaxation energy given in Eq. (3). The energy
to remove an electron from the solid would be predicted to
be the tight-binding valence-band maximum if there were
no dielectric relaxation. E„~,„ is just the reduction in the
required energy because there is dielectric relaxation. For
a semiconductor the dielectric constant is sufficiently
large that we may take (e—1)/e to be equal to 1, and for
a compound we should take a weighted value of U for the
two components, or we may take the homopolar value.
This gives a correction of simply U/2, or around 3.7 eV
for the semiconductors below the carbon row. This is
indeed very close to the value of 3.8 eV which we found
empirically' for the correction to the valence-band max-
imum. We have redone that comparison using revised pa-
rameters to plot the experimental' photothreshold
against the tight-binding valence-band maximum —E„ in
Fig. 1. We again see a rather constant shift, in this case
by some 4.2 eV. There are more detailed corrections
which could be made in addition to the estimate of the
shift indicated above. One is the upward shift of the
bands due to the nonorthogonality of the atomic states.
However, there are different levels of approximation at
which this can be done, so we leave it that the predicted
shift in the photothreshold given by Eq. (3) is in essential
agreement with experiment for semiconductors.

The same formula may be applied for ionic crystals.
The (optical) dielectric constant is typically 2.5, so that
the factor (e—1)/e is typically 0.6, but the U associated
with the nonmetallic ion is larger, so corrections similar
to those for the semiconductor are expected. This has not
yet been explored.

One might ask if we should not have made corrections
for the relaxation associated with ion displacement as
well; that is, if we should not have used the static rather
than the optical dielectric constant for the ionic crystals.
The answer is no; the Franck-Condon principle applies in
this case (precisely because the relaxation energy is large
in comparison to the relevant vibrational quantum, that of
an optical mode' ), so we may say that the ions do not
have time to move during the emission process. In con-
trast, the relaxation energy of Eq. (3) is not large com-

O
CD—6e

IO II 12

[E„)(ev)
FIG. 1. Experimental photothreshold I,'compiled in Ref. 1)

plotted against the energy of the valence-band maximum ob-
tained in tight-binding theory. Coulomb corrections suggest
4=

~
E„~ —U/2, with U/2 approximately 3.7 eV; the curve

corresponds to this form with U/2=4. 2 eV.

pared to the relevant electronic energy difference, the op-
tical peak energy E2, which is typically 5 eV." Thus we
may say that the electrons do have time to relax.

IV. CORRECTIONS TO THE BAND GAP

5Eg ——U/e .

In a compound, U is to be the average for the constitu-
ents.

This is a prediction of the correction to the gaps of
density-functional theory, to which attention has recently
been drawn by Sham and Schluter, ' and Perdew and
Levy. ' Yin' has, in fact, given values for this correction

The band gap which we obtain from a band-structure
calculation corresponds to a bonding-antibonding splitting
and is appropriate when we calculate such properties as
the dielectric constant; then, an applied field admixes an
antibonding state to the bonding state to obtain a dielec-
tric polarization. The bands we obtain are appropriate,
just as the atomic term values are when we admix excited
states to occupied states in the atom to obtain the atomic
polarizability. However, when we actually excite electrons
into the conduction band in the semiconductor and
separate them from the remaining holes, there is a correc-
tion by a U just as if we had taken an electron from one
atom among a collection of atoms and placed it upon
another atom. Here we have placed an electron in an anti-
bonding state at a site where two electrons already occu-
pied the bond.

We must, however, allow for dielectric relaxation
around both the electron and the hole. Both are given by
Eq. (3). (If we were distinguishing U values in a com-
pound, one would be that for the anion and one for the
cation. ) Thus the shift in the gap is U —2U(e —1)/2e, or
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TABLE IV. Predicted enhancement of the gap relative to
tight-binding (or local-density) bands, compared with the differ-
ence between calculated local-density bands |,'Refs. 14 and 15}
and experiment.

C
Si
Ge
Sn

U/e

2.06
0.65
0.47
0.28

Obsexved

1.37'
0.69'
0.27'

AIP
GaAs
ZnSe
CuBr

0.9
0.69
1.39
2.67

092

LiF
NaC1
CsC1
MgO
CaS
BaS

6.1

3.5
2.8
3.6
1.7
1.6

47
37b
33b
2.5'
2.8b

2.1b

Ne
Ar
Kr

'M. T. Yin, Ref. 14.
A. E. Carlsson, Ref. 15.

13.8
6.9
5.8

99
6.1b

4.6b

for diamond, silicon, and germanium by subtracting gaps
obtained from self-consistent density-functi'onal theory
from experimental gaps. Carlsson' has given these values
for a number of other systems, including values of 1.36 eV
for diamond and 0.62 eV for silicon, consistent with
Yin's. These are compared with the predictions from Eq.
(5) in Table IV. Our prediction appears to be at least
qualitatively correct for a range of materials.

We should distinguish these corrections from the corre-
lation corrections calculated by Horsch, Horsch, and
Fulde, ' who found a decrease in gap in diamond due to
correlations. This arose from the relaxation of the excited
electronic system, analogous to the relaxation effects
described above, although theirs seem to be much smaller
in magnitude. This presumably is because of a difference
in the starting unrelaxed state.

Use of Eq. (5) for ionic solids (with the average U)
yielded somewhat larger corrections than for semicon-
ductors, as seen in Table IV, because of their smaller
dielectric constant. They are seen in Table IV to be in
reasonable accord with observed corrections to density-
functional theory. They appear to be of the same origin
as corrections estimated by Heaton, Harrison, and Lin, '

who suggest a band-gap enhancement of some 50%%uo for
LiC1.

Adding these corrections to the gaps predicted in
Tables IJ and III would lead to gaps which are too large,
but Table IV would indicate that the difficulty is with the
tight-binding theory. Comparison is complicated by the
uncertainty in the Coulomb corrections discussed in Sec.
II B. It has not been explored further.

V. COHESION

To the extent that the system consists of neutral atoms,
or that the relevant U* can be taken to be equal to zero,
the change in energy upon formation of the solid, in the
context of a self-consistent-field approximation, is given
by the change in the sum of eigenvalues for occupied
states. In the tight-binding context there are then no
double-counting errors; the Coulomb corrections in the
solid are cancelled by those in the free atoms. We may see
this explicitly for the case of ionic compounds.

E„h —c,,+—sz + U———ae /d +6Vo

= —c.,+cz+ U*+6VO . (6)

Here we see explicitly that if we neglect the effective in-
teraction U* and the overlap interaction, the energy gain
is just the change in energy as the electron is dropped
from the sodium to the chlorine state, as we indicated
above. The overlap interaction can, in fact, be formulated
as the shift in the electron energies due to nonorthogonali-
ty of the atomic orbitals, so it is simply a correction to
these atomic energies and is included, then, in the change
in the sum of individual. energies.

In the discussion in Sec. II we found that the band gap
was given by the first three terms in the final form of Eq.
(6), but with the U* term proportional to an effective
charge transfer, rather than the full charge which is ap-
propriate to the cohesion. Furthermore, the nonortho-
gonalities which shift the occupied states also shift the
einpty states, so a different correction than 6 Vo enters the
band gap. Thus it is really only with these two correc-
tions neglected that the cohesion is equal to the band gap
as we suggested earlier. '

For the specific case of sodium chloride, the first two
terms, obtained from Table I, give 8.83 eV. U* was
found in Sec. II to be 1.37 eV, reducing the cohesion to

A. Ionic solids

The Born' theory of cohesion of ionic solids may be
followed to give an expression for the cohesion in terms of
tight-binding theory. Born imagines starting with, for ex-
ample, isolated atoms of sodium and chlorine. He then
ionizes the sodium atoms, requiring for each an energy
which we have identified with the free-atom Hartree-Fock
term value E, . He then adds each of these electrons to a
chlorine atom, gaining the electron affinity, which we
have identified with op+ U. Then he brings these charged
ions together, gaining the Madelung energy, ae /d, per
atom pair. At the conclusion of this process, as the atoms
touch each other, there will be some charge redistribution
and there will be repulsive interactions Vo(d) which arise
largely from the overlap of the sodium core and the
chlorine valence states. ' However, at that point we have
already gained almost all of the Madelung electrostatic
energy and the repulsion varies so much more rapidly
with d than the attractive terms, that at equilibrium it is a
small contribution. We write it 6VO for the six nearest
sodium neighbors to each chlorine ion. The change in en-
ergy per atom pair (the negative of the cohesive energy) is
then
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7.46 eV, to be compared with the observed cohesion of
6.77 eV. We have carried out this evaluation for the
other alkali halides, with the results given in Table V.
The Coulomb corrections are seen generally to improve
the predictions, especially when the uncorrected
discrepancies are large. Inclusion of the 6 Vc would
reduce our estimate still further, but the effect of the cou-
pling V,&~ between neighbors would increase it.

The corresponding Born theory can be carried out con-
ceptually for the divalent compounds, ignoring the fact
that the doubly charged negative ions do not really exist
when isolated. We remove, for example, a first electron
from calcium at e, (A), with A indicating calcium, and
add it to a sulfur atom at e~(8)+ U*(8), with 8 indicat-
ing sulfur. The second electron removed comes from
e,,(A) —U (A) and is placed at Ez(8)+2U (8). Thus the
energy gain is

)2Mg

sO

19.7
12.4

(10.4)

16S

9.4
9.4

(8.0)

34Se

7.6
7.6

52Te

5.3
5.3

20Ca 22.8
10.9

(11.0)

12.6
10.7
(9.7)

10.7
9.0

(7.3)

8.4
8.2

38Sr 23.7
9.7

(10.4)

13.5
9.5
(9.3)

11.7
8.7

9.4
8.7

TABLE VI. Cohesive energy of divalent compounds
( A "8 ') predicted as 2[a, (A) —e~(8)] per atom pair, and then
with 3 U*($) subtracted. Experimental values are in
parentheses (Ref. 19). All values in eV/atom-pair.

2[eg(A) —eq(8)] —U (A) —3U*(B) .
s6Ba 24.9

8.9
(10.3)

14.6
10.0
(9.4)

12.8
8.5

(10.3)

10.5
8.2

Without the U*'s, the cohesion is twice the term-value
difference, approximately twice the gap. Evaluating
U (A) for the divalent compounds from Eq. (4), we find
it to be always negative (and therefore to be dropped), but
U (8) is positive (except for MgSe and MgTe) and may
be multiplied by 3 and subtracted directly to obtain the re-
sults compared with experiment in Table VI. The im-
provement due to the addition of the Coulomb correction
is quite remarkable. It is also interesting that in this case
the change in the sums of the energies of occupied states
would yield a Coulomb correction of 4U'(8) rather than
3 U (8), the difference being essentially a double-counting
correction.

It seems to be generally true that tight-binding theory
gives quite a good account of the cohesion of ionic solids.
The Coulomb correction U* is not dominant but it is suf-
ficiently large to be significant and should be included.

9F i7C1 35Br 53I

TABLE V. Cohesive energy of the alkali halides (M'X "),
first as e, (M) —e~(X), and then with U [Eq. (4)] subtracted.
Experimental values are in parentheses (Ref. 19). All values in
eV/atom-pair.

B. Covalent solids

We have seen that the U* which enters the band calcu-
lation is to be taken equal to zero in the tetrahedral semi-
conductors. Thus the cohesive energy in the self-
consistent-field context is obtained directly by subtracting
bond-energy eigenvalues from the starting free-atom elec-
tronic energies, and adding the appropriate overlap in-
teraction Vu. This approach gave good results, except for
the carbon row, in a recent study of bonding of semicon-
ductors. ' In diamond, and in the carbon row in general,
the simple theory overestimated the cohesion by a factor
of about 2, as in the earlier extended-Huckel theory. 2~

The reason for the difference between the carbon row and
the heavier systems is not clear. It has seemed plausible
that it comes from corrections to density-functional
theory, called correlation corrections, which might be
larger for these higher electron densities, but the analysis
given below does not support that. It is interesting that a
treatment of correlation corrections to the cohesion of di-
amond by Kiel et al. , gave an increase in cohesion, with
the change in correlation energy accounting for one-
quarter of the total cohesion. We shall see why next.

3Li

g)Na

)9K

37Rb

14.5
11.3

(10.7)

14.9
10.0
(7.9)

15.9
9.5

(7.6)

16.1
9.3

(7.4)

8.4
7.9

(8.8)

8.8
7.5

(6.8)

9.8
7.5

(6.9)

10.0
7.4

(6.7)

7.1

6.5
(8.2)

7.5
6.1

(6.1)

8.4
6.3

{6.2)

8.7
6.2

(6.1)

5.6
4.9
(7.7)

6.0
4.6
(5.2)

7.0
4.9

(5.4)

7.2
4.9

(5.4)

C. Correlation corrections

The Hamiltonian of Eq. (1) allows us to go beyond the
self-consistent-field theory of the cohesion. In particular,
we formulate the cohesion for a homopolar semiconductor
in terms of the energy of independent bonds (as was done
in Ref. 21, with corrections for the coupling between
bonds). Beginning within the self-consistent-field theory,
we write the one-electron bond orbital as an even com-
bination of hybrids, (

~
hi)+

~
h2))/v2, and with an

electron of each spin in a band state the expectation value
of the final term in Eq. (1) is U/2+e /2d, corresponding
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to a 50% chance of the electrons being on the same atom
and a 50% chance of them being on different atoms. In
the free-atom state the two electrons would have always
been on different atoms, with an expectation value of the
Coulomb term of e /d. Thus the bond has an excess
Coulomb energy of U'/2 with U*= U —e /d. This U'
is not negative (because there is no Madelung constant), so
the correction U'/2 is a part of self-consistent-field
ground-state energy. The values of U* may be written for
diamond, silicon, germanium, and tin, and are 2.41, 1.51,
1.60, and 2.07 eV, respectively.

This correction is ordinarily not included in tight-
binding calculations of the cohesion, ' and was, in fact,
omitted in our discussion of the cohesion for covalent
solids given above. Indeed it is omitted in any theory in
which the potential used for the solid is very close to that
for the atom and it was in that spirit that the treatment of
covalent solids was made above. Adding it now, to
represent the results of self-consistent-field theory, consid-
erably worsens the agreement with experiment, but we
may see that terms beyond the self-consistent-field
theory orrelation corrections "ancel most of the con-
tribution and restore agreement with experiment.

We shall see later in this section, and more precisely in
Sec. VI, that the correlated motion of the two electrons in
the bond (intrabond correlation) only reduces the contri-
bution slightly (by perhaps 0.1 eV). However, polarization
of the other bonds when an extra electron occupies an
atom, rather than there being just four on every atom, has
a large effect (interband correlation), just as when an elec-
tron was excited into an antibond in an occupied bond site
as discussed in Sec. IV. The estimate of this effect may
not be as convincing as the estimate in Sec. IV, but the
same argument suggests that the reduction of both terms
in U* by a factor of approximately 1/e should be ap-
propriate. [It would probably be better to modify the
dielectric constant entering by reducing the susceptibility,
7= (e—1)/4m, by a factor of —,

' since only three neighbor-
ing bonds contribute, but the difference is not large. ]
Thus the net Coulomb correction to the cohesion is es-
timated to be U*/2e. The shift has been largely eliminat-
ed and the residual is some 0.2 eV for diamond and near
0.05 eV for the heavier semiconductors.

Subtracting this correction from the tight-binding esti-
mates of the cohesive energy per bond from Ref. 21
slightly improves agreement with experiment for silicon,
germanium, and tin; for which we had overestimated the
cohesion by some 0.2 eV, but not in an important way. It
does little to eliminate the discrepancy of some 3.5 eV for
diamond. These are rather crude estimates and perhaps
the main message is that the effects appear not to be large
on the scale of the accuracy of the theory.

We should note, however, that difference between the
U*/2e and the U'/2, which is defined to be the correla-
tion correction, is large. At about —1.0 eV for diamond,
using the values given above, it is close to the —0.9 eV ob-
tained for the change in correlation energy in the forma-
tion of diamond by Kiel et al. The estimates of
cohesion in Ref. 21 succeeded by ignoring both the U*/2
correction and the interband correlation which largely,
and quite generally, cancels it.

%e may expect a similar cancellation in polar covalent
solids and ionic solids. The average shift of the charge
between atoms (zero for homopolar semiconductors) is in-
cluded already in the tight-binding theory and the fluctua-
tions should decrease as the bond polarizability and
dielectric constant decrease.

Before proceeding we make a simple estimate of the in-
trabond correlation. It arises from the final term in the
Hamiltonian of Eq. (1) which couples the two-electron
bond state to a state in which both electrons are in anti-
bonding states. %'e shall solve the corresponding problem
exactly in the following section, but for the present we
note that this coupling is U*/2, and since the antibonding
states are each higher in energy by —2 V2, where V2 is the
coupling between the two hybrids, with magnitude 4.44
eV in silicon, the energy per bond is lowered by
( U*) /16', of the order of 0.1 eV and quite negligible.

VI. FORMATION QF A CORRELATED STATE

The Coulomb interaction U can lead to qualitative
change in the nature of the electronic state by localizing
the electrons on individual atoms when the coupling be-
tween the levels on different atoms becomes small. This
is called the Heitler-London transition. We proceed to the
full solution in the tight-binding context.

A. Exact solution for a two-level system

For this simplest two-level problem the final term in
Eq. (1) becomes simply

)fcU (ci+ci+ci ci +c2+c2+c2 c2 )

With two electrons present there are only six possible
states, e.g., ci+c2 ~0). The symmetry is sufficiently
high that the two-electron states for this Hamiltonian can
be obtained exactly. The ground-state energy, in partic-
ular, is found to be

(7)

where V2 is the coupling between the two states.
Note first the results indicated in the preceding section.

If U* is neglected, the energy is 2V2 (negative), corre-
sponding to two electrons in bond states. Then for small
U*, the Coulomb correction is U*/2, as we found before.
The correlation energy which we found in perturbation
theory is obtained by expanding the square root in Eq. (7)
to second order in U*, giving the ( —U*) /16V2 which
we found before.

As U* becomes large, we may expand the square root
in Eq. (7) for small V2, obtaining —4 V2/U*; the U*/2
term has been cancelled. This is in accord with a Heitler-
London transition having occurred, so that there is no
Coulomb correction proportional to U . The origin of
the —4V2/U* term is the coupling of each atomic elec-
tronic state to an empty state on the other atom, but
higher in energy by U*, although the direct use of pertur-
bation theory with this one-electron concept gives an esti-
mate a factor of 2 smaller.

An interesting and important feature of Eq. (7) is that
the exact energy varies smoothly between the two limits.
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The Heitler-London transition, or the formation of a
correlated state, is continuous in this system. However, it
is only the two-level system for which we have the exact
solution. For more complex systems, such as the forma-
tion of correlated f states in rare-earth metals, which we
treated earlier, we need to resort to an approximate solu-
tion.

$. Unrestricted Hartree-Fock approximation

For treatment of the rare earths we used an approxima-
tion called unrestricted Hartree Fock.-In this method, as
applied to the two-level system, we again construct one-
electron states such as the bond state discussed in Sec. V,
but allow the two states to become unsymmetric,
u i ~

h, )+uz
~
hz ), with ui+uq, the states with different

spin have u~ and uq interchanged. We then evaluate the
expectation value of the Hamiltonian of Eq. (1), and mini-
mize the energy with respect to the variational coefficients
ui and ui. It is found that if U is less than the magni-
tude of 2 Vz, the ordinary symmetric bond solution is ob-
tained (with energy 2 Vq+ U'/2 relative to isolated
atoms). However, if U' is greater than the magnitude of
2 Vz, a second, asymmetric, solution has a lower energy of
—2 Vq/U . This is also a solution within a self-
consistent-field context, but different from the traditional
one. We may note that the energy, and, in fact, the
derivative of the energy with respect to U'/Vz, is con-
tinuous, but the second derivative is discontinuous. An
artificial singularity has been introduced by unrestricted
Hartree-Fock theory. The energy of the ground state ob-
tained is always higher than the true energy, and, in fact,
has half the magnitude of the exact solution when U* is
very large, as we noted earlier. However, the solution in
this region is much better than the simple symmetric bond
solution, and the theory is directly applicable to systems
other than the two-level system. In particular, it allowed
us to discuss the bands and the cohesion of the correlated
state in the rare earths and actinides.

It also has an interesting advantage in providing a con-
dition, U' less than or greater than —2 Vz, as to whether
in the context of self-consistent-field theory we should use
traditional symmetric solutions or new symmetry-
breaking solutions. Qualitatively different physics and
different approximations are suggested in the two regimes.
In just this way, it is possible in a real gas-liquid system to
go continuously (with appropriate temperature and pres-
sure to take one around the critical point) between the two
phases, but quite different approximations are appropriate
when we are well within different phases. The distinction
is useful even though the criterion is not sharp.

C. Generalization to multiple levels

The generalization of the two-level system to rare
earths was quite direct. On each atom there are fourteen
f levels (also counting spin orientations). Each is coupled
to a band of free-electron states. We allowed Zf of these
levels to have a high probability of occupation and the
remaining 14—Zf to have a low probability of occupa-
tion. Then after defining a U* for the interaction be-
tween f electrons on an atom, we obtain a Coulomb shift

which is different for the two sets of states and could con-
struct the unrestricted. Hartree-Fock problem, and, de-
pending upon the parameters, would find either the usual
solution of a partly occupied resonance at the Fermi ener-

gy or a split into a full resonance below the Fermi energy
and an empty one above, corresponding to a correlated
state. This was a generalization from two to fourteen lev-
els; after the Coulomb problem was solved for those four-
teen, the coupling between levels on different atoms was
included to obtain the bands.

An interesting case of multiple levels in semiconductors
might occur for deep impurity levels where U can be-
come large. An extreme case is an oxygeri impuri. ty, with
a large U (14.47 eV), in a semiconductor with a large d
(2.36 A for CxaP), for which the effective Coulomb in-
teraction is U'= U —e /d =8.36 eV. Morgan has, in
fact, suggested that the optical properties of an oxygen
atom substituted for phosphorus in gallium phosphide are
best understood in terms of a neutral oxygen configura-
tion and spin multiplets based upon the neighboring galli-
um hybrids. This deserves a self-consistent analysis using
the tight-binding parameters given here, but that has not
yet been carried out. It would be interesting, in particular,
to see if such a system would form a correlated state, and
if so, which of the correlated states (e.g., neutral or
charged oxygen) would have the lowest energy.

E ( k) =e, + V„ f(k),
with

(8)

f ( k) =2[cos( k„d ) +cos( k„d ) +cos( k,d )]

for each of the three components of k running from
n /d to +mid. If there were a single electron per atom,

all states within a planar Fermi surface consisting of the
planes bisecting the wave numbers (+ 1, + 1,+ 1)m./d
would be occupied. [These are the states with energy
E(k) less than e, .]

We may also consider a solution with broken symmetry
such as that of rocksalt. That structure consists of a
simple-cubic arrangement of ions, alternately sodium and
chlorine. In the broken-symmetry state in our case, the
spin-down occupation on half of the atoms (these might
be the Cl sites) exceeds one-half by 5Z and the spin-up oc-
cupation is less than one-half by 5Z, the situation being
reversed for the remainder of the atoms (the Na sites).
Then the energy of a particular spin state on an atom is
shifted by U'=U —ae /d times the occupation of the
other spin state on that atom, in this case —,+5Z. Thus
half of the levels (alternate atoms in all directions) have
energy c.,+U*/2+ V3 and the other half have energy
c.,+ U*/2 —V3, with V3 ——U* 5Z. The solution is again
immediate:

D. The metal-insulator transition

We may also make a generalization directly to a many-
atorn system, but retain only a single spin-up and spin-
down state on each atom. We consider a simple-cubic ar-
rangement of atoms, each containing an s state, coupled
to each of its nearest-neighbor s states of the same spin by
V„. The ordinary energy bands can be written immedi-
ately as
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(10)

We could use a smaller Brillouin zone here or can use the
same cubic Brillouin zone as indicated above, taking the
negative sign before the square root when k lies inside the
planes bisecting (+1,+1,+1)m./d which made up the ini-
tial Fermi surface, and the plus sign outside these planes.

we see that a nonzero V3 opens a gap over the entire
Fermi surface for a system with one electron per atom
producing an insulator; this is a Mott transition, or, in
this case, the formation of an antiferromagnetic insulating
state. This special circumstance of planar Fermi surfaces
is like a one-dimensional system, and energy would always
be gained by forming the correlated state. Adding
second-neighbor interactions would warp these surfaces,
and a sufficiently small V3 would leave the system metal-
lic. In that case an integration over occupied states or an
approximate evaluation of the energy is necessary to see if
the correlated state is to be expected. We shall use an ap-
proximation that is appropriate to this more general cir-
cumstance, although we continue with the form of the
bands given above.

Both the determination of 5Z and the total energy re-
quire an integration over the occupied states, in this case
over the states within the cubic Brillouin zone and the
planes bisecting (+1,+I, +1)m./d; that is, in fact, exactly
the face-centered-cubic (or rocksalt) Brillouin zone. A
simple way of doing this is the special-point method of
Baldereschi, which consists of selecting a representative
wave number k* in the (face-centered-cubic) Brillouin
zone and estimating the average of any quantity as the
value at that special wave number. Baldereschi gave
methods for selecting such a point, but we have, in fact,
shown that the f(k*) of Eq. (9) must equal the square
root of the number of nearest neighbors, ~n =V 6 in this
case. ' This follows from the requirement that the aver-
age energy be given correctly by the formulas also when
the coupling is very sma11 compared to V3, where the re-
sult is known from perturbation theory; this result applies
much more generally than the rocksalt structure con-
sidered here.

If we use the special-point method for both the deter-
mination of the average energy, Eq. (10), and the occupa-
tion of the individual spin states on each atom, the prob-
lem becomes exactly equivalent to the two-level Heitler-
London problem treated in subsection A, but with V2 re-
placed by V n V„. The condition for the formation of a
correlated state is that

( U* ) & 4n V,g

If the condition is strongly enough satisfied, we may ex-
pect it to be accompanied by a transition to an insulating
state, a first-order transition. Our simple antiferromag-
netic solution for the ground state is only schematically
correct. The criterion is only crudely correct, but may be
useful for determining what the general characteristics of
some system will be.

E. Application to Si(111)

Allan and Lannoo, and, more recently, Northrup,
Ihm, and Cohen, have found that an ideal (111)surface
of silicon would be antiferromagnetic. This system is
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FIG. 2. 2X 1 triangular pattern on the dangling hybrids from
a (111)surface of silicon. It could represent an antiferromagnet-
ic state on the ideal surface or a buckled pattern; neither appears
to occur on the real surface.

closely related to that discussed above. It consists of a tri-
angular array of dangling bonds, with one electron per
bond. Thus we may use a criterion for antiferromagne-
tism such as Eq. (11),but need values for the parameters.

The value of U for silicon from Table I is 7.64 eV; we
use this for the hybrid. We need the Madelung constant
for alternate charges on a triangular lattice as shown in
Fig. 2. The edge d' of the individual triangles may be
written in terms of the bond length d in the silicon as
d'=2v 6d/3. We first sum the potentials arising from
the alternate charges on a central row of surface atoms
containing the atom in question, as indicated in Fig. 2.
This familiar infinite series yields (2ln2)e /d', and nu-
merical estimates of the contribution of neighboring
chains indicates them to be less than a percent of this.
We obtain U* = U —( V 6 ln2)e /2d =2.44 eV.

The coupling between adjacent hybrids in tight-binding
theory arises indirectly, through backbonds and antibonds.
In fact, the syinmetry between bonds and antibonds in the
simplest approximations makes these indirect couplings
vanish, so we expect that coupling arising from more
complete calculations to be very small. This turns out to
be true. A surface-band calculation by Appelbaum and
Hamann gave a bandwidth, for wave numbers perpen-
dicular to the lines of atoms in Fig. 2, of 0.58 eV. A
tight-binding calculation for this plane, with coupling V
between hybrids, gives a width of 8 V for this direction.
(The phases of four neighbors change from plus to minus
along this line. ) Thus their result corresponds to a cou-
pling of only 0.07 eV. The special-point method can be
used as in the simple-cubic lattice. To find f(k) we imag-
ine V3 being very large. A particular level with energy

V3 is coupled to two neighbors also with energy —V3,
but this does not affect the average energy of these occu-
pied states. It is also coupled to four neighbors at energy
+ V3 lowering its energy by —4 V /2 V3 ~ For the
special-point method to give this result, we obtain
[f(k)] =4. Thus the condition, Eq. (11), for this case be-
comes ( U') & 16V, which, with U*=2.44 and V=0.07
eV, is strongly satisfied. We agree with Allan and Lan-
noo, and with Northrup, Ihm, and Cohen, that the anti-
ferromagnetic state is strongly favored for the ideal
Si(111)surface.

F. Surface buckling

Of course, the Si(111) surfaces does not retain an ideal
geometry, but undergoes a 2&1 reconstruction. This was
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long believed to be a simple buckling of the surface, origi-
nally suggested by Haneman. This was supposed to be a
Jahn-Teller —like effect in which electrons were
transferred between dangling hybrids such that half were
doubly occupied and half were empty. Then there was a
gain in energy linear in displacement as the atoms with
occupied hybrids moved outward and those with empty
hybrids moved inward. Northrup, Ihm, and Cohen, and
Pandey, ' argued that the Coulomb U* was too large for
this to happen. We may confirm their conclusion using
our parameters.

The question concerns dangling hybrids at the silicon
surface as described in Ref. 1, pp. 236ff. For the ideal
tetrahedral geometry, one might construct sp hybrids
oriented toward the nearest neighbors and normal to the
surface. However, if the surface atom were displaced out-
ward by a distance u, and hybrids were again constructed
with orientation toward the three neighboring subsurface
atoms, their sp content would be modified, with the dan-
gling hybrid becoming more s-like and lower in energy,
taking, in fact, an energy

e'I, =ez+(3u +d) Vi/d (12)

with Vi ——(E, —sz)/4. [Note that this takes the usual
value (e, +3')/4 if u equals zero. ] The average energy
of all four hybrids does not change, and if a single elec-
tron occupies the dangling hybrid and a shared electron
pair occupied each bond, we would expect a minimum en-
ergy near u =0. However, the possibility exists of doubly
occupying half of the dangling hybrids, which are dis-
placed outward to lower their energy, and leaving the oth-
er half of the dangling hybrids empty; the latter would
displace inward to lower the energy of the hybrids in the
occupied backbonds. Equation (12) would indicate that
the energy should drop linearly in u, while the elastic re-
storing force should vary quadratically, leading inevitably
to a net lowering in energy —a Jahn-Teller effect—and
spontaneous lowering of the symmetry of the surface.
This seemed to be a natural explanation of an observed
2& 1 pattern on the corresponding silicon surface.

To see if such an instability still exists when Coulomb
repulsion is included, we may follow the earlier analysis,
but now transfer 5Z (which may be nonintegral) electrons
between a pair of hybrids, letting one atom be displaced
outward by u and the other inward by u. The anticipated
pattern is that shown in Fig. 2. The gain in energy, for
small u, obtained from Eq. (12), is 12u Vi 5Z/d per hy-
brid pair, linear in u as we indicated. The increase in
elastic energy was written in terms of a rigidity constant
C as 2( —,)C(u/d) . In Ref. 1 the inward and outward
displacements were allowed to vary independently and the
energy minimized to obtain each. Here we seek only an
approximate condition for instability against buckling,
and we can let the u for both have the same magnitude.
Here, also, we add the Coulomb energy U*(5Z) for the
pair. Minimizing the total energy with respect to 5Z, at
fixed u, gives 5Z = —6Viu/( U'd) and a total energy per
pair of (C —36Vi/U*)(u/d) .

We see that there is no longer a linear term in the ener-

gy and the reconstruction will occur only if the coefficient
of (u/d) is negative. The condition for reconstruction

becomes

36V) )U*C . (13)

We now require a value for the parameter C; the value
of U =2.44 eV found above obtains here also. The con-
stant C was written in terms of the radial force constant
Co and the angular force constant Ci in Ref. 1 as
C =Co/3+ 12Ci, and two estimates were made, one from
the elastic constants and one from the vibration spectra.
These are C =. 56.73 and 29.21 eV, respectively. The in-
consistency of the two values reflects the inaccuracy of
the simple force-constant model, which may be even
greater at the surface.

With the first value of C the condition for buckling is
not satisfied; with the other it is. Thus the treatment of
elasticity is not sufficiently accurate to tell if buckling will
occur, but inclusion of the U* has eliminated the unam-
biguous prediction of buckling and the results are not in-
consistent with the more accurate theories. We expect
that Refs. 28 and 31 are correct that there is no buckling,
and that the real surface may be the m-bonded —chain
model su.ggested by Pandey. '

APPENDIX: PROCEDURE FOR OBTAINING.
VALUES FOR U

One might estiinate U by integrating e /r over charge
densities obtained from the atomic states, but in the
tight-binding context it is better to tune these to fit results
of a more coinplete and accurate calculation or experi-
ment. One atomic quantity directly represented by U is
the difference between the first and second ionization po-
tentials. A second possibility would be the difference be-
tween the electron affinity and the ionization energy of
the atom. One might expect these to have the same value,
but changes in the atomic orbitals themselves with
changes in occupation make them slightly different.
There are also differences in the values, depending upon
which atomic states are involved.

Despite these difficulties we seek a systematic set to be
used with universal parameter theory. %'e chose to first
calculate U explicitly, using the asymptotic form of the
electron density, normalized to one electron,

n(r)=(p /m)e (A 1)

for an atomic state of energy e= —A p, /2m. This yields

with i1~———', . A check of this value was made by insert-

ing, for U, the difference between the first and second ex-
perimental ionization potentials from Weast, and, for p,
the value obtained from the atomic term value from Table
1. This led to values of p almost independent of column
within each row, even for monovalent and divalent metals
for which s-state energies are used. Only for column-VI

-elements did they differ greatly from other values for the
row, presumably because of Hund's-rule energies which
are not relevant to the solid. Thus a convenient and
reasonable procedure for obtaining a U value appropriate
to the difference between first and second ionization po-
tentials is to take the gz value obtained for the column-



2132 WALTER A. HARRISON 31

IV element in each row and then deduce U from Eq. (2)
for elements from other columns, using p obtained from
the term values of Table I. This was the first procedure
to obtain a set of U's. A second procedure was carried
out to obtain a U value corresponding to the difference
between electron affinity and first ionization potential, but
values were available in Weast only for 6C, sO, sF, i&S,
$7Cl 35Br, and 53I. A U value intermediate between those
from the first and second procedures would seem ap-
propriate, so in each row we scaled the value from the
first procedure by the square root of the ratio, obtained
for the halogen in each row, of the values obtained from

the first and second procedures. This led finally to values
of gU of 0.479, 0.376, 0.376, 0.351, and 0.373 eV, respec-
tively, for sC, i4Si, 3zGe, soSn, and s2Pb rows, and the U
values listed in Table I. (Scaling in the s2Pb row was tak-
en the same as that in the 5oSn row. Scaling for iiNa was
taken as for the i4Si row; for»K and 2oCa as for the s2Ge
row; for 3&Rb and 3sSr as for the 5oSn row; and for ssCs,
ssBa, s7Fr, and ssRa as for the szPb row. ) U values for
columns I, II, IX, and X are based upon the s-state term
values. The term values from column I represent a con-
siderably different choice of extrapolation than that in
Refs. 1 and 2.
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