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The electron-hole interaction plays an important role in the optical spectra of semiconductors, not
only in bound excitons in the energy-gap region, but also in the continuum. In particular, it affects
the strength of the two major peaks in the absorption spectra of semiconductors of diamond and
zinc-blende structures. A simple model is made to account for the band-structure effects. The
Bethe-Salpeter equation containing the electron-hole interaction effect is solved to yield the absorp-
tion spectra for Si and Ge. A physical explanation of how the excitonic effects correct the strength
of the El and E2 peaks in the right direction shows that our conclusions can be generalized to the
III-V and II-VI compounds.

I. INTRODUCTION

The typical optical-absorption spectrum of a semicon-
ductor of diamond or zinc-blende structure shows two
prominent peaks, known as the E& and E2 peaks. '

These features are qualitatively reproduced by the one-
electron band theory, using the noninteracting approxima-
tion (NIA), in which the photon is absorbed by an elec-
tron, leaving a hole which does not subsequently interact
with the electron. In general, the peak positions are not
precisely given by theory. However, this is not the prob-
lem we wish to address here.

In a broad class of group-VI elemental and III-V, and
II-VI compound semiconductors, the calculated spec-
trum within NIA yields an E& peak with less strength
than measured, but gives an E2 peak with more strength
than the measured peak. These discrepancies - have
prompted studies of electron-interaction effects on the op-
tical absorption of these materials. These works have
been reviewed by Hanke and by Sham. The interaction
effects can be separated into local-field effects' " and
the excitonic effect. The local-field effect further reduces
the main absorption peak in diamond' ' and the strength
of the E~ peak in silicon. ' ' The continuum excitonic
effect, i.e., the electron-hole attraction, corrects the
strength of the peaks in the correct direction. ' ' How-
ever, in Refs. 13 and 1S, the excitonic effect is calculated
using local orbital representation. This method, which is
appropriate to use in diamond, is difficult to extend to
semiconductors of larger atoms such as Ge or GaAs, since
it would require an excessive number of overlapping orbi-
tals.

The purpose of this paper is to give a theoretical ac-
count of the continuum exciton effect in the optical spec-
trum which will be valid for this entire class of semicon-
ductors of diamond or zinc-blende structure. ' To this
end, we follow the ideas sketched in the review article by
Sham. We employ a simple model which contains the
salient features of the band structure and calculate the ex-
citonic effect in the optical spectrum with this model.
Evaluation of silicon and germanium shows that the exci-
tonic effect accounts for the discrepancies in the strengths

of the E& and Eq peaks. A qualitative understanding of
how the oscillator strength shifts the intensity of the spec-
trum from the E2 to the E& peak emerges from the calcu-
lation. This physical picture is general enough to be ap-
plied to the III-V and II-VI compounds.

Section II presents a modification of Cardona's model'
of the one-electron band structure which gives a good ac-
count of the optical spectrum within NIA. In Sec. III the
energies and wave functions of the model are used to cal-
culate the optical spectra of silicon and germanium in two
cases: within the NIA and including the electron-hole at-
traction. Section IV is devoted to a discussion of the
physical picture of the computational results.

II. MODEL FOR THE ELECTRONIC STRUCTURE

A. Nature of the optical peaks

First-principles calculations to date have not been able
to reproduce the optical energies accurately. The optical
spectrum within NIA is calculated with adjusted ener-
gies. ' Since the emphasis of this work is not to improve
the computational accuracy from first principles, but
rather to understand the excitonic effect on the absorption
peaks, we choose a model for the band structure that is
sufficiently simple for computational purposes and which
gives a good account of the NIA part of the E~ and E2
peaks.

According to Cardona's analysis in NIA, ' the imagi-
nary part of the dielectric function Ime(co) of a typical
zinc-blende-type or diamond-type semiconductor can be
schematized by a three-dimensional critical point at Eo at
low energy, a two-dimensional peak E~, and a one-
dimensional peak E2. The Eo feature is due to electronic
transitions across the fundamental optical gap at the I
point (as shown in Fig. 1 ). The EI peak is due to transi-
tions from the neighborhood of the top valence band to
the nearly parallel lowest conduction band in the [111]
direction, i.e., between the nearly parallel A3„and A&,
bands (Fig. 1). These bands, which are not parallel along
the other two perpendicular directions, give the E~ peak
its two-dimensional character. The E2 peak is due to
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transitions in a rather large neighborhood of the X point
in the Brillouin zone, (100), between X4, and Xi, with
bands nearly parallel in two directions (Fig. 1). The one-
dimensional character of the Ez peak arises from the
parallel behavior of these two bands along those two
directions. The different dimensionality of the E& and Eq
peaks explains the stronger peak at Ez compared to E]
with NIA and, as will be shown later, plays an important
role when the electron-hole attraction, i.e., the excitonic
effect, is included in the optical spectrum. A different in-
terpretation for the Ez peak of Vie is given by Aspnes'
and Chelikowsky and Cohen. This is discussed in Sec.
IV.
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B. Band structure around the I. point

The E& peak in Cardona's model comes from a three-
band k.p Hamiltonian around the L point, ( —,, —,', —,

'
),

which yields a two-dimensional optical density of states.
The k.p method is best suited to account for the fact
that the two highest valence bands 1.3„and the lowest
conduction band L &, are parallel along the [111]lines (ex-

cept near k=0) because of the absence of k.p coupling
between these bands for k along the [111]direction. To
show this, we choose the new set of axes (a,p, y) along
[110],[112],and [111],respectively.

The conduction wave function go(L„) transforms like

y under the point group which leaves I invariant, while
the valence wave functions 1(~(L3, ) and @//(L 3„)
transforms like (u, p). Under these conditions, the one-

particle Hamiltonian ( with a. measured from L) is given

by
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FIG. 1. Band structures of (a) silicon and (b) germanium. In

(a) the electronic transitions across the gap responsible for Eo,
El, and E2 are indicated by the vertical arrows. Our model

band structure (dashed lines) is compared with that of Ref. 21

(dotted lines).
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Note that we have replaced K& by —Kj in the second and
third diagonal elements of the Hamiltonian [Eq. (1)].
This modification has little effect on the optical energy
differences, since the main contribution to the curvature
of these bands is due to the coupling of the large matrix
element P, but it is made in order to reproduce the down-

ward bending of L of the valence bands along directions
normal to [111], as shown by the dashed lines for the
band structure of Ge in Fig. 2(b). The resulting eigen-

values for the conduction band c and the valence bands U
&

and uz are
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where 6 is half of the energy gap at the I. point and the
energies are measured from the middle of the gap. %'e
use the experimental values of the energy gaps at L, listed
in Ref. 21. These values are the extrapolations to zero
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FIG. 2. Band structures for (a) silicon and (b) germanium
along symmetry axes in the directions normal to [111}.Qnly the
uppermost valence bands and the lowest conduction band are in-
cluded. The energy of the conduction band at the I.. point is fit
to that of Ref. 21. In (b) our calculation (solid lines) is com-
pared with that of Ref. 5 (dashed lines).

temperature of the experimental results with the spin-
orbit splitting removed. The value of the matrix element
P in Eq. (2) is obtained from the transverse effective mass
mi at L. From Ref. 6, we use the calculated value
m i /rn =0. 130 for Si and the experimental value
mi/m=0. 081S for Ge. The band structure near L as
given by Eqs. (3) is shown in Figs. 1 and 2.

C. .Band structure around the X point

The Ez peak comes from the mixture of six plane
waves with wave vectors (+1,+ 1,0) and (0,0, + 1) coupled
by the (220)- and (111)-type matrix elements of the pseu-
dopotential around the X point in the extended zone. ' '

The coupling of the V22O component yields a nearly one-
dimensional optical density of states with a small splitting
along the [100] direction due to the coupling by the Viii
component.

Analytical expressions for the wave functions and ener-
gies of the lowest conduction bands (Xi symmetry) and of
the uppermost valence bands (X4 symmetry) around the X
point ar'e obtained by choosing a basis in which the Ham-
iltonian matrix is diagonal at the X point and then apply-
ing degenerate perturbation theory. The energies are

for the conduction bands. For each extended-zone or
Jones-zone face, the wave vector a =(~g, a.z, i~~) is defined
to have its origin at the X point with direction ~~ perpen-
dicular to the face, and directions ag, sc„along the face.
A, B, C, and D are positive coefficients expressible in
terms of Vi» and V220 (see Appendix). Along the [100]
direction, i.e., ~~——sr~

——0, the valence bands are degenerate
and the conduction bands split due to the presence of the
term Daz, which is zero in the two-plane wave model
where V&&& is neglected. The term Cv& arising from the
next-to-uppermost valence band states is negligible in the
neighborhood of X.

The values of V22o and Viii are adjusted to fit the ex-
perimental values ' of the energy gap, E(X~, ) E(X4„), —
and the position of the minimum of the conduction bands
along h. The position in k space of the lowest
conduction-band minimum in Si is known to be
0.1S(2m/a) as measured from the X point along h. For
Ge, the value 0.18(2n/a) is used. The resulting band
structures around point X for Si and Cxe are shown in
Fig. l, together with the corresponding band structures
calculated by Cohen and Bergstresser. '

This mixture of a k.p model around L and a multiple
plane-wave model around X is sufficiently simple for us
to calculate the absorption spectrum, both with and
without electron-hole interactions, and yet contains im-
portant features needed to reproduce the characteristics of
E& and E2 peaks.

III. OPTICAL SPECTRA FOR Si AND Ge

A. Noninteracting approximation

To calculate the optical spectra of Si and Ge in terms of
the one-particle band structure described in Sec. II, we
divide the k space into two regions in which integrations
are performed, Ql and Q~, centered around the L point
and X points, respectively. To facilitate the numerical in-
tegration procedure, each of these regions is chosen to be
composed of a set of right-angled parallelepipeds. In QL,
since our band model of Sec. IIB exhibits parallel bands
along the [111]direction indefinitely, we restrict integra-
tion along y axis up to the point at which the more accu-
rately calculated conduction and valence bands begin to be
significantly not parallel to each other; namely, at a frac-
tion ' 0.85 for Si and 0.70 for Ge of the distance between
L and I . Along both a and P axes, integrations are per-
formed around the L point up to a distance equal to half
of the segment LU, where our band structure is a good
approximation [see Fig. 2(b)]. Around each X point, the
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B. Excitonic effects

The electron-hole interaction is included in the optical
spectrum in terms of the two-particle Green's function. '

The equation of motion for this two-particle Green's
function S (the Bethe-Salpeter equation) has the form (see
Fig. 4)
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where S is the noninteracting electron-hole pair. In S,
we suppose that the electron and the hole propagators in-
clude all of the band-structure effects and the many-body
effects on the one-particle state. I is the electron-hole in-
teraction consisting of two parts: I„which is the
electron-hole attraction, suitably screened, responsible for
the excitonic effect; and Ib, which is the bare Coulomb in-
teraction between one electron-hole pair and another, re-
sponsible for the local-field effects (see Fig. 5). Close to
the Eo peak, i.e., for the electron transition near the direct
fundamental gap, Eq. (6) can be shown to reduce to the ef-
fective mass approximation (EMA), which adequately
accounts for the bound exciton lines and continuum exci-
tonic effect near Eo, with a small exchange correction.
The EMA is, however, invalid around the E~ and E2
peaks, since large regions of the phase space contribute to
the peaks.

The local-field effect, as produced by including Ib in I,
has been calculated for diamond' ' and silicon' ' in
both the plane wave' ' and the LCAO representa-
tion. ' ' In both representations, it is found that the
local-field effect reduces the intensity of a peak of the op-
tical spectrum in the NIA. In the plane-wave representa-
tion, the local-field correction is not very important.

In the following, we include only the excitonic effect in
the optical spectra of Si and Ge and keep only the term I,
in I. The Bethe-Salpeter equation can be written as

0 0 (}
SL SL SLIL L, SL ILX SL

Sx Sx S~I&L S+Ixx0 + 0 0 (&)

l

4 5

FIG. 3. Absorption spectra Ime of (a) silicon and (b) ger-
manium deduced from reflectivity t',Ref. 3) and calculated in a
simple model without interaction, e, and with interaction, e. In-
teraction between states in QL and those in Q~ are neglected.
The excitonic bound state below the E2 edge is shown as the 5-
function peak.

boundaries of Q~ are chosen to lie at the midpoint of the
segment XI' along the X directions and at a quarter of the
distance between X and I along [100] directions.

The dotted curves in Fig. 3 represent a calculation of
the optical spectra of Si and Ge in the NIA in terms of
our band-structure model in the regions QL and Qz. The
abrupt dip between the E~ and Ez peaks in the figures
marks the boundary between the contributions from the
QL, and Qz regions.

The qualitative features of the E~ and E2 peaks due to
one-electron theory are reproduced with E~ weaker than
experiment and E2 much stronger than experiment.

I 2
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E)ectron
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FIG. 4. The Bethe-Salpeter equation.

where the subscripts to S and I denote the restrictions of
the k vector to the region QL or Qz. For k in Qx, the
propagators and the interaction-matrix elements are given
in terms of the linear combination of plane waves. For k
in QL, they are given in terms of the k p representation
with the further approximation in the Coulomb interac-
tion matrix element that the spatial variation of the wave
function at I. is neglected. In other words, for
gk(r)=Fk(r)QL, (r), only Fk(r) enters the Coulomb in-
tegral.

We use the Penn model. for the static dielectric func-
tion to screen the Coulomb potential. Since the screened
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some of the strength is transferred. The electron-hole at-
traction for the states that contribute to E~ and E2
possesses a short-range character due to the large regions
of the phase space where it exists. The short-range nature
appears to be supported by the experimental work of Pol-
lak and Glembocki.

The mechanism by which the inclusion of the excitonic
effect in the simple model increases the height of the E~
peak and lowers that of the E2 peak, was explained by
Hanke and Sham' by invoking the dimensionality of the
peaks. Their conclusions were based on Kramers-Kronig
analysis of the step function discontinuity of the E~ peak,
and of the inverse square-root singularity of the E2. The
Kramers-Kronig analysis had not included the possibility
of bound states below either the E& or E2 edges.

The bound exciton state from E2 is in the continuum of
the E~ region, and is broadened by the interaction be-
tween the electrons in the two regions. This interaction
spreads the strength of the excitonic state, as can be seen
in Fig. 6, where the resultant resonant state manifests it-
self as the barely noticeable peaks at 3.51 and 3.78 eV in
the calculated optical spectra of Si and Ge, respectively.

As can be seen in Fig. 6, the corrections in the E& and
E2 peaks due to the excitonic effects are larger in Si than
in Ge. Also the bound state is closer to the E2 edge in Ge
than in Si.

Aspnes' observed a well-defined interband reduced
mass for the E2 peak in Ge that suggests a relatively
well-localized critical-point origin for this peak. In agree-
ment with this result, Chelikowsky and Cohen conclude
from a high-resolution band-structure calculation that the
Eq peak in Ge arises from a well-defined limited region in
the Brillouin zone, which is not on symmetry lines, and
lies close to the ( —,', —,', —,

'
) point. This region consists of a

nearly, if not completely, degenerate M&-Mq pair of criti-
cal points. This interpretation is not the same as the
quasi-one-dimensional model around the X point, ' on
which our exciton analysis is constructed. It is not clear
from the analysis of Aspnes, ' which comes from the
modulation spectroscopy, that the region suggested will
provide sufficient strength for the E2 peak. If the large

intensity is produced from this region, the exciton effects
may be qualitatively the same as in our model, although
we have not investigated the possibility.

We have only computed the absorption spectra for Si
and Ge. Since the broad featur'es of the band structure
utilized, namely, the dimensionality of the E& and E2
peaks are common to the large family of semiconductors
having structures of the zinc-blende type, namely, the
III-V and II-VI compounds, our conclusions concerning
the continuum excitonic effects on the E& and E2 peaks
are equally applicable to this family of semiconductors.
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APPENDIX

The coefficients utilized in Eqs. (4) and (5) to describe
the one-electron band energies around the X point are ex-
pressed in terms of the Fourier components of the pseudo-
potential, Vzzo ( & 0) and V», ( & 0), as follows:

A =(8 cos 8/es) —b,
B=4cos 8/es,
C=sin 28/(es+e~),
D=2sin 0,

(Al)

(A2)

(A3)

(A4)

where b =Pi /(2m), cos28=d/F, sin28= —v 2V», /F, d
=(b+ V22o)/2~ F=(d +2Vii&)', as= —b+(3V22o/2)
+F, and e' =b (3V22o/2)+F. e& is the energy gap at
X, E(X&,) —E(Xq„), and e is the energy difference be-
tween the uppermost and the next highest valence bands
at X, E(X4„) E(Xi„). —
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