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Optical properties of GaAs-Ga;_,Al,As and InAs-GaSb superlattices are studied within the
framework of tight-binding approximation. The momentum matrix elements between tight-binding
orbitals are related to those between Brillouin-zone-center Bloch states computed by a full-zone k-p
theory. The optical matrix elements of transitions from several valence subbands to several conduc-
tion subbands are calculated as functions of the well width and of the wave vector. It is found that
the mixing of the heavy- and light-hole components in the superlattice states gives rise to a large
variation in the optical matrix elements as k moves away from the zone center. The band mixing in
conjunction with the exciton effect leads to weak structures in the absorption spectrum which can
account for the forbidden transitions observed in several recent experiments.

I. INTRODUCTION

Semiconductor superlattices or quantum wells have
been studied extensively in recent years.!~!° The optical
properties (including photoabsorption, photoluminescence,
and light scattering) of these materials, especially GaAs-
Ga,;_,Al, As multilayer structures, have been investigated
experimentally by many groups.'°~!* Sai-Halasz et al.'°
have reported theoretical calculations on the absorption
coefficient of semiconductor superlattices based on a sim-
ple envelope-function approximation (EFA). The EFA
calculation is able to predict the general features of the
absorption spectrum, but it cannot explain certain weak
structures corresponding to the ‘“forbidden” transi-
tions.!12

In this paper we report detailed theoretical calculations
of the optical properties of semiconductor superlattices,
based on a realistic tight-binding model. The interacting
parameters in our tight-binding model are adjusted to
reproduce the experimentally determined band gaps and
the electron and hole effective masses. Both GaAs-
Ga;_,Al,As and InAs-GaSb superlattices are considered.
In the accompanying paper!® (hereafter referred to as I)
we demonstrated the importance of using a many-band
tight-binding representation to describe. the superlattice
electronic states, particularly when they contain strong
admixtures of several bulk bands. Although such mixing
does not alter the superlattice energy levels appreciably
(about 20%), it can sometimes lead to substantial modifi-
cation of optical properties. )

We have previously reported the effect of band mixing
on the optical properties of GaAs-Ga,;_,Al,As superlat-
tices.” We found that the mixing of heavy-hole (HH) and
light-hole (LH) bulk states in the superlattice valence sub-
band states at the zone center can lead to a crossover
behavior of the optical matrix elements as the well thick-
ness is varied. We also speculated that the LH-HH mix-
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ing in superlattice valence subbands away from the zone
center in conjunction with the exciton effect may account
for the weak structure corresponding to the forbidden
HH3-CBI1 (CB is the conduction band) transition observed
in several experimental spectra.!!~13

In this paper, we extend the previous work to include
the dependence of the optical matrix element on the wave
vector (k). We find that the optical matrix elements asso-
ciated with various valence- to conduction-subband transi-
tions are very sensitive to the variation of the wave vector
in directions parallel to the interface (k,). This is a result
of complicated band-mixing effects at k,50 in the
valence-subband states. The same effect also causes the
valence-subband energies of the superlattice to be rather
complicated functions of k,. Both complications in the
valence-band structures and optical matrix element have
important effects on the photoabsorption of the superlat-
tice. By including the exciton effect in a simple model,
we are able to obtain a theoretical absorption spectrum of
a superlattice in very good agreement with the experimen-
tally measured spectrum. We confirm the previous specu-
lation that the combination of band mixing and the exci-
ton effect can give rise to a weak structure corresponding
to the forbidden HH3-CBI1 transition. In addition, we re-
port theoretical studies on the optical properties of InAs-
GaSb superlattices.

In Sec. II we describe the theoretical model used, giving
the procedures for determining the momentum matrix ele-
ments between the tight-binding basis states and discuss
the symmetry properties of the superlattice eigenstates as
well as the selection rules for interband optical transitions
in the superlattice. In Sec. III we discuss the resulting op-
tical matrix elements squared for various valence to
conduction-band transitions as functions of the well width
and the parallel wave vector (k,) as well as the theoretical-
ly predicted photoabsorption spectra for some sample
GaAs-Ga,;_,Al, As and InAs-GaSb superlattices. In Sec.
IV some concluding remarks are provided.
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II. THEORY

The optical property of concern here is the photoab-
sorption of the semiconductor superlattice. The optical
matrix elements studied here for absorption may also be
used to analyze other optical properties, such as photo-
luminescence and photoconductivity.

The absorption coefficient of a superlattice is given by'®
(apart from a constant factor)

a(ﬁw)=% S 3 |ePu(k,9|?

kg n',n

X8(E,(k;,q)—E,(k,,q) —#w) , (1)

where @ denotes the direction. of polarization and
P,.(k;,q)={n"k;,q |p|nk;q) denotes the momentum
matrix element between superlattice eigenstates associated
with the n'th and nth subbands. The symbols k, and g
designate the projections of the wave vector in the plane
parallel to the interface and along the axis perpendicular
to the interface, respectively, E,(k,,q) the energy associat-
ed with the eigenstate |n,k,,q).

To evaluate a(#iw) for a realistic superlattice, we need
to know the detailed energy spectra and the momentum
matrix elements between various electronic states. In the
present calculation, we adopt a tight-binding method.
The electronic eigenstates of a superlattice are expanded
in terms of planar atomic orbitals, ¥,(k,,/). These are
two-dimensional Bloch sums of atomic orbitals in a plane
parallel to the interface, where a denotes the orbital sym-
metry (s,x,,Z,...) and I denotes the position of the
atomic plane. The expansion can be written as

,n’kt’q>=2 Ag (kgD | ¢'a(kul)> , (2)

a,l

where / runs over all atomic planes of the whole superlat-
tice. The energy spectra E,(k,,q) and the expansion coef-
ficients (also known as the envelope function) A47%(k,,q,!)
can be obtained by the “reduced Hamiltonian” method as
described in Ref. 17. The tight-binding model adopted
here is identical to that of I. Five atomic orbitals (labeled
with s*, s, x, y, z) per atomic site are used.

A. Momentum matrix elements

The momentum matrix element P,,(k;,q) can be writ-
ten in terms of the coefficients A (k,,q,/) and the
momentum matrix elements between planar atomic orbi-
tals

Pun(ks,q)= 2 A:*(k,,q,l)A Z:(kt’q’l,)

i
X Yok, D) | P | Yorlks 1)) (3)

In our tight-binding model, the atomic orbitals are suf-
ficiently localized so that the momentum matrix elements
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between atoms separated by more than first-neighbor dis-
tance can be neglected. Furthermore, for the direct super-
lattice of interest here, the low-lying conduction subband
states are almost purely s like and the valence subband
states are almost purely p like. Therefore, the optical ma-
trix elements involving transitions between two s-like or-
bitals or two p-like orbitals can be ignored. Furthermore,
the transitions involving s*-like orbitals are ignored.
These considerations leave us with only four independent
parameters to determine for each constituent material.
These parameters are

Poa=i{ds(1,) | Px |¢x('ra)>(2/me)l/2 >

Poe=i{(1.) | px | $x(7.))(2/m)' 2
(4)
Poe =i ¢s(7,) | Px |¢x(Tc)>(2/me)l/2 ’

Pca:i<¢s(Tc) lpx |¢x(Ta)>(2/me)l/2 s

where ¢,(7) denotes an atomic orbital of symmetry «, lo-
cated at the position 7. 7, and 7, indicate the anion and
cation positions in the unit cell. (m, is the free-electron
mass.) The other momentum matrix elements can be in-
ferred by symmetry. The matrix {{y(k,,)) | p | ¥o(ks,I'))
can be written in terms of P, P, P,., and P,,.

The parameters P,,, P., P,., and P, can be directly
related to the optical matrix elements associated with
various interband transitions for the bulk material, which
can be either measured experimentally or calculated by

‘'other reliable theoretical techniques.'®!” The relations are

provided by writing the bulk Bloch states of various bands
at k=0 in terms of our tightbinding orbitals and calculat-
ing the interband transitions with these states. At k=0,
the bulk Bloch states can be described in terms of the
atomic orbitals as bonding and antibonding states, viz.,

71_1\72[0(% | R472))+CF | o R+7))] ,
R

I a, + ) =

(5)
where a=s, x, y, z, s*. R denotes the lattice vectors and
N is a normalization constant. C{ and C are expansion
coefficients. In this notation, the four valence-band states
at-k=0 are designated by |s,+), | x,—), |y,—), and
| z,— ), and the four lowest conduction-band states are
designated by |s,—), | x,+), |»,+), and |z, +). In-
troducing the notations

P, =i{s,+ |px | x,+)2/m)"?,
P, _=i{s,+ |py|x,—)2/m)?,

P_,=i(s,— |px|x, 4+ )2/m)?, ©
P__=i(s,— |py|x,— )2/m,)?,
we obtain the relation
Pu creh ¢ cfes  cocr | [P,y
4P, C;Ct —cfct cyc; —cicH||P._
4P, |~ |CHCr Crcr —cier —cFer | Py
P C;C —Ccfcy —cyct cfclr | |P--

0))
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TABLE 1. Matrix elements of V'~ (in rydbergs). The notation is the same as in Ref. 19.

Material VT vy vy Vi Vs Vs
AlAs 0.14359 —0.10863 0.14371 0.164 60 —0.00047 0.0
GaSb 0.09315 —0.044925 0.057 68 0.058 40 —0.10517 0.0
InAs 0.14090 —0.18320 0.085 70 0.10090 023290 0.0

In the present paper the parameters P, ., P, _, P__,
and P__ are extracted from the result of a full-zone k-p
calculation.!®!® The k'p parameters for GaAs are taken
from Ref. 19. For AlAs we use the average k-p parame-
ters of Si and Ge, and for GaSb and InAs we use the aver-
age of Ge and a-Sn. The matrix elements of the antisym-
metric potential’® (¥ ~) for these materials are adjusted to
fit the experimentally measured optical gaps. The result-
ing matrix elements are listed in Table I. In Table II we
list the parameters P,,, P,., P,,, and P, for GaAs, AlAs,
InAs, and GaSb obtained from using Eq. (7).

B. Computation of the absorption coefficient

In a zeroth-order approximation, one may ignore the
dependence of the matrix element P,,(k;,q) on k, and q.
Then Eq. (1) is simplified to

a#io)="1 3 | EPm(0) | Joplfics) , ®)
D pin

where P,,/(0) is the momentum matrix element evaluated
at the zone center p,,(#w) is the joint density of states as-
sociated with the nth valence subband and the »n’th con-
duction subband. The approximate expression (8) is com-
monly adopted and gives a reasonable description of the
actual absorption spectrum, but it fails to explain some
weak structures existing in the experimentally measured
absorption spectrum.

To explain these structures, we must take into account
the wave-vector dependence of the matrix elements
P,.(k;,q). The q dependence is usually negligible for su-
perlattices with wide barriers in which case all quantum
wells are decoupled. We also take into account the non-
parabolicity of the valence-band structure. The band
structure for the valence subbands are far from parabolic,
even for very small values of k,. This is due to the in-
teraction between the closely spaced valence subbands
which have different effective masses. In particular some
valence subbands tend to cross each other at certain
nonzero values of k,. Figure 1 demonstrates a typical
valence-band structure of a GaAs-Ga,_,Al, As superlat-
tice whose optical properties will be studied in detail in
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the next section. It is noted that the first light-hole sub-
band (LH1) and the third heavy-hole subband (HH3) tend
to cross each other at k,~0.012(27/a). The second
valence subband (HH2) is found to have a negative effec-
tive mass (opposite to the normal-hole mass) at the zone
center and is indirect in the sense it has a maximum at a
nonzero value of k,. Furthermore, it tends to cross the
first subband (HH1), thus giving rise to a dip in the HH1
subband at k,~0.008(27/a).

To simplify the computation, we assume that both the
band structure and the matrix element P,,(k,,q) depend
only on the absolute value of k, (i.e., we ignore the aniso-
tropy in the x-y plane). This is found to be a good ap-
proximation as can be seen from Fig. 1. With this ap-
proximation the summation over k;, in (1) can be replaced
by a one-dimensional integral over k,. For thick superlat-
tices, we ignore the g dependence. The squared optical
matrix element and energy values are computed at 10—20
sampling k, points along a given direction ([100] or [110])
over the range of interest. These values on a much finer
mesh (about 200 points) are then interpolated by cubic
splines. Finally the integral over k, in (1) is performed
numerically. For thin superlattices, we assume that the
subband energy (E,) and the squared optical matrix ele-
ment (Q,,’) can be approximated by the expressions

E,(k,,q)=E,(k,,0)+E,(0,q)—E,(0,0) (9a)
and

an'(knq)=an‘(knO)an’(O,q)/an’(o’o) ’ (9b)
where

Onn'(ks,q)= 2 lg'Pnn'(kt’q) | 2.

me

The expression (9a) is appropriate for E, because it
reduces to the effective-mass approximation in the limit
of small k, and q. The expression 9(b) is appropriate for
Qnn because it ensures positive values of Q,, at any k,
and g. For small values of k, and g, the expressions 9(a)
and 9(b) are nearly equivalent. The functions E,(0,q) and
Q,,(0,q) are also calculated on about ten sampling ¢

TABLE II. Optical matrix elements between tight-binding orbitals. The unit is (€V)!/2

Material Py P, P, P,
GaAs 2.860 0.265 —0.960 2.485
AlAs 2.896 0.081 —0.868 1.876
InAs 2.403 0.116 —0.866 2.349
GaSb 3.006 0.115 —0.804 1.992
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FIG. 1. Valence-subband energies of the (68/71) GaAs-
Gayg.75Alg 25As(001) superlattice plotted as functions of the paral-
lel wave vector (k,) along the [100] and [110] directions.

points along the [001] direction, and then interpolated by
cubic splines. The two-dimensional integral over k, and ¢
in (1) is then performed numerically.

C. Symmetry properties and selection rules

In order to analyze the optical properties of the super-
lattice, it is essential to understand the symmetry proper-
ties of the electronic states involved. Because of the in-
clusion of the spin-orbit interaction in our tight-binding
model, it is more convenient to describe the superlattice
electronic states in terms of a set of atomic basis states
which are eigenstates of the total angular momentum (the
vector addition of the spin and the atomic orbital angular
momentum). This set of basis states are linear combina-
tions of the products of the atomic orbitals, ¢,, and the
spinors (denoted by 1 or |). They are given by

mC=¢; ’
V=0,
opn=— (g5 +i¢})/V2, (10)

ora=(¢x —id,+2¢;)/V'6,
wso=(¢5—id,—¢;)/V3

and their charge conjugates: @¢, &, D> DLH, and Dso.
The charge conjugates @; (j =C, C*, HH, LH, SO) are re-
lated to w; by flipping the spin and changing ¢, to —¢,.
At the Zone center, the bulk conduction, heavy-hole,
light-hole, and split-off (SO) states are just the antibond-
ing and bonding states made up of the wc, wgy, wLo, and
wgo atomic orbitals associated with the anion and cation.
For the superlattice, if we consider the case k,=0, then
the two sets of {w;} and {@;} are decoupled and all the
superlattice energy levels are doubly degenerate. Let us
consider the symmetry property of the bulk tight-binding
. Hamiltonian (H) written in the basis set {w;}. For
k,=0, one can show that H is invariant under the
transformation: @c—oc, Ox—>Ox; OHH—>OHH, ©OLH
— —ory, Wso— —wso, and k,— —k,, where z is the

direction perpendicular to the interface. The above sym-
metry property implies that the light-hole and split-off
components are odd and the conduction (C) and heavy-
hole (HH) components are even under the reflection with
respect to the x-y plane. Similar to Eq. (2), the superlat-
tice electronic states | n,k;,q) can be expanded in terms
of a new set of planar atomic orbitals ¥;(k,,/) which are
related to the old planar orbitals ¥,(k,,/) by the transfor-
mation given in Eq. (10). Thus

=3 A/k.,q,D | ¥;(k,;,D) . (11)

il
Here j =C,C*, HH, LH, SO, and their charge conjugates.
The A;(]) (omitting the label k;,q) shall be referred to as
the j-component envelope function. When the superlattice
is dominated by only one j component, the associated en-
velope function 4;(I) may be obtained to a good approxi-
mation by the envelope-function method (EFM) and the
symmetry of A4;(/) is determined by the principal quan-
tum number #n. For example, for the highest valence sub-
band state (VBI1), the heavy-hole component dominates
and n=1. Thus A}t (]) and ALP'(I) are even, whereas

AYBI () and AZ8'(]) are odd under the transformation
l — —l (I =0 at the center of the well). It is interesting to
note that in any superlattice state the HH and C-
component envelope functions of a given parity are al-
ways mixed with the LH and SO-component envelope
functions of the opposite parity. As described in I, the
valence-subband states identified as the n =2 heavy-hole
(HH2) state and the n =1 light-hole (LH1) state can cou-
ple to each other strongly, when their energies become
close to each other at certain well width. This coupling
can lead to a crossover phenomenon in the optical transi-
tions as will be demonstrated in the next section.

For k,=£0, the situation is somewhat more complicated.
In this case, the two sets {w;} and {&;} are coupled to-
gether and every superlattice state contains all ten com-
ponents. To analyze the symmetry property of the en-
velope function associated with each component, we con-
sider the bulk Luttinger-Kohn Hamiltonian® [ Hy(k)] for
describing the hole near the zone center (assuming infinite
spin-orbit splitting)

P+Q L M O
L* P-Q O M

I n’kt:q)

Hyk)= M* 0 P-Q L , (12)
o M* L* P4Q
where
P=7/lk2,

Q =y ki+kl—2k7),
L = —2V3y;(k, —ik, )k, ,
= —V3yykI—k})+i2V3yskk, ,

and ¥, ¥, and y; are the Luttinger parameters. The
basis states for the above 4 X4 matrix are wyy, Oy, DL,
and @yy. To adapt this Hamiltonian to the (001) super-
lattice, we replace the z component of the wave vector k,
by the operator (P,/#) which operates on the envelope
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functions. The parallel components of the wave vector k,
and k, remain good quantum numbers. For a fixed value
of k,=(ky,k,), we see that wyy is coupled with oy by a
term (L) proportional to P,, and with &y by a term (M)
independent of P,. Because P, is odd under the reflection
with respect to the x-y plane, an even HH-component en-
velope function will be coupled with an odd LH-
component and an even LH-component envelope function,
and vice versa: A similar argument applies to the cou-
pling of @yy with @y and wry. The two sets of envelope
functions (even HH, odd LH, even LH, odd HH) and (odd
HH, even LH, odd LH, even HH) are decoupled as far as
H, is concerned. In the envelope-function approxima-
tion, one assumes that the superlattice potential is diago-
nal in the basis used; thus all energy levels are doubly de-
generate.

The above discussion may cause some confusion, since
in the bulk semiconductor, there exists no degeneracy at a
general k point (both k,540 and k,5£0). However, be-
cause the bulk Hamiltonian is invariant under time rever-
sal and the operation (x— —x and y— —y), we have
E (k,,k,)=E (k;,—k,), and the Bloch states ¥(k;,k,) and
Y(k,, —k,) are related by the charge conjugation and the
operation (z— —z). The superlattice potential mixes two
pairs of spin-split heavy-hole states and two pairs of
light-hole states at k, and — k, together. If the potential
is diagonal in the basis (HH, LH, LH, HH), then the diag-
onalization will result in four pairs of doubly degenerate
superlattice states. In the tight-binding model, the poten-
tial contains off-diagonal terms which will split the de-
generacy and couple even and odd envelope functions as-
sociated with all components together. This leads to
asymmetry envelope functions for all components in the
superlattice valence subband states when k,%0. This
kind of result is not obtainable from the envelope-function
approach.

The selection rules for optical transitions in superlat-
tices are intimately related to the symmetry properties dis-
cussed above. It is generally accepted that based on the
envelope-function analysis, the optical transitions in su-
perlattices must satisfy the selection rule An =0. This is
because the overlap of envelope functions associated with
the conduction and valence subbands vanishes when
An=£0. This selection rule is invalidated when states as-
sociated with different n (defined in EFM) are coupled to-
gether in a given superlattice state. This is found to be
the case for the optical transitions involving the second
and third valence subbands, because of the mixing of LH1
and HH2 states mentioned above. Besides this special
case (which only occurs for superlattices of some particu-
lar well widths), the An =0 selection rule is also not valid
when we consider the k,£0 case. This is due to the cou-
pling of HH and LH envelope functions of both parities
at k;5%0. Thus some weak structures will become present
in the absorption spectrum near the energy region which
is forbidden according to the An =0 selection rule.

The selection rules for different polarization of the in-
cident light can also be established. Since the
conduction-subband states are almost purely s like, for
light polarized along the z direction only transitions asso-
ciated with the LH and SO components are possible,
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whereas for light polarized along the [ x,y] direction, tran-
sitions associated with the HH, LH, and SO components
are all possible. For the (x,y)-polarized case, the oscilla-
tor strength of the HH component is three times that of
the LH component since

| {oc|px |oun) |*=3]| (oc|px | oru) |*.

[See Eq. (10).]

III. RESULTS AND DISCUSSIONS

A. GaAs-Ga,;_,Al,As superlattices

We shall first discuss the behavior of the squared opti-
cal matrix elements Q,,(k,,q), and then the absorption
coefficients. In Fig. 2 the squared optical matrix elements
at zone center, Q,,/(0,0), for transitions from the highest
three valence subbands (labeled VB1-VB3) to the two
lowest conduction subbands (labeled CB1 and CB2) for
GaAs-Gag 7Aly 3As superlattices with 20 alloy layers
(M =20) are plotted as functions of the number of GaAs
layers (N). The corresponding energy levels for the
valence subbands as functions of N have been shown in
Fig. 6 of I. The strength of the optical matrix element de-
pends on the polarization of the incident light, €. In Fig.-
2, (z) denotes the component perpendicular to the inter-
face, and (x,y) denotes the sum of the x and y com-
ponents [i.e., (2/m,)( |X-Puy |2+ | §Puw | 2)]. For unpo-
larized light propagating perpendicular to the interface
{the normal experimental condition), the squared optical
matrix elements are one-half of those shown by the curves
labeled with (x,y). The matrix element for the VB1-CB1
transition has the (x,y) component only and is almost in-
dependent of the GaAs well width. The matrix elements
for the VB2-CB1 and VB3-CBl1 transitions cross each
other at N~68. The behavior of the matrix elements as
functions of N can be understood by examining the super-
lattice wave functions of the valence-band states (VBI1-
VB3). As described in I, the VBI state is dominated by
the heavy-hole bulk state for any N, whereas the VB2 and
VB3 states contain admixtures of heavy- and light-hole

T T T T T T T
(N/20) GaAs-Gag 7Alg3As Superlattice

25 VBI-CBI (x,y) n
O VB3-CB2(xy) TN ,77VB2-CB2(x,y)
\ /
3 /
\ /
\ /
\./  ve3-cei(z)
vB2-CBI (z)

VB2-CBI(xy)

Squared Optical Matrix Element (eV)
o

————— i I
0 30 40 50 60 70 80 90 100
Number of GaAs Layers(N)

no

FIG. 2. Squared optical matrix elements for GaAs-
Gag ;Alg 3As superlattices with 20 alloy layers plotted as func-
tions of the number of GaAs layers (N).
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bulk states which vary with N. At N much less than N,
(the layer thickness at which the crossing occurs) the VB2
and VB3 states can be identified as the first light-hole
(LH]1) and the second heavy-hole (HH?2) states, respective-
ly. At N much greater than N_, the two states switch
roles. At N near N,, the two states have comparable ad-
mixtures of the heavy-hole and light-hole bulk states.
Since the overlap between the envelope functions of the
HH2 and CBI states vanishes, the magnitude of the ma-
trix element is determined by the amount of LH1 charac-
ter in the two valence-band states. Therefore, the ratio of
the x component to the z component in the squared opti-
cal matrix element is approximately 1:4 [see Eq. (10)].
Furthermore, a crossing behavior in the optical matrix
element occurs due to the varying strength of LH1 com-
ponents in the two valence-band states.

As shown in Fig. 2, the mixing of LH1 and HH2 states
also leads to a crossing behavior in the optical matrix ele-
ments for the transitions from the VB2 and VB3 states to
the CB2 state. In this case the magnitude of the matrix
element is determined by the amount of HH2 component
in the valence-subband states. Hence, the z-component
matrix element vanishes.

The aforementioned HH2-LH1 crossing effect should
be found in all GaAs-Ga,_,Al As superlattices, but the
value of N, will depend on the composition x and the
number of layers of the barrier material (M). The value
of N, as a function of M for various alloy compositions
of the barrier material has been illustrated in Fig. 9 of L.

Next, we discuss the dependence of squared optical ma-
trix elements Q,,(k,,0) on the parallel wave vector,
k;. We consider a GaAs-Gag 75Alg ,5As (001) superlat-

tice with 68 GaAs layers (190 A) and 71 alloy layers (200
A). The valence-band structures along the [100] and
[110] directions have been shown in Fig. 1. The (x,y) and
z component squared optical matrix elements as functions
of k, for transitions from the top four valence subbands
to the first conduction subbands are shown in Figs. 3 and
4, respectively. In each transition, two nearly degenerate

T T T T T T
(68/71) GaAs-Gag 74Alp.25As Superlattice

™ (x,y) component

Squared Optical Matrix Element {eV)

(= L 1 L L
004 003 002 00 0 00l 002 003 004
-—[uol k() [100)—~

FIG. 3. (x,y) component squared optical matrix elements for
the (68/71) GaAs-Gag 75Alp25As(001) superlattice plotted as
functions of the parallel wave vector (k,) along the [100] and
[110] directions.
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T T T T T T

(68/71) Ga As-Gag 7580, p5AS Superlattice

z-component

Squared Optical Matrix Element(eV)

1 1
0.04 0.03 0.02 0.01 o 0.0t 0.02 0.03 0.04
-—[110] K& [100)—

FIG. 4. z-component squared optical matrix elements for the
(68/71) GaAs-Gag 75-Alg»5sAs(001) superlattice plotted as func-
tions of the parallel wave vector (k,) along the [100] and [110]
directions.

7

valence and conduction subbands are involved. For each
squared optical matrix element we have summed over the
two final conduction states and averaged over the two ini-
tial valence states. We found dramatic changes in the op-
tical matrix elements as k, is varied over a small range
(one-twentieth of the Brillouin zone). This is due to the
strong mixing between various HH and LH components
by the off-diagonal terms of H given in (12). The varia-
tion of the optical matrix elements can also be understood
qualitatively by considering the mixing of various valence
subbands at k,>+0. From Fig. 1, we see that HH1 and
HH2 interact strongly at k,~0.01(277/a). This leads to a
large reduction in the HH1-CBI1 transition and a compen-
sating enhancement in the HH2-CBI1 transition near
k,=0.01(27/a) (see Fig. 3). Similarly, the mixing of
LH1 and HH3 at k,~0.01(27/a) gives rise to the cross-
over behavior in the optical matrix elements of the LH1-
CB1 and HH3-CB1 transitions. Analogous effects are
also seen in Fig. 4. It is noted from Figs. 3 and 4 that all
pairs of optical transitions are dipole allowed at k,<0
This finding is different from what one would expect
from a simple envelope-function approach which consid-
ers one conduction and one valence band only.!° To give
more insight into the band-mixing phenomena at k,50,
we show in Fig. 5 the valence-subband wave functions of
VBI1 and VB2 at k,=(0.01,0)(27/a) as well as those of
VB3 and VB4 at k,=(0.012,0)(27/a), where the strong-
est band mixing occurs. We have plotted the sum of the
squared anion and cation coefficients associated with the
HH (solid), HH (dotted), LH (dashed), and LH (dotted-
dashed) components. Since each subband is nearly doubly
degenerate, the wave function of the two states of each
pair are nearly identical with the w; components replaced
by @;. Thus only one state per subband is shown. The j-
component squared amplitude at a layer / is defined as
| A}(k,q,]) |*> summed over the anion and cation contri-
butions. As shown in this figure, all four wave functions
have strong admixtures of heavy- and light-hole com-
ponents. Furthermore, the envelope functions no longer

- have well-defined parity.

Finally, we discuss the absorption spectrum calculated
by the method described in Sec. II B. Figure 6 shows the
absorption coefficients for separate transitions between
the top six valence subbands (VB1-VB6) and the bottom
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for the (68/71) GaAs-Gag 75Aly 25As superlattice.

two conduction subbands (CB1 and CB2), each subband
being nearly doubly degenerate. Figure 7 shows the total
absorption coefficient from VB1-VB6 to CB1-CB3. We
assume that the incident light is propagating perpendicu-
lar to the interface; thus only the (x,y) component is con-
sidered. It is found that the overall shape of the absorp-
tion coefficient is close to the staircase function as
predicted by the simple approximation described by (8),
although each step tends to decline somewhat toward the
high-energy side. The decline is faster than the 1/w fac-
tor introduced in (1) and is due to the decrease of momen-
tum matrix element with increasing k,, as can be seen in
Fig. 3. Note that the absorption coefficient in Figs. 6 and
7 is truncated at fiw~1.6 eV, above which the VBI1 states
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FIG. 6. Absorption coefficient corresponding to separate op-
tical transitions from the VB1-VB6 to CB1 (top panel) and to
CB2 (bottom panel) for the (68/71) GaAs-Gag 75Aly 2sAs super-
lattice.
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FIG. 7. Absorption coefficient of the (68/71) GaAs-
Gay 75Alp 25As superlattice.

with k; > 0.04(27/a) begin to contribute and the spherical
approximation used will gradually become invalid (see
Fig. 1).

Despite the strong variation of the squared matrix ele-
ments for various pairs of optical transitions, the net ab-
sorption spectrum remains nearly structureless, except for
a small sharp peak marked HH2-CB2. This is not
surprising, since the sum of oscillator strengths for optical
transitions from any two interacting valence states to a
given conduction state must remain constant despite the
mixing. However, when the exciton effect is also taken
into account, we expect that the inclusion of band mixing
will lead to nonzero oscillator strength for some excitons
which are otherwise optically inactive. The sharp peak
marked HH2-CB2 deserves some mention. This sharp
peak arises from the negative effective mass of the HH2
subband at the zone center (see Fig. 1). If the effective
mass of this subband can be adjusted by changing the
GaAs well width and the barrier-alloy concentration such
that it equals the negative of the electron effective mass,
then a singularity in the joint density of states results, and
a 8-function—type structure would occur in the absorp-
tion spectrum. Sanders and Chang?' have made a sys-
tematic study of such a phenomenon in modulation-doped
semiconductor quantum wells using a multiband
effective-mass approach which is also capable of includ-
ing the heavy- and light-hole mixing at k,50. They
found that such a strong sharp peak can indeed be created
if one chooses a GaAs well width of ~100 A and a
barrier-alloy composition (x) of ~0.4.

To facilitate comparison with the experimental data, we
need to include the exciton effect as well. Since the paper
puts emphasis on the band-to-band transition, we shall use
a very simple model to describe the exciton effect. We as-
sume that (i) the binding energy of the two-dimensional
exciton is about 7 meV (Ref. 22) for all pairs of transi-
tions. (ii) The absorption for each exciton is described by
a Lorentzian function (foI/7)/[(E —Eq)*+T?] with
half width I" which is adjusted to mimic the experimental
structure, and (iii) the oscillator strength (f) of each exci-
ton peak is given by

N 2
fo=|3 ®ex(k,)eP,,(k,,0) | ,
k

t
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where ®.,(k;) is the exciton envelope function in k, space.
In the spherical approximation, the two-dimensional exci-
ton has an envelope function

172
1

2 _e—P/"o[pE(x2+y2)1/2]
Qo

q’ex(p) =

and a binding energy E, =(e?/eya,), where a, is the ra-
dius of the exciton. Thus for E, =7 meV, ap~144 A and

Ver

ag

D (k,)= (k2+1/ad)37% .

Given the interband optical matrix element €P,,(k,,0) as
a function of k,, the oscillator strength f can be evaluat-
ed.

The result of including the exciton effect and the corre-
sponding experimental data obtained from Ref. 13 are
shown in Fig. 8. The entire spectrum is scaled such that
the integrated strength (f,) of the HH2-CB2 exciton
agrees with the data. The broadening widths (I") which
fit the six prominent exciton peaks are 1,1, 2,2, 4, and 6
meV. The band-to-band transition has also been
broadened by a Lorentzian function with a half width
I'=2 meV and scaled to match the experimental data.
The agreement between theory and experiment is fairly
good. The previously unexplained structure indicated by
a question mark is now accounted for by the hump result-
ing from the HH3-CBl transition. This transition is no
longer forbidden when we take into account the k,=0
contributions. As shown in Fig. 3, the squared optical
matrix element for the HH3-CBI1 transition (labeled by 4)
increases with k, and reaches a value of about 20% of the
zone-center HH1-CB1 transition at k,=0.017(27/a).

(68/71)GaAs ~Gag 75 Al o5 As Superlattice

n=|
L Experiment

Theory

HH2

Absorption Coefficient (arbitrary units)

1 1 L
.50 1.55 1.60 1.65 1.70
Photon Energy Tiw (eV)

FIG. 8. Theoretical and experimental absorption coefficient
of the (68/71) GaAs-Gay 15Alp,sAs superlattice, including the
exciton effect. The experimental spectrum was taken by
R. Dingle (Ref. 13). The theoretical spectrum has been rigidly
shifted in energy for direct comparison.
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This is a result of the band-mixing effect discussed in Sec.
IIC. There is, however, a discrepancy between the theory
and experiment: The theoretically predicted energy of
this hump is about 5 meV too low. This could be due to
the fact that the hole effective masses used here are dif-
ferent from the “true” effective masses. The heavy-hole
effective mass used here is 0.45m,.2> However, the value
deduced from the k-p theory by Lawaetz** is 0.35m,. If
the latter value is used, then the energy of this hump will
agree with the experimental data to within 1 meV. Note
that the exciton binding energy used here should also have
an uncertainty of at least 1 meV.

B. InAs-GaSb superlattices

InAs-GaSb  superlattices  differ from  GaAs-
Ga,_,Al,As superlattices in that the electron and hole
are confined in different materials. The spatial separation
of the electron and hole substantially suppresses the
strength of possible optical transitions between
conduction- and valence-subband states. Thus interesting
optical properties are found only in superlattices of small
well width. The squared optical matrix elements at zone
center Q,,(0,0) for transitions from the highest three
valence subbands (labeled VB1-VB3) to the lowest two
conduction subbands (labeled CB1 and CB2) for InAs-
GaSb superlattices with 10 InAs layers (M =10) are plot-
ted as functions of the number of GaSb layers (N) in Fig.
9. The corresponding valence subband energies as func-
tions of N have been shown in Fig. 14 of L.

We find that the squared optical matrix element for the
VB1-CB1 (or HH1-CB1) transition decreases monotoni-
cally with increasing N. In the units used here, the bulk
InAs and GaSb optical matrix elements squared
[(2/m,)| {s| P, |x)|?] are 20.9 and 20.1 eV, respective-
ly. - The squared optical matrix elements for VB2-CBl
and VB3-CBI1 cross each other at N~15 due to the LH1-
HH2 mixing effect. The sum of Q,, for all polarizations
associated with these two transitions is equal to the LH1-
CB1 oscillator strength in the absence of the LH1-HH2

L T T T T T T T T
(I0/N) InAs-GaSb Superlattice

Transitions to CBI

vB3(x,y)

Squared Optical Matrix Element (eV)

1 1 1 1 |
5 10 15 20 25 30 35 40 45

Number of GaSb Layers(N)

FIG. 9. Squared optical matrix elements for InAs-GaSb su-
perlattices with 10 InAs layers plotted as functions of the num-
ber of GaSb layers (N).
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mixing. This unmixed LH1-CB1 oscillator strength de-
creases monotonically with increasing N and is found to
be nearly twice as large as the HHI1-CB1 oscillator
strength for all N. In comparison, for the GaAs-
Ga;_,Al, As superlattice, the HH1-CB1 and the unmixed
LH1-CB1 oscillator strengths are nearly identical for all
N (see Fig. 2).

We can understand the behavior of the optlcal matrix
elements described above qualitatively by analyzing the
superlattice wave functions. Because of the spatial
separation of the conduction- and valence-band states, the
magnitude of the optical matrix element is essentially
determined by the decay lengths in the barrier material
(InAs for the valence-band states or GaSb for the
conduction-band states) in the initial and final states. In
the envelope-function approximation, the (n =1) optical
matrix element is proportional to the overlap integral
given by

1
V'S§:S,

Na'  _z/p
fo e Ycos(k,z)dz

Ma' /)
+f0 e § ZCOS(klz)dZ ’ (13)

where S,,S, are the normalization constants, which are
approximately proportional to M and N. A,A, are the
decay lengths and k,,k, are the allowed wave numbers
associated with the conduction and valence states. a’ is
the layer thickness (a’=3.05 A). Hence, for sufficiently
large N(>10), the first integral inside the large
parentheses of (13) is nearly constant and the oscillator
strength goes approximately as 1/N. We define the decay
length as the inverse of the imaginary part of the complex
wave vector associated with the energy of the superlattice
state. The complex band structures of InAs and GaSb
have been shown in Fig. 10 of I. For N between 5 and 45
the conduction-state decay length (A) is between 6a’ and
9a’; the valence-band decay length (A,) for the HH com-
ponent is between 1.5a’ and 1.7a’ and that for the LH
component is between 13a’ and infinity (see Figs. 10 and
14 of I). Thus, for the HH1-CBI1 transition, the first term
in (13) dominates, and for the LH1-CB1 transition both
terms in (13) contribute. This consideration leads to a
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FIG. 10. Valence-subband energies of the (10/10) InAs-
GaSb(001) superlattice plotted as functions of the parallel wave
vector (k,) along the [100] and [110] directions.
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tions.

larger oscillator strength for the unmixed LH1-CB1 tran-
sition than for the HH1-CBl1 transition. The valence-
band structures along the [100] and [110] directions for a
(10/10) InAs-GaSb superlattice are plotted in Fig. 10. Be-
cause of the strong spin-orbit interaction and the large
perturbation introduced at the interfaces, each valence
subband has a sizable splitting at k,5#0. We label the
higher spin-split states in the top three valence subbands
by 1-3 and the lower spin-split states by 1’-3’. We note
that the conduction subbands also have a small splitting
at k,40, which we shall ignore. The squared optical ma-
trix elements Q,,(k,,0) for transitions from the top three
pairs of valence subbands (VB1-VB3) to the first pair of
conduction subbands (CB1) as functions of k, for a
(10/10) InAs-GaSb superlattice are plotted in Fig. 11
[€||%(§)] and Fig. 12 (€||2). We have summed over the
contributions to the two final conduction states, since they
are nearly degenerate. As shown in Fig. 11 [€||X(§)], the
squared optical matrix elements of VB1-CB1 and VB2-
CBIl transitions decrease rapidly whereas the VB3-CBl1
transition increases slowly as k, increases. In Fig. 12
(€]|2), the VB2-CB1 transition decays rapldly, whereas
the VB1-CB1 and VB3-CBIl transitions grow in a com-
pensating way. The sum of the squared optical matrix
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FIG. 12. z-component squared optical matrix elements for
the (10/10) InAs-GaSb(001) superlattice plotted as functions of
the parallel wave vector (k,) along the [100] and [110] direc-
tions.
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elements of these transitions (VB1-VB3 to CB1) is nearly
constant for €||2, but is a decaying function of k, for
€||X(§). This can be understood as follows. The increase
of k, causes a decrease in the conduction-band decay
length (A;): A, varies from 6a’ to 4a’ for k, from O to
0.05(2m/a). As a consequence, the CB1 wave function
becomes more and more confined when k, increases.
Since the HH component envelope function is always
much more confined than the conduction-envelope func-
tion, the increasing confinement of the latter leads to a de-
creasing oscillator strength for transitions involving
heavy-hole states. Thus the (x,y) component decreases
with k,.

Because the superlattice considered here is thin, the g
dependence of the subband energies and optical matrix
elements cannot be ignored. Figure 13 shows the subband
energies (E,) and squared optical matrix elements (Q,,’)
as functions of the perpendicular wave vectors (g) A
rather large dispersion is found in all subbands except the
VBI1. The VBI is nearly dispersionless, because the HH
decay length is very short (A~1.5a’). The effective mass
for CB1 along the [001] direction is found to be
~0.037m,. A HH2-LHI1 crossing is found to occur at
q=~0.02(27/a) for the VB2 and VB3 subbands. This
leads to a crossover behavior in the Q,, of VB2 and VB3
as functions of g. The total oscillator strength for the
VB1-VB3 to CBI1 transitions decreases rather quickly as g
goes from T to X, while a compensating increase is found
in the total oscillator strength for the VB1-VB3 to CB2
transitions (not shown). This can be understood in terms
of the band mixing between CB1 and CB2.

The absorption coefficient for this superlattice is calcu-
lated according to the procedures described in Sec. II B.
The result is shown in Fig. 14. The absorption spectrum
is found to be nearly structureless, although various inter-
band transitions can still be identified as shoulder struc-
tures. This is in qualitative agreement with the experi-
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FIG. 13. Subband energies and squared optical matrix ele-
ments for the (10/10) InAs-GaSb(001) superlattice plotted as
functions of the perpendicular wave vector (q).
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mental data.!” The structureless absorption is due to the

fact that the thin superlattice considered here has strong
dispersion in the conduction-band structure along all
directions. Thus the resulting absorption spectrum is like
that of a three-dimensional bulk material.

IV. CONCLUDING REMARKS

We have studied the optical properties of GaAs-
Ga,_,Al,As and InAs-GaSb superlattices. The subband
energies and squared optical matrix elements are calculat-
ed as functions of well thickness (), parallel wave vector
(k,), and perpendicular wave vector (g). We find that the
band-mixing effect causes the valence-subband energies
and the optical matrix elements to vary nontrivially with
N, k,, and q. This effect can sometimes lead to unexpect-
ed features in the photoabsorption spectrum. In particu-
lar we show that the weak structure corresponding to the
forbidden HH3-CBl1 transition can now be explained in
terms of the band mixing and the exciton effect.

For InAs-GaSb superlattices, we show that the oscilla-
tor strength for various optical transitions decreases with
the GaSb thickness (N) approximately like 1/N. If the
InAs thickness (M) is also varied, it can be deduced that
the oscillator strength decreases like 1/MN. Thus detect-
able optical signals can only be obtained for thin superlat-
tices. We find that the photoabsorption spectrum of the
thin InAs-GaSb superlattice is nearly structureless, simi-
lar to what one expected from a three-dimensional bulk
material. However, it is possible to obtain a two-
dimensional absorption spectrum by making a superlattice
with thick GaSb (e.g., 40 layers) and thin InAs (e.g., 10
layers). The InAs does not have to be thick, because the
heavy-hole decay length is extremely short. The oscillator
strength for such a superlattice is about six times lower
than the (10/10) superlattice (see Fig. 9) and may still be
detectable. With the modulation doping, it is possible to
create confining triangular potentials for both the electron
and the hole on the two sides of a given interface. thus
the oscillator strength for interband transitions could be
enhanced due to the increasing overlap between the elec-
tron and hole envelope functions in modulation-doped
InAs-GaSb superlattices.
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