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Self-consistent semirelativistic energy bands of WSiz
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(Received 20 August 1984}

The WSi2 energy bands, projected densities of states, and cohesive energy have been calculated
self-consistently with use of the semirelativistic pseudopotential for the experimental equilibrium
lattice as a function of the W—Si bond length. The cohesive energy and W—Si bond length are in
good agreement with experiment. Additionally, we obtain the symmetric phonon frequency.

I. INTRODUCTION

Transition-metal —semiconductor contacts are widely
used in the semiconductor industry because of their stabil-
ity and reliability. The refractory-metal silicides WSi2
and MoSi2, which along with ReSi2 crystallize in the
body-centered tetragonal CaC2 structure, are very promis-
ing as materials for improved gate electrodes and inter-
connection lines in very-large-scale integrated circuits.
These materials are more conductive (by at least an order
of magnitude) than the presently used heavily doped poly-
crystalline silicon and are much more oxidation resistant
than pure metals. As far as we know there have been no
energy-band calculations of these crystals heretofore. In
this paper we calculate the energy bands, projected densi-
ties of states and cohesive energy of WSiz self-consistently
using our semirelativistic pseudopotential' which in-
cludes all relativistic effects except spin orbit to order a,

4L

t
I

I

I

I

o "
I

t
t
I
I

~i ~
I

I
I
t

t

where a is the fine-structure constant.
The body-centered tetragonal unit cell of WSiz is shown

in Fig. 1. We performed the calculations with the lattice
constants quoted by Goldschmidt, c=7.868 A and
a =3.211 A which differ slightly from those of Wyckoff,
c=7.880 A and a=3.212 A. Although Wyckoff gives
the W—Si bond length, u=0.33c, in an earlier edition, he
does not quote a value for it in his most recent work and
we take it as a variable whose equilibrium value maxim-
izes the cohesive energy. This also allows us to calculate
the symmetric optical-phonon frequency.

The Brillouin zone (BZ) is displayed in Fig. 2 with sym-
metry points and lines labeled with a standard
notation. " In addition we have labeled points a, b, c,
and d which have no extra symmetry but which lie at the
ends of lines along which we have calculated the energy
bands. For c & v 3a the primitive reciprocal lattice vec-
tors are K~ (0,0,4n/c)——, K2 ——( 2m/a, 02, r/rc), and K3
= (0,2m /a, 2m /c). To increase the confusion, many
references ' ' rotate the BZ coordinates by 45 so that
K2 ——(2n /a', 2m. /a', 2m. /c) and K3 (2m/a', ——2n/. a', 2n-
/c) with a'=v 2a. When c =a'=V 2a the body-centered
tetrahedral lattice becomes an fcc lattice and this makes
the reciprocal lattice vectors explicitly identical but it
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FICx. 1. Body-centered tetragonal unit cell of WSi2 with large
circles representing W and small circles representing Si.

I

FIG. 2. Body-centered tetragonal Brillouin zone for c &a.
The points a, b, c, and d are not symmetry points but are la-
beled to facilitate comparison with the energy bands of Fig. 3.
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seems to us to be an unnatural choice when the crystal is
not cubic.

In the next section, we briefly describe our computa-
tional method which differs in several details from our
semirelativistic W calculation. In Sec. III our results are
presented.

II. COMPUTATIONAL METHOD

We expand our wave function in a total of 88 basis
functions consisting of three Gaussians times each s, p,
and d spherical harmonic on each of the three atoms in
the unit cell plus a single Gaussian times each of the f
spherical harmonics on the W atom. The shortest-range
W d Gaussian was contracted with an even shorter-range
Gaussian. The Gaussian exponents and contraction ratio
were determined by trail and error for each calculation
with different u by minimizing the lowest eigenvalues
with various symmetries at I". The eigenvalues are most
sensitive to the W d—Gaussian exponents; an estimate of
the convergence error inherent in our basis set may be
gleaned from the fact that an additional 16-meV conver-
gence was obtained for I 3+, a pure d state, when seven W
and- four Si d Gaussians were used.

The calculations were iterated to self-consistency by
sampling 784 points in a primitive cell (not the BZ) in re-
ciprocal space. This cell is W2(2m /a ) && ~2(2m /a )

)& (2'/c ) and we chose the points (+n/28) [~2[(2m.
/a)], (+m/28)[~2(2n/a)], (+p/8)(2m/c), with m and n
all odd integers ~14 and p all odd integers &4. These
784 points reduce to 56 in the —„th irreducible wedge of
this cell. Note that because the ratio (28a/v 2)/8c
= 1.010, this array is almost perfectly cubic.

Because of the larger unit cell here we were not able to
calculate Fourier components of the charge density p
from the wave functions as we did for W. Rather, we cal-
culated p at 1220 points selected randomly throughout the
unit cell plos 127 points selected at random angles on ra-
dial meshes centered on the three atoms in the ce11 for a
total of 1600 independent points. Each of these points
(except for those at the origin of a radial mesh) are, by
symmetry, equivalent to 16 points in the unit cell. We put
a Gaussian charge on each atom to screen the Z/r tail of

the pseudopotential and then fit the crystal charge with
those Gaussians plus 143 functions which did not contain
any net charge and whose coefficients were varied to min-
imize the rms error at the 1600 points. These fitting
functions consist of the first 59 symmetrized combination
of plane waves (SCPW), excluding the zeroth, plus func-
tions of the form V [ICI (8,$)e "], where K~ is a
combination of spherical harmonics with the crystal sym-
metry on an atomic site of which there are one s, one d,
and two g on W and one s, p, d, and f and two g on Si.
For each of these KI we used 8 different Gaussians ex-
cept for the's for which we used ten. To test the accuracy
of the fit we let the coefficients of the Gaussian screening
charges be variables and obtained Zw+2Zs; ——13.9998.
The exchange-correlation potential was calculated at the
same 1600 points and fit with the same set of
Kg (8,$)e " plus the first 80 SCPW, including the
zeroth.

We used the same Wigner correlation and relativistic
Kohn-Sham exchange potentials as in Ref. 7. We defined
V"„,"(r) to be V„,(pT(r)) —V„,(p, (r)), where pT and p, are
total and core p's but since we are using a rigid core, the
calculation is independent' of V„,(p, (r)); thus for com-
putational ease we cut off the long-range tail of V„,(p, (r) )
without introducing any error. The W semirelativistic
pseudopotential' is identical to that of Ref. 7 except that
we fit the local part of the pseudopotential V~ plus the
screening Gaussian charge potential with a set of spheri-
cal Gaussians. The small difference between the actual
potential and the fit was then included in the nonlocal
part of the pseudopotential, VNL. This enabled us to cal-
culate the three-center matrix elements of VL analytically
while performing the two-center VNt matrix element in-
tegrations numerically. The Si pseudopotential was con-
structed in exactly the same manner except that I,„=2
rather than 3.

The binding energy is calculated variationally, "
—Eb;„d;„s——g e„j,—g V(K)p(K)+ , 4n0+'p (K—)/K

n, k K K

+ ~ &xc pr pT &xc pe pe +EEwaid ~

Here V(K) = Vc",„~(K)+V„,(K) is an input potential

TABLE I. Contributions to the cohesive energy of WSi2 for three different values of the W—Si bond
length u. All energies are in hartrees except for the cohesive energy which is in eV.

&n, k
n, k—g V(K)p(K)

K

2 (4n.Q)g'p (K)/K
K

[&..(pr )pT —&..(p, )p, ]
EEl~Id

Ebioding

Ecohcsivc

0.327c

0.818 633

10.275 058

0.172 871

—5.911902
—21.376 356
—16.021 696

15.279 284
20.2010 eV

0.337c

0.949 486

10.080 226

0.204 111

—5.919750
—21.340 383
—16.026 310

15.279 284
20.3266 eV

0.345 c

1.015 223

9.909 899

0.252 775

—5.930627
—21.269 854
—16.022 584

15.279 284
20.2252 eV
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TABLE II. Calculated cohesive energy after each iteration.
The second column is a measure of how far the potential is from
self-consistency.

Iteration 5(b(r)) (eV)

3.03
1.40
0.30
0.14
0.045
0.030
0.011
0.006
0.003

Ecohesive

20.188 75
20.31190
20.325 42
20.326 37
20.326 56
20.326 59
20.326 54
20.326 62
20.326 59

which results in an output valence charge density p(K)
and V„,(K) is a Fourier transform of V„,(pT(r)). The ex-
change functional in the fourth term was fit in the same
way as V„","(r) and integrated analytically except that the
number of s fitting functions was increased from 10 to 24
and SCPW from 80 to 100. Although there is a certain
amount of arbitrariness in e„,(p, )p„ the same quantity is
subtracted from the atomic energy and therefore it cancels
from the cohesive energy. The first term, the sum of the
one-electron energies, minus the second, is equal to the ki-
netic energy plus pseudopotential energy of the valence
electrons. Note that the zero of Coulomb potential which
is an arbitrary quantity (whose value is dependent on the
choice of fitting functions' ) cancels out of the first two
terms. The third term represents the valence electron

self-Coulomb interaction, excluding the zeroth Fourier
component of the valence charge density, which when
combined with the ionic point charges Zw and the two
Zsl yields the last term, EEW»d. The formula for EE„»d
depends on the %'—Si bond length u and was calculated in
the manner first described by Fuchs. ' .

In Ref. 7 we subtracted —,(4nQ)g~ (K)/X rather
than adding it and subtracting g&VC', „&(K)p(K). The
two are equivalent when the calculation has converged so
that Vc",„t(K)=4mp(K)/K is unchanged by further
iteration.

III. RESULTS

In Table I we display all the contributions to Eb;„d;„g
for three different values of the W—Si bond length u.
The atomic energies were calculated with the relativistic
spin-polarized' ' Kohn-Sham-%igner exchange-cor-
relation energy functional and the semirelativistic pseudo-
potential. They are E~——15.312 349 Ry and Esj
=7.623109 Ry. E„, =Ew + 2Es; is listed in the next
to last row of Table I and subtracted from Eb;„d;„s to yield
the cohesive energy in the last row. Fitting the cohesive
energy with a parabola yields u p =2.6465 A
=0.3364c and E„h"„;,,——20.3270 eV. The zero-point vi-
brational energy should reduce E„h"„;„byabout 0.1 eV.
The value of up is very close to the 0.33c quoted by
Wyckoff. We compare E„h"„;„with the experimental
value E,'g„;„,=Ew+2Es;+H=8. 90+ 9.26+ 0.97

19.13 eV where E~ and Esj are the experimental
cohesive energies' of W and Si and H is the heat o—f for-
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FIG. 3. The energy bands of WSi2 for u =0.337c calculated along lines in the BZ shown in Fig. 2. Eigenvalues were calculated at
each tic mark along the abscissa. The energy is measured from EF.
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FIG. 4. Total density of states and projected DOS of WSi2 for u =0.337e in units of electrons per eV per unit cell. Q is the total
charge of each type integrated up to EF, where E=0 is E~.

mation of WSi2. This discrepancy, with the calculated
cohesive energy several percent larger than the experimen-
tal, is typical of numerically accurate calculations made
with a local density approximation for exchange and
correlation. Our parabolic fit yields E„h„;„, —

E~g qeys+e2 k—(Q —ttc) with (1l —uo) ln cm and
k=7.248&(10 dyn/cm. This yields' a frequency for the

symmetric optical phonon, v=14.00& 10' Hz. %'e could
not find an experimental value for this phonon frequency
but, for comparison, the optical frequency of elemental Si
&s' &5.25X10' Hz.

Chelikowski and Louie" have claimed that, if the
cohesive energy is calculated variationally, a non-self-
consistent potential, obtained from a superposition of
atomic charge densities, yields a value acceptably close to
that obtained from the self-consistent potential. We see
from Table II where we list the cohesive energy obtained
after each iteration for u =0.337', that their claim is sub-
stantiated. Because the zero of potential is arbitrary,
&(r)= V~„~„,(r) V,„,~«(r)—is not a measure of how far the
calculation is from convergence but the difference be-
tween the maximum and minimum values of b, (r) is.
This is listed in the second column of Table II. Thus we
see, after no iterations the potential is unconverged by 3
eV, but E, h„;„ is within 0.18 eV of its converged value.
After just two iterations when the potential still is 0.30 eV
from convergence, E„h„;„,has converged to within 0.001
eV. After convergence, random noise of +0.00004 eV

occurs in E„h,»„,. This is a measure of the random error
introduced by fitting the potential.

In Fig. 3 we show the energy bands for u=0.337e cal-
culated along eleven different lines in the BZ. Those lines
with no symmetry beyond that of the plane in which they
lie are unlabeled. Figure 4 displays the density of states
together with. I.owden projections' of the density of states
(DOS) onto the orbital symmetries in our basis set. The
dip which is present in the DOS at the Fermi energy also
occurs for NiSi2, o ' CoSi2,2' and Ni3Si. 2 The total
charge density due to orbitals of each symmetry, obtained
by integrating the projected DOS up to E~ is given in the
figure. Adding up the projected charges on each atom we
find 6.999 electrons on the %' and 7.001 on both Si; thus
the Si ionicity is +0.50 and the W ionicity is —1.00.
This can be compared with the ionicities we calculated
for NiSiz. —1.12 for Ni and +0.56 for Si. It should be
pointed out, however, that the ionicity is a very strong
function of exactly how it is defined. The ionicity of
NiSi2 was very small when it was obtained by comparing
the charge in a 1-A radius sphere about an Si atom in
NiSi2 with that in the same size sphere about an atom in a
silicon crystal. ' In Table III we list Lowdin projected
symmetry content of individual eigenstates at the I, Z, X,
and X points of the BZ. From both Table III and Fig. 4
we see that although the bottom of the bands is almost
pure s, the total s contribution to the occupied bands is
small, and to the 5 eV below E~ is almost negligible.



31 SELF-CONSISTENT SEMIRELATIVISTIC ENERGY BANDS OF WS12 2053

TABLE III. Lowdin projection (%) of the symmetry content of all the states at the symmetry points
I, Z, X, and N shown in Fig. 3.

E (eV) %'{p) W(f) Si(s) Si{p) si(d)

I +

Ii
I2
I +

I +

I +

I"5

r;
I )+

r+

—14.0166
—6.8238
—4.0156
—3.4976
—2.7167

0.5627
2.8538
3.1143
3.1403
4.6109
5.6533

14.76
1.13
0
0
0
0
0
0
0
3.58
0

0
0

13.59
0
0
0
9.14

11.45
0
0
0

0.19
59.39
0

82.57
56.79
86.88
0
0
0

70.26
54.22

0
0

14.82
0
0
0

14.90
20.14
15.57
0
0

85.01
0.07

39.25
0
0
0

27.90
0
0
0.63
0

0.01
33.04
6.27
0

37.64
0

22.32
42.57
0

13.97
32.36

0.03
6.37

26.07
17.43
5.57

13.12
25.74
25.84
84.43
11.56
13.42

Z2 —11.8000
Z+) —11.0716
Z3+ —3.9260
Z+) —2.5213
Z5 —0.7732
Z5+ —0.5690
Z4+ 0.7083
Z2 4 3197
Z j+ 4.7695
Z3+ 6.5577
Z i+ 7.9151

0
9.43
0
2.99
0
0
0
0
7.79
0
8.32

31.08
0
0
0

13.35
0
0
1.46
0
0
0

0
39.29
77.78
47.27
0

76.91
88.04
0

17.91
27.17
15.54

0.06
0
0
0

15.70
0
0

37.03
0
0
0

48.66
23.31
0
0.96
0
0
0
3.82

56.69
0
0.05

10.05
26.87
0
9.80

68.62
9.77
0

56.38
17.33
0

33.21

10.15
1.10

22.22
38.98
2.33

13.32
11.96

1.31
0.28

72.83
42.88

N+
N1

N+
N2+
N+
N

N~+

N+
N+

—9.9938
—9.8774
—5.7510
—5.1555
—2.8446
—2.8037
—0.4332

2.6726
3.0010
3.8042
4.2909
5.2372
6.7326
6.7769

0
3.25
2.92
0
0.42
0
0
3.42
0
0
4.11
0
0
8.91

29.81
0
0

25.20
0
0
0
0
0.80
3.60
0
9.23
0
0

0
54.13
50.97
0

66.32
60.32
71.90
89.03
0
0

66.43
0

37.85
3.90

2.27
0
0
5.88
0
0
0
0

20.25
28.59
0

22.32
0
0

40.88
16.83
4.90
0.38
0.02
0
0
0.05
0
8.04

18.62
7.09
0

16.68

9.20
22.66
15.06
66.57
13.93
25.20
0.21
6.35

54.12
40.05
2.10
4.01

45.99
19.63

17.84
3.13

26.15
1.97

19.31
14.48
27.89

1.15
24.83
19.72
8.74

57.35
16.16
50.88

Xi+
X2+

X2
X4
X)+
X3+

X3
X4+

X4
X)+
X2+

X2
Xi+
Xi

—9.4710
—6.7959
—6. 1637
—5.6823
—4.8731
—3.3337
—1.9659

2.8485
2.8844
3.0598
3.9961
4 4344
5.1987
7.0304

0.03
0
0
0
1.64
0
0
0
0
3.01
0
0

21.61
11.19

0
0

28.63
4.97
0
0

27.93
0
7.80
0
0

15.28
0
0

68.21
57.80
0
0

36.46
64.82
0

99.85
0

77.43
63.50
0

40.28
38.50

0
0
2.86

15.70
0
0
1.42
0

23.15
0
0

15.59
0
0

19.27
0
0

46.47
2.93
0
0
0

10.99
4.60
0
0

18.92
0.61

3.13
36.54
65.74
5.25

30.50
16.86
30.41
0

31.84
1.52
8.45
0.30
0.83

26.38

9.36
5.66
2.77

27.61
28.47
18.32
40.24
0.15

26.22
13.44
28.05
68.83
18.36
23.32

Figures 5 and 6 are contours of constant pseudocharge
density in (100) and (110) planes. Note that each W has
eight nearest-neighbor Si arranged in square arrays above
and below it and two second-neighbor Si directly above

and below it. Similarly, each Si has four nearest-neighbor
W in a square array either above or below it and one
second neighbor either directly below or above it. For
u =0.337', the first two W—Si bond lengths are almost
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FIG. 6. Contours of constant pseudocharge density in a (110)
plane in steps of 8 millielectrons per cubic bohr.

O

O
lO

FICs. 5. Contours of constant pseudocharge density in a (100)
plane in steps of 8 millielectrons per cubic bohr.

O

0
identical: 2.608 and 2.652 A. Each Si has one Si nearest
neighbor 2.565 A directly above or below it and four
second neighbors in a square array either below or above
it 3.025 A away. In Fig. 7 we plot the charge density

FICx. 7. Plot of pseudocharge density along Si—Si nearest-
neighbor bond and Si—W first- and second-nearest-neighbor
bonds in units of millielectrons per cubic bohr.
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along the Si—Si first neighbor direction and the first and
second Si—W neighbor directions. We see that each co-
valent bond is doubly peaked with the W peak in the
W—Si first-neighbor bond much larger than in the
second-neighbor bond with the Si peak somewhat larger in
the second-neighbor bond than in the first. It is this co-
valent bonding which causes the dip in the DOS at the
Fermi energy. Thus as with the other silicides we have ex-

amined, " we find that the binding energy has tnetailic,
ionic, and covalent components.
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