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We present a symmetry classification for the vortices in superfluid He. We find that in super-
fluid He-B there may exist five different singly quantized axially symmetric vortex lines, which are
different from each other in their internal discrete symmetries. A phenomenological Landau theory
is constructed for all the possible phase transitions between the singly quantized axisymmetric vor-
tices. Our detailed numerical calculations of the vortex core structure in the Ginzburg-Landau re-
gime show that the vortex with minimum free energy, the, one that we have identified with the vor-
tex actually observed near T,

'
in the NMR experiments on rotating He-B, possesses a novel new

structure: The discrete broken symmetry in this vortex is space parity P; the vortex has a superfluid
core with the A phase and a spontaneously ferromagnetic P phase, which is not known to occur in
bulk He. This core structure explains the measured large magnetic moment of the vortex, and also
the orienting effect of the vortices on the He-B order parameter in the rotating superfluid through
the susceptibility anisotropy. For this superfluid core vortex we find that there exist nodes in the
He quasiparticle energy gap inside a finite radius from the vortex axis. We define the distance-

two to three Ginzburg-Landau coherence lengths —at which the nodes first appear as the core radius
of the B-phase vortex. Physical properties of vortices with broken symmetry are discussed: The
vortices may display a spontaneous electric polarization and/or a spontaneous axial supercurrent,
depending on the symmetry of the vortex core matter.

I. INTRODUCTION

Significant progress has been made during the last two
years in the investigation of the quantized vortex lines in
the superfluid phases of rotating liquid He with use of
the NMR technique. ' Several unexpected and funda-
mentally new intriguing phenomena pertaining to vortici-
ty in anisotropic superfluids have already been discovered
in the course of these recent first experiments. In the ro-
tating A phase, extraordinary continuous vortices have
been identified. ' ' In contrast with the usual "classical"
quantized vortex line in superfluid He (He II), which
possesses a singularity in the hard core of the vortex (the
vortex core in He II has a radius of the order of the super-
fluid coherence length g, where g for He II is a few
angstroms, with the circulating potential flow of the su-
perfluid component around the vortex core axis), these
continuous vortices in He-A have no singular core of the
size of the coherence length g (here the coherence length
for superfluid He is g—= 10 to 10 s cm). Instead, they
exhibit continuous vorticity of superflow, which is con-
centrated inside the soft core of the vortex, having a ra-
dius of the order of several dipole lengths gD =-10 cm,
which is hundreds of times larger than g. ' This unique
behavior of the quantized vortices in He-A is a conse-
quence of the peculiar symmetry break in the A phase,
namely the broken relative gauge-orbital symmetry, which
serves to couple the superfluid and liquid-crystal-like
properties of sHe-A.

In the 8 phase, the gauge symmetry is not coupled int-

rinsically with the rotational symmetry and the behavior
of the vortices in He-8 was initially expected to be quite
similar to that of the classical vortex lines in He, with a
singular hard core of the size of the coherence length g.
However, the NMR measurements on vortices in the ro-
tating 8 liquid have proven that the vortices in He-8 are
much more interesting and that the vortex core structure
is quite nontrivial. In particular, experiments have re-
vealed two exotic properties of the vortices in He-B,
which do not take place for the vortices in superfluid He:

(i) A first-order phase transition was found, which was
attributed to a change in the vortex core structure at
T=0.6T, (at the pressure p =29.3 bars). Recently this
phase transition was mapped in the p- T plane.

(ii) The spontaneous magnetic moment of the vortices
was discovered.

The vortex magnetization arises due to the specific break-
ing of the relative spin-orbital rotational symmetry in the
8 phase. As a consequence, the spin and orbital motions
in He-8 are intrinsically coupled and hence the superflow
around the vortex core produces the magnetization,
which is concentrated in the vortex core.

Thus the hard vortex core in superfluid He-8 is quite a
nontrivial system: In the experiments, there exist at least
two different vortex core structures with different magni-
tudes of their spontaneous magnetic moments. This high-

ly interesting phase transition of the vortex core structure
in superfluid He-B, as compared with the usual vortex
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line in superfluid He, is the outcome of two different fac-
tors acting in unison:

(i) The superfluid coherence length g in He-8 is much
larger than that in He II, such that a cross section of the
core with thickness equal to the interatomic spacing con-
tains 10 atoms. Therefore, the hard core of the vortex
line in superfluid He may be considered as a macroscopic
system which may undergo phase transition(s).

(ii) In contrast to the simple order parameter P in su-
perfluid He, the matrix order parameter A« in super-
fluid He contains in general 18 real components, which
form a reducible representation of a large symmetry
group, which includes as symmetry operations the spin
and orbital rotations and gauge transforinations. This
property of the order parameter makes possible the ex-
istence of several vortex core structures which possess dif-
ferent internal symmetries.

In analogy with the classification of the superfluid
phases in bulk liquid He or in other condensed-matter
systems, a symmetry analysis allows one to classify the
different phases of "vortex core matter. " In doing so, we
found that in contrast with the single vortex solution
possible in He or with the usual Abrikosov vortex line in
superconductors, there may exist as many as five distinct
axially symmetric vortices in superfluid He-B. For these
different vortex structures we introduced the no/ation as
the 0, u, v, w, and uvw vortices. Each of these vortices
displays different discrete internal symmetries of vortex
core matter. We investigated numerically the relative sta-
bility of these vortices near T„where the Ginzburg-
Landau expansion for the free-energy functional in terms
of the order-paraineter matrix A« is applicable. The vor-
tex core structure in the B phase has earlier been con-
sidered in this regime by several different authors.
However, all the axially symmetric vortices that have been
considered by these authors either correspond to the so-
called 0 vortex in our classification scheme, or they
represent inconsistent Ansatze in containing less than the
minimal five components of the order-parameter matrix.
The o vortex is the most symmetric consistent vortex
solution in superfluid He-8; it is described by five real
functions (pairing amplitudes) of the radial distance froin
the vortex axis. All these functions vanish on the vortex
axis, where the superfluidity is broken, such that the o
vortex possesses a normal core. The numerical solution
for these five functions was first obtained by Ohmi
et al. ' Note that already this most symmetric possible
vortex structure in He-B is non'unitary, analogously to
the nonunitary vortex structures which have normal core
that have been discussed for the hypothetical P2 pairing
of neutrons that has been conjectured by several authors'
to occur in neutron stars.

We have found, however, that throughout the whole
range of values of the strong-coupling parameter 5 that
are practically relevant for superfluid He-B, this most
symmetric o vortex is always unstable with respect to the
u vortex in which one of the discrete internal symmetries
is spontaneously broken. The u vortex contains nine real
pairing amplitudes as functions of the radial distance r
from the vortex axis. In particular, two of these ampli-
tudes do not vanish on the vortex axis, such that the core

of the v vortex does not consist of normal liquid He. In-
stead, these finite Cooper-pairing amplitudes at r =0 cor-
respond to two superfluid components in the hard core of
the v vortex: One of these is the A phase, while the other
is the so-called magnetic P phase, which has spontaneous-
ly ferromagnetically ordered spins of the Cooper pairs.
The P phase is never stable in the bulk liquid; it may only
exist in the He-B vortex core. The u vortex with ten am-
plitudes featuring a normal core, and the w vortex with
nine amplitudes and with a superfluid core, which corre-
spond to the other broken discrete symmetries of the o
vortex, are energetically unstable towards reduction into
the o vortex and hence also to the u vortex.

The further break of the u vortex symmetry is possible;
this gives rise to a large variety of phase transitions. The
U vortex may, for example, transform either into the least
symmetric among the axially symmetric vortices, the so-
called ucw vortex with all 18 pairing amplitudes and with
a superfluid core structure, or to an axially asymmetric
vortex core structure. The study of such possible soft-
mode instabilities will require considerable analytic and
computing efforts. However, these future investigations
will not change the central important result of our present
paper: The hard core of the stable vortex in superfluid
He-8 at low pressures consists of superfluid and it con-

tains a new ferromagnetic component which is essentially
responsible for the measured large magnetic moment of
the vortex. The U vortex core also contains the superfluid
A phase, due to which. the vortex becomes a nucleation
center for the A phase in the metastable bulk 8 phase, as
shown in detail in this paper. Due to the broken parity,
the stable U vortex, in addition, displays a spontaneous

~ electric polarization, which is concentrated in the vortex
core.

The large variety of the possible phase transitions be-
tween all the different axisymmetric singly quantized 0,
u, u, w, and uvw vortices may be investigated with the aid
of a phenomenological Landau theory of phase transi-
tions, which is presently also known widely as "catas-
trophe theory. "' The relevant Landau free-energy func-
tional describing the corresponding possible phase transi-
tions is constructed in this paper with the use of the
discrete symmetry classification of the vortices. The Lan-
dau theory predicts various kinds of phase transitions,
both of second and first orders. For example, the transi-
tion between the u and u vortices as well as the ones be-
tween the different uvw vortices, which may exist accord-
ing to the Landau theory, are of first order. And note
that any of these transitions may be the likely candidate
for the observed first-order transition in the vortex-core
structure. '

This paper is organized as follows. In Sec. II we dis-
cuss the symmetry of linear defects in condensed matter
using .as examples the vortices in superfluid He and the
vortices in ferromagnets with an easy-plane type of an an-
isotropy. In Sec. III we classify the axisymmetric vortex
solutions in the 8 phase in terms of their discrete internal
symmetries and construct the Landau theory of phase
transitions for the vortex core structure. In Sec. IV we
present our numerical calculations of the vortex core
structures for the 0, u, v, and w vortices in the Ginzburg-
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Landau regime and establish their mutual stability. Sec-
tion V contrasts the structures of the energy gaps in
normal-core and superfluid-core vortices. In Sec. VI the
distribution of the 8-phase order parameter far from the
vortex core is considered. We take into account the dipole
forces and the magnetic field term and investigate their
influence on the vortex structure and the influence of the
vortices on the NMR signal. In Sec. VII the magnetic
moment of the vortices is considered.

The unique physical properties of the U and w vortices,
with broken symmetry, are discussed in Sec. VIII. It is
shown that the parity violation results in a spontaneous
electric polarization in the cores of the U and uvw vortices,
while the w and uUw vortices possess a spontaneous axial
supercurrent.

Multiply quantized vortices in superfluid He-8 (Refs.
14 and 15) will be discussed in detail elsewhere. ' An ex-
tension of the vortex symmetry classification to the case
of the axisymmetric vortices in the rotating A phase' and
to the vortex lattice in rotating superfluid He (Ref. 15) is
presented in detail in a companion paper. '

large number of simultaneously broken symmetries, the
full symmetry classification of all the possible states of
superfluid He has not yet been completed even without
the breaking of translational invariance (the symmetry
classification of the so-called inert superconducting
states in crystals with cubic symmetry, where all the con-
tinuous symmetries are broken, is discussed in Ref. 21).

Thus leaving aside the general symmetry classification
of linear defects in condensed matter for the future, we
shall here describe several illustrative examples of linear
defects in 'He II and in ferromagnets, their symmetries,
and the possibilities of phase transitions in their cores (the
symmetry classification of the linear defects, disclinations,
in uniaxial and biaxial nematic liquid crystals, is discussed
in Ref 22.).

Let us begin by considering the quantized vortex line in
superfluid He. Here the superfluid order parameter f is
a complex-valued scalar function. The distribution of the
order parameter in the vortex with topological charge m
(m denotes the number of circulation quanta of the super-
fluid velocity around the vortex axis) is represented as

IE. THE SYMMETRY OF LINEAR DEFECTS
EN ORDERED MEDEA

@(r )=C(r)e' (2.1)

Phase transitions in condensed matter are, as a rule, ac-
companied with a change in the symmetry of the system.
We presume that also the observed phase transition of the
vortex core matter in rotating superfluid He-8 is associ-
ated in a sinular way with a change in the symmetry, of
this matter. Therefore, there arises the problem of classi-
fying the states of linear defects (such as vortices) in or-
dered matter by symmetry groups. This is distinct from
the topological classification of linear defects, ' which
divides the defects into different classes, each with a given
value of the topological invariant (i,e., the topological
charge). Specifically, the symmetry analysis can distin-
guish the different defects inside the same topological
class. This is precisely what we need here, because the
vortices in rotating superfluid He-8 have the same topo-
logical charge on either side of the vortex core transition
(assuming that both vortices are singly quantized; see
Refs. 14, 15, and 16), and are only distinguished by the
internal structure of the vortex core.

The general symmetry approach to linear defects is not
yet as complete as the topological approach because even
for the phases of condensed bulk matter the symmetry
classification of different possible states of media has been
only partially accomplished. For example, all the possible
states of media with spontaneously broken Euclidean
symmetry have been completely enumerated These in-
clude crystals with all the 230 (three-dimensional) crystal-
lographic space-group symmetries, predicted in the last
century, and different types of liquid crystals. But the
question still remains open with regard to superfluid He,
which appears to be the most complicated condensed-
matter system, with several syrnrnetries simultaneously
broken: the group [SQ(3)]' ' of space (orbital) rotations,
the group [SG(3)]'s' of spin rotations, the gauge group
U(1), and time inversion T. The formation of the vortex
lattice in the rotating container in addition breaks the
translational symmetry t and space parity I'. Due to the

Here r, P, and z are the cylindrical coordinates, with z
along the vortex axis. The amplitude of the order param-
eter obeys C(r =0)=0, in order to escape the infinite en-
ergy of superflow. Hence superfluidity is broken in the
He vortex on the vortex axis and the core of the He vor-

tex is normal.
Let us find the symmetry group of the state (2.1) which

is the subgroup of the general group G of physical laws.
The relevant group G for He

G =[SO(3)]"'xU(1)x Txpxr (2.2)

does not include spin rotations because the He atom is
spinless. Which part of this group is conserved in the
vortex state (2.1)? First of all, clearly the translations t,
along the vortex axis: The vortex state does not change
under this transformation since P,/=0, where
P, = (A/i)B/Bz is the generator of translations along z.

The He vortex state (2.1) is, not invariant, however, ei-
ther under a rotation (even a rotation about the vortex
axis z through the angle $0 changes the order parameter
as follows: f +pe ') or und—er a gauge transformation,
which also corresponds to a change of the phase factor.
However, note that a definite combined rotation and
gauge transformation does not change the state (2.1). The
generator of this combined symmetry group is

Q=L, mI, —
, where

(2.3)

(2 4)

I,=—
i BP

is the generator of rotations about z, and I denotes the
generator of gauge transformations, which has the follow-
ing action on P: Ig=g, Ig*= f. It is easy to v—erify.
that the state (2.1) obeys
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In what follows, we shall refer to the symmetry described

by the generator Q as axial, because all the physical prop-
erties of a state with the eigenvalue Q =0 are axially sym-
metric. For example, let us consider the superfluid veloci-
ty

P& ——PO,'~~ and P2 ——TO„' (2.6)

leave the order parameter invariant: P ~ g =P2$ =g.
Above, 0,'~' and 0„' 8 denote rotations through the angle
0 about the axes z and x, respectively, where x is the axis
with respect to which the azimuthal angle P is measured
(note that all the physical properties are still invariant
under P, e.g., Pv, =v, ).

Hence the symmetry group H of the vortex state (2.1)
contains two different continuous groups with the corre-
sponding generators P, and Q=L, —mI, and the two
discrete groups P~ and P2.

It is important to recognize here that the Ansatz (2.1) is
the only solution of the equations P,P=O and QQ=O.
This means therefore that there is only a single type of an
axially symmetric vortex with m quanta of circulation.
Thus one cannot expect any phase transitions for the He
vortex, unless the axial symmetry is broken. As we shall
see in detail below, the axially symmetric vortex structures
are much richer in superfluid He, where because of its
multicomponent order-parameter tensor one may in fact
encounter several possible phase transitions due to the
breaking of the corresponding discrete internal sym-
metries without a break of the axial symmetry.

Another illustrative example is provided by the linear
defects in ferromagnets with an easy plane of anisotropy.
The order parameter here is the magnetization vector M,
which far from the defect lies in the easy plane. The
linear defect in this system is analogous to the vortex line
in superfluid He.

The asymptotic behavior of such a "vortex" possessing
topological charge m and with its axis z perpendicular to
the easy plane is

M=Mo[x cos(mP)+y sin(mP)] . (2.7)

However, the symmetry subgroup H of the relevant group

G = [SO(3)]"'X[S0(3)]'"X TXP X t (2.8)

is larger than for the vortices in superfluid He. The con-
tinuous symmetry groups of H are just the same: transla-
tions I;, along the vortex axis, and the combined symmetry

(2.5)
2m4i

Because v, is not transformed by global gauge (Iv, =0 ),—+
the equation Qv, =O at once implies L,v, =O, which
means axial symmetry.

In the same way, space parity P and time inversion T
are not elements of the subgroup H of the vortex state
since TP=g'&g and Pg(r ) =g( r)=P(r, P—+sr)
~P(p, P)=P(r ) for odd m. However, they do conserve
the vortex state after being combined with the appropriate
other elements of the group G. In particular, applications
of the following combinations of the group elements,

group is
f

Q =L, +mS, , (2.9)

where instead of the gauge generator I; there now appears
—+ —+

the generator of spin rotations S, (S,M=ikz)&M). All
the difference is in the discrete subgroup, which contains
the elements

(s) (J) (L)TO, ~, O„~, and PO, m~, (2.10)

and their combinations (here TM = —M is time inversion,
Oz, ~ is a rotation of the spin space by m about z, and
0„~=0„' '0„' ' denotes'the rotations of the spin and orbi-
tal coordinate spaces by m. about x one after another).
The addition of the new subgroup as well as increasing
the dimension of the representation (three components of
M instead of the two components of g) serve to produce
the possibility of different vortex core structures.

The subgroup II, generated by S„Q, and by the
discrete elements (2.10), is the symmetry group of the
asymptotics (2.7) and is therefore the maximal one of the
possible symmetry groups of the "vortex. " The solution
corresponding to the maximal symmetry group always ex-
ists, which reflects a fundamental mathematical theorem.
The solution is

I'a,'i

~ + +»

~ 4
FIG. 1. Schematic illustration of the maximally symmetric

linear defect in a ferromagnet with an easy plane of anisotropy,
Eq. (2.11), where the order parameter vanishes on the vortex
axis: M( r =0)=0. Here the arrows represent the projections
of the magnetization vector M(r ) in two different planes as fol-
lows: (a) A cross section in a plane perpendicular to the axis of
the linear defect; (b) the distribution of magnetization in a plane
containing the axis of the linear defect.
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M=M(r)[x cos(mP)+y sin(m&I))], (2.11)

with M(r =0)=0 in order to prevent the divergence in
the energy in the core. This vortex state is illustrated in
Fig. l.

However, it is more advantageous to break one of the
discrete symmetries, because this allows for M not to
equal zero at the core, but to escape into the third dimen-
sion; see Fig. 2. We therefore write

M=Mi (r)[x cos(mP)+y sin(mP)]+M~~(r)z . (2.12)

This form conserves the continuous symmetry but some
of the discrete symmetries are now broken; instead of
(2.10) one has now reduced the number of the discrete
symmetry elements:

(2.13)

A new degeneracy arises due to breaking of the discrete
symmetry: The states with positive and negative M~~(r) in
the core have equal energies. That is, the vortex core is
characterized by a new quantum number —the direction
of the magnetization at the vortex axis.

Thus the discrete symmetry gives rise to the different
vortex structures, (2.11) and (2.12), with different sym-
metries of the vortex core. Therefore, one may expect to

find a second-order transition from the structure (2.11) to
(2.12) with the breaking of a discrete symmetry but
without breaking of axial symmetry.

An even more interesting situation occurs in the case of
vortices in superfluid He, where there is also the possibil-
ity for the existence of first-order transitions in addition
to second-order transitions in the vortex core strgcture.

III. SYMMETRY CLASSIFICATION
OF THE VORTICES IN 3He-S

The general group G of physical laws, which is broken
in superfluid He, is

1
ekmn~ rm

~
Aai kitAat &

Br&&
(3.2a)

(3.1)

The order parameter in superfluid He, which provides
the realization of a representation of this group, is the
complex 3X3 matrix A;, with the spin (a) and orbital
(i) indices. This matrix transforms under the action of
the various elements of the group (3.1) in the following
ways:

Lk A; = (L i,
" +L km')A;

SpA~g = —pep (3.2b)
1I /

~ 4

IA aI. ~ ag (3.2c)

(3.2d)

TA« A~;,——t A« ——A;(r —ro) . (3.2e)
A

Here I. is the generator of rotations in the orbital space,
~ M ~

including the external L '"' and internal I. '"' parts, the
latter transforming A«as a vector in the orbital index S
is the generator of spin rotations; Us is the gauge
transformation through the phase 8; the minus sign as a
prefactor of A« in the parity transformation P reflects
the vector representation of the order parameter in the
coordinate space.

In the uniform bulk B phase, the matrix A; reduces to
the arbitrary orthogonal matrix 8;:

A«=b(T )R«e' (3.3)

t
t

t

where N is the phase factor and 6( T ) denotes the
temperature-dependent scalar amplitude of the order pa-
rameter (energy gap). The continuous and discrete ele-
ments of the symmetry group H of this state are

[SO(3)]' ', U@TU @, PU~, t, (3.4)

where [SG(3)]' ' is the combined spin and space rotation,
generated by

J;=I.;+A~;S~ . (3.5)
FICi. 2. Linear defect with a broken discrete symmetry,

represented by Eq. (2.12), in a ferromagnet with an easy plane of
anisotropy. (a) The cross-sectional projection coincides with
that in Fig. 1(a). (b) The order parameter M(r) remains finite
on the axis of the vortex line through an escape into the third di-
mension. (3.6)

Vortices in the B phase, like the classical quantized vor-
tices in He II, are quantized with an integer number of
circulation quanta in superfluid He:

a3 —— -—0.6616)& 10 cm /sec .
2m 3
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Note that the circulation quantum in superfluid He
differs from that in superfluid He, a4 ——h jm4=-0. 9970
X10 cm /sec, not only in the occurrence of the dif-
ferent isotopic mass in Eq. (3.6), but also through the ex-
tra factor of 2, which is due to the Cooper pairing. Far
from the vortex axis the order parameter in He-B imi-
tates the behavior of a He II vortex:

A;(r~ao }=A(T}R;e' (3.7)

From this asymptotic form alone, one may already deduce
the maximal symmetry group of the vortex state in the ro-
tating B phase of superfluid He.

It is important to note the simplification that for a vor-
tex hne in He-8, we may consider the spin and orbital ro-
tations independently. This is because the size of the vor-
tex core with its structure on distances of the order of g is
much less than the dipole length gD -—10 cm, There-
fore, the spin-orbital (dipole) interaction does not influ-
ence the structure of the hard core of the vortex, and it
may be neglected. In this situation the symmetry of the
asymptotics is defined by the following generators of con-
tinuous transformations and elements of discrete sym-
metries:

(J)p, Q =J~ —mI, P( =PU( +()~ ~ P3 ——TO„ (3.8)

In order to avoid needing to consider the matrix R; in
what follows, one may use the simpler coordinate axes for
the spin system, which are rotated by the matrix R; itself
with respect to the laboratory coordinate frame. The ro-
tation matrix reduces in these coordinates into R;=5;,
the asymptotics are given by

by the matrix R with respect to each other, i.e.,
Ag=R~;Xp, and the eigenvalues )((, and v of the projections
of the Cooper-pair spin and orbital momenta in Eqs.
(3.12) and (3.13) may assume the values 0 and +1. The
expression (3.11) obeys the condition of axial symmetry,
QA~; =0, provided that the quantum numbers n, p, and v
satisfy n =m —p —v. Therefore, the most general expres-
sion for an axially symmetric vortex state

A .=b(T )gC (r)A,"A, e'. (3.14)

with

(3.15)

contains in general the nine complex-valued amplitudes
C&„(r) as functions of the radial distance r from the vor-
tex axis.

Each function C& describes the amplitude of Cooper
paiang of the 3He atoms into a respective general p-wave
superfluid state, characterized by the quantum numbers )M

and v, referring to the projections of the Cooper-pair spin
and orbital momenta onto the respective coordinate
spaces, spanned by the vectors A," and iL,".. For example,
Co+(r), with the projections )M =0 and v=+ 1 of pair spin
and orbital momenta, represents the 3-phase Cooper-
pairing amplitude.

However, the number of the pairing amplitudes C& (r)
is reduced if one considers the most symmetric possible
vortex solution, which possesses the symmetry of the
asymptotics, Eqs. (3.8), including the discrete symmetry
elements P( and P3. The latter form the group Z2XZ2,
which contains the following four elements:

A~;(r~ co)=6{T )5;e' (3.9)

and the operator J transforms into the operator of the to-
tal angular momentum, i.e.,

J —+ J =L+S.

P( PU( +() (——P( ——1),2

P3 ——TO„' ~ (P3 ——1),
P2 P(P3 (P~= —1—) .

(3.16a)

(3.16b)

(3.16c)

(3.16d)
In analogy with our examples of vortices in He and in

magnets, the symmetry Q here means the axial symmetry
of the vortex in He-8. In order to find the general repre-
sentation for the axially symmetric vortex state, one must
solve the equation

(3.18)

Under these different discrete symmetry transformations,
the pairing amplitudes C&„obey the following relations:

P(C„„=(—1)"+ Cp„, {3.17)

P2Cp, v =Cpv ~

QA~;=0 . (3.10)

A~( ——b,(T ) g Cp„„(r)A,(A,,"e'"~, (3.11)

For this purpose let us decompose A~; in terms of the
eigenfunctions e'"~, A,,", and A." of the operators
I cxt L IQt d g

P3Cp„( —1)"+"Cp, . —— (3.19)

The most symmetric vortex, the o vortex, which possesses
the maximal discrete symmetry

P ) Cp~ ——P2Cp~ ——P3Cp~ ——Cp (3.20)
with

V2

S,A."=pi,", A,
+—= (x +iy ),~2

p
Xg zg

O
Ag ZQ

(3.12)

(3.13)

Here (x;,y;,z; ) and (x~,y~,z~) are unit vectors in the orbi-
tal laboratory frame and the spin frame, which are rotated

has only five nonvanishing real amplitudes, C++, C+
Coo, C +, and C . It is important to recognize that
all these five amplitudes also necessarily must enter the
expressions due to their mutual nonlinear coupling in the
Gor'kov equations (or in the Ginzburg-Landau equations
for temperatures near T, ). The number of the pairing
amplitudes could only be reduced from this due to an ac-
cidental (but improbable) hidden symmetry in these equa-
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tions. This means that the ad hoc one-parameter vortex
Ansatz,

A~; =b(T )C(r)o;e' (3.21)

which would iinitate the vortex state in superfluid He,
corresponds to the completely arbitrary additional con-
straints C++ ——C =0 and C+ ——Cpp ——C + ——C.
The Ansatz (3.21) is therefore not at all a solution of the
Gor'kov equations, and neither is the vortex Ansatz of
Passvogel, Schopohl, and Tewordt, with just three
nonzero amplitudes. The most symmetric vortex with
m =1 and with the five real amplitudes was first dis-
cussed by Ohmi, Tsuneto, and Fujita. ' This vortex state
with m =1 possesses a normal core (however, the most
symmetric doubly quantized vortex has a superfluid core,
such as all the doubly quantized axisymmetric vortices in
He-B; see Refs. 14—16): Superfluidity is broken on the

vortex axis, where all the five real amplitudes Cz„vanish
because their phases

4&„„=(1—p —v)P (3.22)

have a discontinuity on the vortex axis (4+
1=+-+= —+++=
3 @--=&).

Here, just like for the "vortices" in magnets, one may
expect that it is more advantageous to break one of the
discrete symmetries in Eqs. (3.16). The discrete vortex
symmetry may be broken in three inequivalent ways, de-
pending on which symmetry is retained, P&, P2, or P3.
%'e denote the corresponding vortices with these broken
symmetries as the u, v, and u vortices; see Table I:

(i) The u vortex, with the discrete symmetry P1, con-
tains the same five amplitudes C„„=(—1)"+"C„„asthe o
vortex, but now these amplitudes are complex valued; they
vanish at the center of this vortex, which has a normal
core.

(ii) The v vortex, with the symmetry P1, contains the
nine real amplitudes C&„——C&, that is, the amplitudes
C+p Co+ Co and C o 111 addltlon to tllose f1ve 111 tile
o vortex. In particular, two among these four additional
pairing amplitudes, C+o and Co+, need not vanish at
r =0, since their phases @+p=4p+ =0 display no discon-
tinuity on the vortex axis. These superfluid components'
in the vortex core describe the A phase ( Co+ ) and the fer-
romagnetic superfluid p phase (C+o), with its magnetic
moment directed along the axis z~ in the rotated spin
frame, i.e., along R~;z; in the laboratory coordinates.

P~u =u, Pqu = —u, P3u = —u,
P2v =v, P3v = —v, P)v= —v,
P3w l8p P] M LUy P2UJ

(3.23a)

(3.23b)

(3.23c)

Using these parity properties, we may construct the
Landau free-energy functional in terms of the parameters
u, v, and m, which must be invariant under the P~, P2,
and P1 transformations:

P = au' —bv' c—w'+ —,' (u'+ v—'+u ')

+euvw+fu v +gu w +hv w (3.24)

Note, in particular, that the symmetries (3.23) admit the
existence of a third-order term in the expression (3.24) for
F with the coefficient e.

Depending on the actual values of the phenomenologi-
cally introduced coefficients a, b, c, e, f; g, and h, which
in general are functions of temperature, pressure, and the
external applied magnetic field, Eq. (3.24) may exhibit
several different minima. The investigation of the appear-
ance of new minima under a change of external conditions
(the investigation of phase transitions in the 1He-B vortex

(iii) The w vortex with the discrete symmetry P1 also
contains nine amplitudes, which obey C„„=(—1)"+'C„*„.

' Five of the amplitudes are real (the same ones that occur
in the o vortex), while the four additional ones are purely
imaginary; these describe the same additional Cooper-
pairing states as in the v vortex.

Each of these three vortices is degenerate due to the ap-
propriate broken symmetry: A change in the sign of the
additional components does not change the energy of the
vortex, because this is a symmetry operation.

The breaking of the discrete vortex symmetries is now
described using the phenomenological Landau theory of
phase transitions, with real order parameters. In our
present case, with three elements of discrete symmetries,
one must introduce three real parameters u, v, and u,
each associated with the respective broken symmetry.
The parameter u here represents simultaneously the mu-
tual amplitude of all the five additional imaginary com-
ponents that are present in the u vortex, v refers corre-
spondingly to the four additional real amplitudes of the v

vortex, and w describes the four additional imaginary am-
plitudes present in the m vortex. The symmetry proper-
ties of these amplitudes are as follows:

TABLE I. Group-theoretiml symmetry classlfjcation of the axisymmetric quantized vortex lines ln supemuld He-8 For singly
quantized vortices (m =1}the core fluid can be normal (N} or supe~uid (consisting of the supe~uld A phase and the ferromagnetic
superfl»d p phase). For doubly quantized vortices the core is always of superfl»d A ~ phase {Refs. 14 and 15), while fo1' vortex hnes
with three or more quanta of circulation the core matter is normal liquid He. Multiply quantized vortices in superfluid He-g, first
introduced in Ref. 14, are discussed in detail in Refs. 15 and 16.

Vortex
Discrete

symmetry

P),P2, P3
P)
P2
P3

none

C„„with
p+v even

real
con1plex

real
real

complex

C„„with
p+ v Odd

zero
zero
real

imaginary
complex

A andP
A andP
A andP

States of vortex core matter
m=2 m&3

N

N
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core in the present context) is the subject of catastrophe
theory. ' The full catastrophe theory of all the possible
phase transitions for this complicated system with the
codimension 3 (three external parameters: temperature,
pressure, and magnetic field) and with three independent
variables is presently under investigation. However,
several results may be readily obtained at once on inspec-
tion.

The extrema of Eq. (3.24) are obtained as the roots of a
system of three coupled algebraic equations of the third
order. Thus the number of real solutions is not more than
3 =27. According to the Morse theorem, the number of
local minima of Eq. (3.24) among these extrema cannot
exceed 14. The extrema of F in Eq. (3.24), including the
minima, are degenerate according to the broken symme-
try. The most symmetric solution, which is invariant
under the Pq, P2, and J'3 transformations: u =0, v =0,
u =0 corresponds to the o vortex and is not degenerate.
The u vortex with the symmetry Pi (u&0, v =w =0) has
twofold degeneracy because the P2 and Ps transforma-
tions change the sign of u according to (3.23), but do not
change F in Eq. (3.24). The same holds for the v vortex
(v~0, u =w =0) with the symmetry P2 and for the w
vortex ( w&0, u =v =0) with the discrete symmetry Ps.

Hence the o, u, v, and u vortices may produce seven
(7=1+2&&3) real extrema and therefore altogether 20
(20=27 —7) extrema may correspond to the least sym-
metric vortices, which we denote as the uvw vortices, be-
cause all the parameters u, v, and m are nonzero in these
cases. Since each of the discrete symmetries is broken for
these uvw vortices, they are fourfold degenerate in accor-
dance with the number of elements in the discrete group
of Eq. (3.16). Therefore, there may exist five (5=20/4)
different possible least symmetric vortices as the extrernal
solutions of F; however, no more than three of them may
correspond to the local minima. Examples of the dif-
ferent uvw vortices may be readily obtained explicitly,
provided that one assumes the coefficient e in Eq. (3.24) is
small. In this case there may exist three different solu-
tions for the least symmetric vortices, which may be
denoted as the uv vortex [u&0, v&0, w =O(e)], the vw
vortex [v&0, w&0, u =O(e)], and the wu vortex
[w&0, u&0, v =O(e)).

Thus the resulting vortex phase diagram may be quite
complicated: besides the second-order transitions
o —+u, o —+v, o~u, u —+uvm, v ~uvre, m~uvm, and
o —+uvm, which are associated with broken symmetry,
there may occur first-order transitions between the states
with different broken symmetries: u~v, v —+w, w~u,
and first-order transitions between the different least sym-
metric vortices uvre ~uvw.

In concluding this section we note that (i) we have not
considered all the possible linear defects in superfluid
He-B, but only axisymmetric quantized vortex lines, and

(ii) to find the maximal symmetry of the vortices we em-
ployed the asymptotics of the order parameter far from
the vortex core. In general, in order to find all the sym-
metry classes of linear defects in condensed matter one
needs only to use the asymptotics and vice versa: These
classes and their asymptotics may be found on using gen-
eral symmetry analysis. In particular, one may show that

3for He-B the generator Q of the axial symmetry may
contain one additional integer quantum number besides
m:

A A
Q=J, mI—pS,—. (3.25)

While m, the number of circulation quanta at infinity,
means the index of the vortex, the new integer p may be
interpreted as the index of disclination. The axisymmetric
vortex representation with two integer indices becomes

A =b, (T. ) yc (r)A"A,"e,' " i'+ "'~ .
p, v

(3.26)

For the A phase, m and P may be half-integers (with
m +p an integer); this describes the vortices with half-
integer numbers of circulation quanta. 24

IV. VORTEX CORE STRUCTURE
IN THE GINZBURG-LANDAU REGIME

2Pi =P2=Ps=—P4= —&s

with

7N (0)g(3)
240(irT )

(4.2)

The pressure dependence of the P; (the "strong-coupling"
corrections) are described in terins of the spin-fluctuation
(paramagnon) parameter 5:

P& = —(1—0. 15)Po, P2=(2+0.25)Po,

p3 —(2—0.055)pp p4=(2 —0.555)po

Ps ———(2+0.75)Pp .
(4.3)

The gradient energy in the Ginzburg-Landau functional
is given by

In order to find the structures of the o, u, v, w, and
uvw vortices and in order to identify them with the vor-
tices observed in the experiments, one must solve the
Gor'kov equations subjected to the given symmetries.
This appears to be considerably tedious, on account of the
fact that the number of components of the order parame-
ter is not less than five. The situation is much simpler
near T„where one may minimize the Ginzburg-Landau
free-energy functional to find the most stable vortex and
the possible metastable ones.

The Ginzburg-Landau functional contains, first of all,
the bulk (condensation) energy (see, for example, Refs.
25):

FB= +A ai A ai +P1A ~ai A ai A pjA pj +P2A ai A ai A pj A pj

+PsA a; A piAajA pj+P4A aiA piA pjAaj

+PsA a; A p; A pi A aj, (4 1)

where a=E(0)(l —T/T, )/3 with N(0) =m'kB/2&Pi
denoting the density of the He states for one spin projec-
tion at the Fermi surface, and the coefficients p; of the
fourth-order irivariants are in the weak-coupling approxi-
mation given by
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FG —It i B(A~jB;A~j+K2 BgA~iBjA~j+X3 BiA~j BjA~i ~

(4 4)

(4.6b)

where for weak coupling
2

UF
~, =K2 —K3 —X =7/(3)N(0)

240(mT )
(4.5)

such that the asymptotics is A~;( oo ) =R;, the energy is
in terms of ah, and distances are measured in units of
goL, the temperature-dependent Ginzburg-Landau coher-
ence length: r = rgoL, with

For the sake of convenience, we shall normalize the
order-parameter components A; in terms of the bulk

equilibrium value:
' 1/2

' 1/2
K

kGL a )
1 /2g

Tc

' —1/2

(4.7)

a
2(3pl2+ p34s)

(4.6a) Hence we shall minimize the following expression:

d r
2m

A aiAai +P1A aiA aiAPj APj+P2A aiAaiA PjAPj+P3A aiA PiAajAPj+P4A ai APiA PjAaj

. 2

+ PsA ~iAPiAPjA ~i+(BiA~j B A j+B(A~i BjA ~j+BiA~jBj ~i)+ — 2r +ro
(4.8)

where the P; are defined as

2(P34S+ 3Pi2 )
(4.9)

where io, is the superfluid density in the bulk liquid:

2
2m 3

p, = l0 KA (4.11)

and the terms —', and —Sm2/(F +ro) were inserted to
subtract out the infinite bulk energy and to compensate
for the logarithmically divergent energy of the vortex withI quanta of circulation. We have chosen the parameter
ro to be 5. The energy of the vortex with m circulation
quanta can be expressed in terms of F as follows:

F„«,„——imp, m ln + F—ln5fi 2 R
2m 3 5m

(4.10)
I

and R is the external logarithmic cutoff (the radius of the
container or the intervortex spacing).

After expressing A~; in terms of C&„(r),

A„=ga„A,"k,', a„„(r)=C„„(r)e"
P, V

(4.12)

all dependence of the energy density of P disappears due
to the axial symmetry and we find

dr r ~ —C„Cp + &
C„*„C p + 2 C„vC„* + 3Cp CpgCp Cp + 4Cp C C pCpp

+13scp„c pacpvc p„+
(m —p v) c„„

r r
~v~ 'c, ' —&—"c*

PV |M V
ar r

2'

c + " [c„['B

pv Br r
Sm

r +ro
(4.13)

First we consider here the most symmetric 0 vortex,
with one quantum of circulation:

C++e-'&

0

C +e'& 0

C+ e'&

0
3)P

(4.14)

where all the C&„are real. At infinity, in the bulk B
phase, C++(ao)=C (ao)=0 and C+ (oo)=. coo(oo)
=C +(Oo)=1. The results of the full minimization are
shown in Fig. 3.

Note in Fig. 3 that the most symmetric 0 vortex has no

less than five different nonzero pairing amplitudes.
Moreover, even the most symmetric vortex solution is

nonunitary. Hence the rotation of superfluid He-B
which creates vortices also necessarily induces a magneti-
zation of the liquid (see Sec. VII for further details). Ob-

serve that in Fig. 3, and in most of the graphs with a ra-

dial abscissa in the present paper, the radial scale is linear
in r for r & 5goL, and it varies as 1 lr for r & 5goL, such

that the structure of an isolated vortex line can be

represented everywhere: 0& r & oo. Because of its normal

core structure, the o vortex in Fig. 3 is a weak function of
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3.0 C

& 0.5
C3

00 ————-——
C++

o vortex 5=0.0

~ ~

TABLE II. Calculated properties of the singly quantized o
vortex (normal core) in superfluid He-B as functions of the
spin-fluctuation parameter 5 (cf. Fig. 3). Here the vortex energy
is mp, (iri/2m3) [in(R/g'oL)+E] [cf. Eq. (4.10)]. The normalized
vortex magnetization equals m = I dr r m (r ), where
m (r )= g„(C+„—C „) [cf. Eq. (7.3)]. The normalized suscep-

R/g'
CrL

tibility anisotropy is given by A, = dr r A,(r ), where
A(r)= Q„[CO„—z (C+„+C „)][cf. Eq. (6.11)]. The constant
b in this table denotes the integral b = dr r A,(r)—A,„~,
where the regularizing term is X„s——(1+3Pi2/Pi&&)!(r +1).
The constant b may be absorbed as e in the expression for A.,
written as X=(1+3piz/p345) ln(R/egoL), with @=1.067, 1.079,
and 1.114 for 6=0.0, 0.3, and 0.46, respectively. In the table we
have chosen the fixed typical value R = 10 goL for the intervor-
tex distance, to ease direct comparison of A, with Table III.

0.0
I

2.5
I

5

r/gGL

I

10 0.0
0.3
0.46

0.023
0.021
0.018

0.165
0.146
0.130

22.9
26.7
29.5

—0.15
—0.22
—0.35

1.0

& 0.5

(b)

Coo

o vortex 5=0.46
density in an o vortex as functions of the radial distance
from the vortex axis. Here (and also in Fig. 8) the asymp-
tote for the total free-energy density in the bulk 8 phase
at r~ co is f«, ———1.5, cf. Eq. (4.8). The (bulk)
condensation-energy density, fz(r), tends to zero on the
vortex axis, which is normal. The gradient-energy density
fo(r), obtains its maximum value at r =0. This behavior
is just as in the classical quantized vortex lines in He II.

The superfluid density p, (r) is a tensor quantity. We
consider here the component of p, parallel with the vortex

0 0 ————.—
C++

l0
I 1 I

0.0 2.5 5 25
r/gGL

FICi. 3. Structure of the most symmetric singly quantized
vortex, the o vortex, in superAuid He-B at (a) the weak-

coupling limit with 5=0.0, and {b) the polycritical point where
5=0.46. Here the real pairing amplitudes C„„(r) (with C„„=—0
for p+ v odd) are scaled such that the bulk 'He-B order param-
eter at r =oo isdescribedby C+ (ao)=COO{00)=C +(oo)=1.
Radial distances r from the vortex axis are measured in units of
the Ginzburg-Landau coherence length god( T)= ( 5 ) g'p/

(1—T/T, )'~ . The scale is linear in r for r &5goL, and varies
as 1/r for r & 5goL, such that the structure of an isolated vortex
line can be represented for 0&r & ~. Note the weak depen-
dence of this normal core vortex on pressure.

CJl
L

CU

03
I

CU

L

0.0

pressure; hence the variation with pressure of the normal-
ized o vortex susceptibility anisotropy X (see S«VI)»d
the normalized magnetization m (see Sec. VII) is not
strong. Computed physical properties associated with the
o vortex solution are presented in Table II as functions of
pressure.

Figure 4 displays the components of the free-energy

.~GL

FIG. 4. Radial distribution of the normalized free-energy
density for the singly quantized o vortex in the weak-coupling
limit. Note that because of the normal vortex-core structure,
the bulk condensation energy fs tends to zero for r~0 and
there only remains a finite gradient energy fo on the vortex
axis. The total free-energy density, f„„is a monotonically de-
creasing function of r.
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(4.15)

where p, (ao ) is the (isotropic) bulk superfluid density in
the B hase. The superfluid density (4.15), normalized to
its bulk value, is displayed in Fig. 5 for the 0 vortex; the
normal core structure is reflected

'
p,in (r =0)=0, just as

for the classical vortices.
The tangential superflow j,(r) circulating around the

vortex may likewise be derived by variation of the vortex
free energy. We find the expression

(r). The behaviors of the other coinponents areaxis, p, ~~&r . e e
analogous. An expression for p, ~~

is derived easily o
culating the superflow by variation of the vortex ree en-

ergy with respect to v, (which changes the order parame-

) and finding the linear
response o j// s/[ // s s ' u lnIn the weak-coup ing
approximation, %2+%3——2X, EC~ ——K, we obtain

p, (((r) =p, ( oo )—,
' 2 g I c„o(r)

I
+ g I c„„I

P)V

(4.17)

The normalized superflow for the 0 vortex, calculated
with the above expression, is illustrated in Fig. 6.

A free-energy minimum, corresponding to a vortex
solution in a given symmetry class, is always the ex-
tremum of the functional in all of the function space.
However, this extremum may not be a true minimum, but
rather a saddle point. Therefore, one needs to verify the
stability of the solution towards perturbations breaking
the 0 symmetry. We have tested the stability o the o vor-
tex by adding the perturbative parameters C» from the u
sector, the u sector, and the w sector. We found that
while the perturbations from both the u and m sectors de-
crease to zero in the minimization procedure, the pertur-
bations from the U sector increase, manifesting an instabil-
ity of the 0 vortex towards the formation of a U vortex:

C++e '~ C+p C+ e'~

a "'(m =1)= Co+ Cooe o
iP C 2ig

PV

J)(")= io Ps( ~ ) Js()')
2m 3

where the normalized superflow is given for the general
axisyrnmetric singly quantized vortex state in terms of the
pairing amplitudes C» as follows:

(1—v —p)J(~)=2 g I c„„Ir
V)P

I

+ $ C' C (1—v —p)+cc.VJLC, VP
P)P )V

+ 2 2 C:, C.,(lv'Is —~'Is I)+cc.
IP)P )V

(4.16)

where all the nine functions Cz„(p,v=+, 0 —) are real.
The resulting vortex structure, which corresponds to the
minimum of the functional (4.13) in the space of the nine
real functions C»(r), is illustrated in Fig. 7. This vortex
state has a superfluid core with A phase (Co+ an its
dual p ase p anh C ) and a ferromagnetic so-called P phase

x axis. This(C+0 and its dual phase C 0) at the vortex axis. is
vortex has a lower free energy than the 0 vortex with nor-
mal core (cf. Tables II and III); in fact we have found that
at zero magnetic field this superfluid core vortex, which is
s ontaneously ferromagnetic (and therefore the u vortex
magnetization is an order of magnitu ge lar er than for the
nonunitary 0 vortex; see art; ee Tables II and III), minimizes the

I

o vortex

1.0—

~ 0.5
Ol
CL

Vl

2

L
L

O
L

0)
CL

lh

I

25
0.0

2.5 5 10
r/gG,

FIG. 5. Calculated normalized superfluid dens' y p,nsit in the 0
vortex for 5=0.0, presented in Fig. 3(a). This figure shows p, I~,

the component of the superfluid density tensor parallel with the
vortex axis. The o vortex core is normal with p, (
as for the classical He vortex.

0
0;0 1025 5 25

r/gG„
FIG. 6. Computed normalized radial distr1but1on of the

or the o vortex in the weak-tangential supercurrent, J„or t
coup 1ng 1ml .l' limit. The linear slope for rico resultsUlts from the
asymptotic 1/r dependence of the tail of the flow iefield. , The su-
percurrent decreases for decreasingin r close to the vortex axis
since p, tends to zero (cf. Fig. 5),.
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(b) (c)

1.0 1.0— 1.0

0.5 0.5 0.5

0.0 0.0

1.5— v vortex 6= 0.0 1.5— v vortex 6= 0.3
L

1.5

1.0 1.0

0.5 0.5

00- .

icp
0.0

0 -0.5— C,p -05—

0.0 10 25 5
r/g,

2.5 5 25
It„ r/C, „

0.0 '}0 25 co

FIG. 7. Calcul ated structure of the broken-symmetry u vortex as a function of pressure in the Ginzburg-Landau regime. We iden-
tify this supe uid core vortex structure as the one observed in the NMR experiments on rotatin- bulk su erfluid H -8 '

, a a pressures. The upper curves represent the same five different pairing amplitudes C „(r) (for +v even
that also occur in the maximall s mmetrima y symmetric o vortex; the lower curves display the four additional pairing amplitudes C„„(r) (with
p+v odd) (A phase and the ferromagnetic P phase and their dual phases) that exist in th' P t '

exis in is ~ symmetric vortex structure. The scales
ary as in ig. 3. (a) Weak-coupling (zero pressure) limit, 5=0.0. (b) Intermediate pressures, 5=0.3. (c) Pol critical

~ ' ~

ry o e o vo ex displayed in Figs. 3, the structure of this u vortex is a strong function of 5; in particular, the super-
fluid core depends sensitively on pressure. Further derived data on the u vortex is presented in Pigs. 8—16, and in Table III. Observe

try: t ~—t.
+0, + —C + an ++ —C, due to an approximate time inversion (T) s0+ — o— —= =C —, ymme-

free-energy functional in Eq. (4.13) for the class of singly
quantized axisymmetric vortices for all values of the coef-
ficients (Pt to Pq) of the fourth-order invariants corre-
sponding to stable bulk 8 phase. [Observe that for 5=0
the normalized 2-phase pairing amplitude Co+ has the

value Co+(r =0)=1.17 on the vortex axis, rather than
the less accurate value 1.02 obtained in the solution quot-
ed in the first report, Ref. 8. However, this slight numeri-
cal inaccuracy is both qualitatively and quantitatively
unimportant. j

TABLE III. Computed physical properties of an isolated v vortex (ferromagnetic superfluid core) in
superfluid He-8 as functions of 5 (cf. Fig. 7). The vortex energy E and the normalized magnetization
m are as defined in the caption to Table II. The v-vortex core radius r „is determined as the distance
where boojums (nodes) in the He quasiparticle energy gap first appear on the Fermi sphere (cf.
Figs. 12—14), and the superfiow becomes nonpotential. Here X„,= I dr r A,(r ) is divided up into
two different contributions: the flow term A,z,„and the term due to the vortex corp amsotropy, A, „.
T e flow term is Xs,„=(1+3p&z/p345) ln(R/r„„), while the core anisotropy term is X „=X„,—Xn,„.
The numbers for X were again calculated using R = 10 got.

0.0
0.1

0.2
0.3
0.4
0.46

—0.014
—0.0145
—0.015
—0.020
—0.030
—0.036

1.59
1.58
1.56
1.44
1.35
1.47

r core /goL

1.9
2.1

2.2
2.35
2.55
3.1

25.3
27.3
29.1

31.8
34.9
39.6

~Aow

21.4
22.2
23.2
24.4
25.7
26.1

~core

3.9
5.1

5.9
7.4
9.2

13.5
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v vortex 5=0.0 bulk
Co+ ——,

1/2
3Pi2+ P34s

P34s

5 —5
2 —1.055

' 1/2

(4.18)

cA 0
Ol

Ol
I

Ol
OP

0.0

ch 0
CLl

OJ
I

4)
CP

(b)

2.5

v vortex 6=0.46

]0
I

25 oo

while the P phase amplitude decreases for increasing
values of 5 right on the vortex axis (however, the exten-
sion of the P phase increases dramatically in the outer
core region; resulting in roughly the same integrated value
for the normalized vortex magnetization; see Sec. VII and
Table III). That is, the vortex core becomes bulk A phase.
The extension of this A-phase nucleation center increases
with 5. This means that the vortex in the 8 phase is the
center of nucleation of the stable A phase in the metasta-
ble 8 phase. Because of the large amplitudes of the A
and P phases in the u vortex, the five pairing amplitudes
C++, C+, Coo, C +, and C, which already exist in
the o vortex, are strongly and nonhnearly modified by the
presence of the amplitudes C+p Cp+ Co and C o aild
cannot simply be considered to provide a potential for the
four additional components.

The free-energy density in the v vortex is shown in Fig.
8. The bulk condensation energy f~(r) remains finite
everywhere, and the gradient energy fG(r) is appreciably
reduced on the vortex axis from its value in the o vortex
(Fig. 4) because of the escape of the superfluid into the
other pairing states. The total energy f„,displays an ex-
tremal value at a finite distance from the vortex axis.
This can be interpreted to result from a domain wall
separating the bulk 8 phase from the A phase nucleated
at the vortex core. For 5=0.0 [Fig. 8(a)], the domain wall
is close to the vortex axis, and the A phase in the core re-
sults in appreciably higher condensation energy than in
the bulk 8 phase. At 5=0.46 [Fig. 8(b)], however, the A
phase in the core results in almost the same low

0.0 2.5

FIG. 8. Components of free-energy density in the superfluid
core U vortex Note .that the bulk condensation energy fs
remains finite everywhere. (a) For 5=0.0 the condensation-
energy density is diminished by 29% from its bulk equilibrium
value, while (b) for 5=0.'46 the conderisation-energy loss on the
vortex axis from its bulk value is only 6%, since for this value
of 5 the transition to the A phase in bulk superfluid 3He is in
close proximity. The gradient energy fG is greatly diminished at
r =0 from that of the o vortex in Fig. 4 because of the escape of
the superAuid into other pairing states. Note that the total ener-

gy density f„„aswell as the bulk condensation-energy density

fs, exhibit extremal values at a finite distance from the vortex
axis. This may be visualized as resulting from a domain wall
which separates the bulk 8 phase from the A phase in the vor-
tex core.

~ 0.5
Ol
CL

N

Figure 7 shows the change in the structure of the U vor-
tex with increasing strong-coupling parameter 5. A most
interesting behavior is that of the superfluid core at
5=0.46, in the immediate vicinity of the polycritical
point, where the B phase is about to become metastable in
the bulk liquid and the 2 Phase becomes stable. With
further increase of 5, the amplitude of Co+ of the A

phase component in the core begins to increase towards its
bulk-liquid value in the A phase:

0.0
0.0

I

2.5 5 ce

/F. ,„
FIG. 9. Component of the aormalized 'superAuid densit~

along the vortex axis, calculated for the u vortex in Fig. 7(a)
Note that unlike for the o vortex {Fig. 5), here the superflui~
density remains finite everywhere, including the vortex axi,
This is because of the superfluid core structure of this quantize
vortex line.
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superfluid A phase leads to the appearance of nodes in the
He quasiparticle energy gap (local I vector fiel with its

associated superfluid fiow properties). This results in vor-
tices in P space, which are discussed in the following sec-
tion.

Due to its symmetries, P2 and Q, the U vortex solution
described above is also an extremum of the total vortex
energy functional. However, its instability to further
breaking of symmetry has not yet been excluded. We only
want to note in this connection that an axial asymmetry
combined with the already broken parity P of the U vortex
will produce a twist. Let v be the direction of the vortex
anisotropy in the x-y plane, then the absence of the sym-
metry P allows for the existence of a free-energy term
proportional to v. V X v, as in cholesteric liquid crystals.
This will result in a twisted vortex texture with broken
translational symmetry t, :

I

v vortex
6=0.46

v=x cos(qz)+y sin(qz) . (4.19)

In the future, we shall investigate in detail perturbations
breaking the symmetry I'2, and nonaxial perturbations.
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FIG. 10. Tangential supercurrent in the superfluid core U

vortex. (a) Weak-coupling limit, 5=0 [cf. Fig. 7(a)]. (h)

Strong-coupling limit, 5=0.46 [cf. Fig. 7(c)]. Here the super-

flow tends to the potential-flow regime only for radial distances
r &r„„from the vortex axis, where the vortex core radii are
given in Table III. For r ~r„„, the superAow distribution is

governed by the nodes of the energy gap on the Fermi sphere.
In particular, note how in case (b}, close to the vortex axis, there
is a region where the superflow is counierrotating. Since

p, (r =0) remains finite. (Fig. 9), while j, tends to zero at r ~0,
this may be visualized as a solid-body rotation of the superfluid
near the vortex axis.

10

condensation-energy minimum as in the B phase. The
vortex core radius is much increased and the domain wall
separating the superfluids in the bulk and in the vortex-
core region is more pronounced.

The normalized superfluid density for the U vortex is
shown in Fig. 9. Unlike the o vortex or the classical vor-
tex in He II, this u vortex possesses a finite superfluid
density everywhere, including the vortex axis, in particu-
lar.

Figure 10 illustrates the distribution of the supercurrent
in the U vortex. In the vortex core, the nucleation of the

V. TOPOLOGY OF THE ENERGY GAP
IN THE VORTEX CORE

The structure of the vortex core in the 8 phase is inti-
mately related with the properties of the He quasiparticle
spectrum inside the core, and in particular with the topol-
ogy of the nodes in the energy gap. In triplet pairing
there are in general two branches of the quasiparticle exci-
tation spectrum:

Et =[ I ~t(P) I
'+UF'(p —pr )']'"

E~=[
I ~~(P) I'+U~(p pF)']'"—

(5.1a)

(5.1b)

which correspond to the two possible opposite spin projec-
tions of the He quasiparticle. Here P is the unit vector
along the He quasiparticle momentum p. The direction
of the quasiparticle spin quantization axis and the magni-
tudes of the gaps b, ,(P ) and h, (p ) are obtained after the
diagonalization of the 2X2 gap matrix Z(p ):

b(p)=i&2& A;p;, (5.2)

UZ(p )Ut=
b, ,(p) 0

(5.3)

(5.5)

and there are no nodes in the energy gap.

where U(p, r ) is a unitary transformation.
The nodes of the energy gaps for an arbitrary order pa-

rameter A; may be found from a consideration of the
determinant of the gap matrix Z(p ):

det[Z(p )]=—A,p;3 Jpj =h, (p )b, ,(p ) . (5.4)

If for a given P we find that det[h(p )]=0, then for this P
at least one of the gaps b, , or 5, is zero.

For the bulk B phase, with its order parameter given in
Eq. (3.3), one finds

det(Z )= —5 (T),
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For the bulk A phase, with the order parameter [here
64 ( T ) denotes the amplitude of the energy gap]

vortex axis
Z

A~; =b,g(T )d~(h,'+id.g"), (5.6)

both species of He quasiparticles, with respective spin

projections + —, on the spin quantization axis d, have a
node at p parallel with the orbital quantization axis
1 = Z ' X Z ". The correspondhng determinant is

det[&(p )]=&~(T)[(&"p )'—(& ' P )'

UaSi ar iC e
momen urn

~ a,

—2i ( Z '.p )( Z ".p )],
! det[&(p ))!=&~(T )(p X & )' .

(5 7)
Fermi sphere

The nodes in the energy gap define all the superfluid
properties of He, including the peculiar continuous vorti-
city of superflow. The important point to emphasize here
is that these nodes of the gap are just such points on the
Fermi surface around which the phase of det[h(p )]
changes by 2mN, wh. ere N denotes an integer (N =2
for det[b, (p )] in the A phase given by Eq. (5.7)). Such
point vortices on the Fermi surface are called boojums,
because they resemble those point singularities in real
space, which may occur on the surface of a container, that
were first introduced by Mermin. These vortices in the
p space and the more common vortices in the r space
have basically the same origin: They are vortices in the
order-parameter field 6(j,r ), and therefore they may
transform to each other by the deformation of the order
parameter both in the p and in the r spaces. Due to these
transformations, singular vorticity of the quantized vortex
in r space may be sinoothened by "flaring out" of the
vortex in p space. We illustrate this in the present paper
on the example of the singly quantized U vortex; the dou-
bly quantized axisymmetric vortices also display similar
properties, see Refs. 15 and 16.

Note that the singly quantized o vortex has no nodes in
the gap anywhere across the core, for det['b, (p )] never
goes to zero. Hence there are no boojums on the Fermi
surface and vorticity in the singly quantized 0 vortex is
strictly singular: the circulation of superflow along any
path embracing the vortex axis is 2m, irrespective of the
path chosen, and the superfluid velocity has a singularity
on the vortex axis, where the gap vanishes: h(p, r =0)=0
all over the Fermi surface, giving rise to the normal state
at the vortex axis.

The situation is fundamentally different for the U vor-

tex, where this singularity is resolved through the forma-
tion of vortices in P space, with the result that superfluidi-

ty is not broken on the vortex axis. However, topological
analysis predicts that in order to escape the singularity on
the vortex axis, two pairs of boojums associated with the
opposite topological charges N =+1 should appear at the
Fermi surface for some finite distance from the vortex
axis. Here we choose to denote this distance where the
nodes in the He quasiparticle excitation spectrum first
appear as the vortex core radius (r„„),since everywhere
in the core region inside this radius the superflow is non-
potential.

For decreasing distances r &r„„from the vortex axis,
these boojums must move continuously to the poles of the

Flay. 11. Illustration of the local angles a(r) and p{r) that are
used in Eq. (5.8) to define the directions of quasiparticle
momentum p on the Fermi sphere, where one of the two energy
gaps disappeal s.

Fermi surface, while covering on their way all the Fermi
surface. Finally, on reaching the vortex axis, the nodes
fuse together at r =0 on the poles, where they produce
antipodal boojums with the net topological charges
V =+2, which correspond to the superfluid A phase on
the vortex axis.

The maximum number of boojums on the Fermi sphere
is not four for p-wave pairing, as was stated erroneously

I gore = &.9 2.35 3.1

lA

O
~~
~ ~
III
O
~m,
N
E
0a
J3

0
0

FICr. 12. Angles a{r) and p{r), obtained as solutions of Eqs.
(5.10},which determine the positions of boojums (nodes) in the
He quasiparticle energy gap on the Fermi. sphere for the singly

quantized U vortex. The three sets of curves (a,b, c) correspond
to the three different U vortex structures shown in (a), (b), and
(c) of Fig. 7. (a) 5=0.0. (b) 5=0.3. (c) 5=0.46. Also indicated
in this figure is the vortex core radius, r „,which in this paper
is defined as that distance at which nodes in the He quasiparti-
cle energy gap first appear. The core radius is measured in units
of the Cyinzburg-Landau coherence length: r=r!gGL. The an-

gles a+~ and p," refer to the position of boojum 1+ with unit pos-
itive topological charge, while a2 and p2 refer to the boojum 2
with unit negative topological charge. At r =r„„ these two
boojums with opposite charges annihilate each other.
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in Ref. 27, but rather twice as many. The latter result of
eight possible nodes of the gap follows on taking into ac-
count the complex nature of the object det[b. (p)]. There-
fore, another two pairs of nodes may appear (and disap-
pear) on the Fermi sphere. However, they must cover
zero net area on the Fermi surface (provided that one
takes into account the sign of the surface orientation).
This follows because of the topological requirement that
for a continuous distribution of the order parameter inside
the core of the singly quantized vortices, the total area of
the Fermi surface covered by all the boojums with positive
charges N =+1 should equal 4npp (or, more generally,
4nmpgfor . the case of an m times quantized continuous
vortex).

Let us now illustrate these topological concepts here on
the example of the singly quantized U vortex structure ob-
tained in Sec. IV. Specifically, let us find how the posi-'

tions of the boojums on the Fermi surface in the v vortex
depend on the coordinate r=(r, P) in (real) space. Since
the u vortex is axially symmetric, the positions of the boo-
jums are determined by the two parameters a(r) and p(r):

p(r)=z cos[P(r)]+sin[P(r))[r cos[a(r)]+/sin[a(r)]] .

Here P and a denote the polar and the azimuthal angles
on the Fermi sphere, where P(r) is measured with respect
to the axis (z} of the vortex, while a(r) is measured with
respect to the direction r of the radius vector in real space
(for an illustration, see Fig. 11).

These parameters a(r} and P(r) obey the following
equation at directions where the gap nodes occur:

det[Z(p )]=0 . (5.9)

tan P= —f——c ——d2 2 Q Q

e b b
(S.loa)

As noted- above, this equation may in the general case pos-
sess eight different solutions. The first four possible vor-
tices are obtained as solutions of the following pair of
coupled equations:

r=0 r =0.8 l =1.2

+1-1=0(

r =1.8 r =1.9

!=2 !=23 r =oD

FIG. 13. Computed magnitude of the 3He quasiparticle energy gap
~
det[h(p )]

~

=h, (p }h,(p ) as a function of the 3He quasiparti-
cle momentum and the radial distance r =rgGi. from the vortex axis. For r & r „we choose the cross-sectional plane of the Fermi
surface such that it contains all the four different nodes; this plane can be readily visualized with the aid of Figs. 11 and 12. For
r =0 there is a pair of boojums on the antipodal points with double topological charges, N =+2. For r & 0 these divide up into two
pairs of boojums, each carrying unit topological charges, N =+1. For increasing r the boojums move continuously towards the equa-
torial plane, where they annihilate each- other (+1—1=0) at r =r „,displayed in Fig. 12. For r &r „,the energy gap is strongly
anisotropic, but no more nodes exist. For r —+ 00 one obtains the isotropic B-phase energy gap.
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a
costx = —v 2 —cotP,

b
(5.10b)

f= QC~oC „p, (5.11f)

where

P, V

b = g vC~„C
P, V

c=g ~v)C „oC„

pv —pv ~

(5.11a)

(5.11b)

(5.11c)

(5.11d)

sinu =0,
T

t nP=2v2

(5.12a)

(5.12b)

e = —,
' d —g (

)
v

) C„„C „) (5.11e)
|M, V

Another set of four possible solutions is determined by the
equations

g =-,' d+ g ( j v
~ C„„C „„)' .

P, V

(5.11g)

P2 (r) ='tr —Pj (r), a2 (r) =ma+(r. )— (5.13)

On inserting the parameters C&„(r) for the U vortex ob-
tained in Sec. IV to the above equations (5.12), we find
that there is no radius r at which there would exist a solu-
tion of these equations.

However, there are solutions of Eqs. (5.10) for r (r«„,
where the core radius is given in Table III for different
values of 5. These solutions represent two pairs of boo-
jums on the Fermi sphere. One pair contains the boojum
I+ with the topological charge %=+ I and with the an-
gles Pj (r) and a& (r) (illustrated in Fig. 12 for three dif-
ferent values of the spin-fluctuation parameter), and the
diametrically opposite boojum 1 with the topological
charge X= —1 and with the corresponding angles
P& (r)=m —P~ (r) and a~ (r)=a+a~ (r). The respective
positions of the second pair of boojums, 2 and 2+, are
given by

where

+

/
/

/

I

I
/

/
/r

-1 -1

r=l r =2.5

I+1-1=0
I

I
/

/

r=3 I = 3.1 r =3.5
FM. 14. Calculated Zap

~
det[Z(P)]

~
for the U vortex with 5=0.46, at the polycritical pressure, illustrated in Fig. 7(c). Note that

in the present case the vortex core radius is much increased, and in particular that on the vortex axis the magnitude of the He quasi-
particle energy gap is significantly in excess of its value in the bulk superfluid B phase. This leads to reflection of He quasiparticles
off the U vortex core, and thus influences the mutual friction coefficient in rotating superfluid He-8.
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r= ] r, cx2 r= —ex] r (5.14)

The angles Pq (r) and az (r) of the boojum 2 are also
shown in Fig. 12. At the vortex core radius the boojums
1+ and 2 mutually annihilate each other, and also the
boojums 2+ and 1 coalesce together, such that no boo-
jums remain for distances r &r„„from the vortex axis.

Figure 13 illustrates computed cross sections of the Fer-
mi surface for the v vortex in the weak-coupling limit
shown in Fig. 7(a). Here ~det[b(p)]

~
is drawn in the

plane which contains all the four nodes. These cross sec-
tions are given for several different chosen distances r
from the vortex axis. Note that for r &r„„,the magni-
tude

~

det(Z)
~

is represented in the equatorial plane
(P=m/2), where the nodes first appear at r =r„„.This
figure displays the process of splitting of the boojums on
the antipodal points with the topological charges X =+2
at r =0 into two pairs of boojums, each with N =+1, at
r &0. For r tending to r„„,the boojums move towards
the equator, where the opposite topological charges an-
nihilate each other at r =r«„Indee. d, we verify that the
boojums with a positive topological charge do cover the
Fermi surface once, on taking into account the orientation
of the covering surface.

Figure 14 is a similar display of the boojums on the
Fermi sphere for the v vortex at the polycritical point
with 5=0.46, displayed in Fig. 7(c). Note the increased
core radius with increasing 5. Moreover, we here find the
interesting feature that the amplitude of the He quasipar-
ticle energy gap is clearly larger on the vortex axis at the
equatorial directions on the Fermi sphere than the value
of the gap in the bulk B phase at r =«.

The features described above serve to render the prob-
lem of the scattering of superfluid He quasiparticle exci-
tations off the quantized vortex line in superfluid He-B
an interesting one. Solution for the He quasiparticle
scattering states enters the calculation of the coefficient of
the mutual friction of the vortex lines with the liquid
He. Unlike in vortices of ordinary s-wave supercon-

ductors, the solutions of the Bogo1iubov —de Gennes equa-
tions here yield a spectrum of bound fermion quasiparticle
states for finite distances r &r„„,not only on the vortex
axis.

about an arbitrary axis n but by the fixed, so-called
"magic angle" 8p ——arccos( —

4 ), correspond to the
minimum of the dipole energy:

(n, 8p)= 4 ( —&;+5ri &; —~&5e~lknk) . (6.2)

2a -, - H
lo —cop —— ( n.)&H ), FX=—,

2cop H
(6.3)

where Qa is the I.eggett frequency (see, for example, Ref.
30). Therefore, the frequency shift reflects the n texture
resulting from the combined action of the dipole force,
the magnetic field, and the vortices. ' This makes it
possible to investigate the properties of the vortices by ex-
tracting the vortex contribution to the NMR signal, which
is proportional to the number density of the vortices, and
therefore to the angular velocity of rotation of the sam-

1 —3

However, prior to considering in detail the influence of
the vortices on the n vector texture, let us first find out
whether the dipole energy. and the magnetic field influ-
ence the structure of an isolated vortex. The magnetic en-
ergy is

1 (Xlv —Xg)I'0 ———
2 A~;AI3(H HP, (6.4)

where Xlv and Xa are the magnetic susceptibilities of the
normal phase and the bulk 8 phase, respectively. The di-
pole energy and the magnetic field term produce the fol-
lowing combined effect on the n texture:

-
2 5 gD(Xx —Xa)

FDjj ———a(n H), a=—
8 Q P345

(6.5)

Each of the above interactions, FD, FH, and FDjj, is
characterized by its healing length:

The dipole interaction gives rise to the transverse NMR
shift from the I.armor Precession frequency aip ——

~ y ~
JI

(here y denotes the gyromagnetic ratio for He), which de-
pends on the mutual orientations of n and the magnetic
field H. At the high magnetic field employed in the ex-
periments, H »25 G, the NMR frequency shift is given
by

VI. EFFECT OF THE VORTEX CORE
ON THE NMR SIGNAL

I /2

—10 cm, (6.6a)

The basic interaction determining the NMR properties
of the superfluid B phase is the weak spin-orbit (dipolar)
force:

2EE
H

(Xlv —Xli )II
25 G

H (6.6b)

FD gD (~li ~jj+~I jjl 3 lj~lj

with

(6.1)
EDITH

DH
gGL

(6.6c)

m.

gD —— N (0)yA ln
10

2

in the weak-coupling limit. This interaction partially lifts
the degeneracy of the bulk He-B order parameter in Eq.
(3.3). Qnly those matrices R~;(n, 8p) which describe the
rotation of the spin and orbital axes relative to each other

At distances r & /DE from the vortex axis, the asymptotic
form of the order parameter is given by Eq. (3.7), with
8=8p and n~~H, in order to minimize FD and FDH. Is
this asymptotic behavior different at distances less than
/DE, but larger than gGL? The comparison of the gradient
energy with the energies F~, FD, and FDjj shows (see also
Refs. 35) that at sufficiently low fields, obeying
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r

4 &4Lin2 2 DH

GL
(6.7)

the asymptotics is the same everywhere. That is, the vor-
tex structure even far from the central core region
possesses rigidity The rigidity disappears at larger fields,
where the vortex structure becomes snore complicated. At
these higher field strengths, with

r.

4H (SGL» AH

GL

2Q
h/Zm3

(6.9)

I l I I

(a) susceptibiLity anisotropy 5=00

The orientational part of this energy should be averaged
over the vortices which are distributed in a container ro-
tating with the angular velocity Q with the equilibrium
density of vortices given by

(Xpf Xjp ) g g H~R~fAj Cp~
V P

= —,'(XH —Xs)(H &;z;)

x g( I C,„I'——,
'

I c+„I'——,
'

I
c

+ —,
' (X~ —X~)H'g ( I C+„ I

'+
I
C

I

') (6.8)

the He-8 vortex possesses two cores as in the A phase: a
hard core of the size of several g'GL and. a soft core of the
extent gD. In the soft core, the n vector is oriented by the
combined actions of the superflow around the vortex and
the magnetic field; outside this soft core n is oriented

along H by the combined action of the magnetic field and
dipole forces. Therefore, the vortex has no orientational
effect on the bulk order parameter outside the soft core.
In an axial magnetic field, the soft core appears at some
critical threshold value of the magnetic field, manifesting
a phase transition, where the translational invariance of
the n vector field is broken. In a tilted field, however, the
soft core of the vortex may develop continuously without
a phase transition; however, the possibility of a first-order
phase transition is not excluded. The soft-core texture
may be investigated with the use of ultrasound, whose
wavelength is less than the size of the soft core of the vor-
tex. Under such conditions, the additional splitting of the
so-called "real squashing mode" (rsq, Ref. 36) should be
measured since it yields information about the texture.

Fortunately, the magnetic field H =284 6, appropriate
to all the presently available experiments with He-B vor-
tices, is small enough for one to neglect the soft core, ex-
cept for a region close to T„where due to the experimen-
tal difficulties the NMR data on the vortices in He-B are
not very accurate. Jherefore, we may here consider the
vortex structure as rigid and without a second core. In
this case of the rigid asymptotics, the influence of the sys-
tem of vortices on the n-vector texture is very simple, be-
cause the n vector is uniform everywhere in the vortex
lattice and is oriented by the combined actions of FDH and
of the vortices. The orientational energy of the vortices
arises due to the effect that the magnetic energy in Eq.
(6.4) depends on the asymptotics. Indeed, on inserting the
axisymmetric Ansatz of Eq. (3.14) into Eq. (6.4), and
averaging over P, we find the following dependence of the
energy density on the orientation of R;(n, 8):

1.0

0.5

0.0
0.0 2.5 10 25

I I

(b) v vortex susceptibility
anisotropy

5= 0.46

I

25
0

2.50.0 5 10
is„

FIG. 15. Radial distributions of the normalized vortex sus-
ceptibility anisotropy X(r)= g„[CO„—2 (C+„+C „)j. (a)
Comparison of the o vortex [Fig. 3(a)] and the u vortex [Fig.
7(a)] susceptibility anisotropies in the weak-coupling limit
(5=0.0). Because of the normal core structure, A,(r) for the o
vortex tends to zero on the vortex axis, resulting in a much
lower integrated value than for the U vortex. Because of the
weak dependence of the o vortex on pressure, A,{r)is practically
the same for all values of 5. (b) The strong pressure variation of
the u vortex (cf. Fig. 7) results in the sensitive pressure depen-
dence of the normalized u vortex susceptibility anisotropy.
Note, in particular, the strong increase of the core contribution
to A, for increasing 5.
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F„= ', Aa—(HaRaiz; ) (6.10)

with

This yields the following expression for the density of
orientational energy, which proves convenient to write in
terms of the dimensionless vortex parameter A, introduced
in Ref. 31 for a comparison of the orientational effects of
FDII and the vortices:

pairs, caused by the peculiar breaking of the relative spin-
orbital symmetry. The circulation of the superflow
around the vortex axis produces an internal orbital rota-
tion of the pairs, which in turn produces the net spin of
the pairs due to this spin-orbital coupling.

Here we calculate the magnetic moment for the 0 and v
vortices. In the Ginzburg-Landau regime, the intrinsic
magnetic moinent density of the superfluid He is

S GLR /g'

(p~ —Xp )(2irn„gGi, ) f4a 0

YlMa 3 )/N(0) cheap& Api A yi ~

TC
(7.1)

c+„I'——,
' Ic „I') .

(6.11)

Here 8 is the iniervortex spacing

(6.12)E. = 1

(em„) '~

which serves as the cutoff of the logarithmically divergent
integral, because the asymptotics of k is given by

r

A,(r:+oo )= 1+ 3p&2 m
(6.13)

p345

where m = 1 for the singly quantized vortices. This is the
effect of the B-phase distortion due to the superflow
around the vortex core. The distributions of A, (r) for the
different vortices are shown in Fig 15. .The integral value
may be expressed as

The above parameter g is not well known theoretically be-
cause it depends on the details of the particle-hole asym-
metry near the He Fermi surface. Experimentally, it
may be estimated from the thermodynamics of the
second-order transition occurring in high magnetic fields,
where the magnetically ordered 3

~ phase appears. In the
Ginzburg-Landau functional, the thermodynamics of
this transition is governed by a term which is linear in the
magnetic field:

(7.2)

At the melting pressure, q is estimated to equal 0.05.
For the bulk B phase M =0; however, for the vortex

M&0, due to the distortion of the B phase in the vortex
core. Substituting in Eq. (7.1) the axisymmetric order pa-
rameter (3.14) and averaging over the azimuthal angle P,
one obtains the following dependence of the intrinsic mag-
netic moment on the distance from the vortex core:

P345 ~core
(6.14) M (r)=R;z;mph(

~ C+„j —
~

C „ I
3), (7.3)

where r„„ is the vortex core radius. The first term in
(6.14) may be ascribed to the orientational effect of super-
flow, ' while the value b in (6.14) is due to the effect of
the magnetic anisotropy inside the vortex core. ' The
values of b and (1+3p&2/p34$)ln(R/r„„) for R =10
cm ( —10 goL) for the a and U vortices are collected in
Tables II and III for different values of the strong-
coupling parameter 5. One may see that the core effect
rapidly increases with increasing 6 and it is comparable to
the effect of the superflow For examp. le, at the polycriti-
cal point (5=0.46) we find the core contribution near
T, to be A,„„=—,

'
A,«, . However, the flow contribution to

X must vanish for T~O since it arises from the anisotro-
py of the superflow, which disappears at low tempera-
tures. Hence only the core contribution X„„remains fin-
ite at zero temperature, A,„„(T=0)=A,„,(T =0), and the
total orientational effect of the vortices is produced at
T =0 by the susceptibility anisotropy of the vortex core
alone.

VII. THE MAGNETIC MOMENT OF THE VORTEX

As is well known by now, the magnetic moment (or
nonunitary order parameter) is an intrinsic property of
quantized vortices in Fermi superfluids with triplet pair-
ing. It was first predicted for the vortices in a P2 paired
superfluid state, which may exist inside neutron stars'
and was experimentally discovered in He-B. This mag-
netic moment is the result of the specific coupling which
occurs between the spin and orbital motions of the Cooper

where

Q2
mp ———,

' yN(0)i1
C

(7.4)

Note that the direction of the magnetic moment is fixed
by the asymptotics of the order parameter: 'M -R;z;.
This is the result of the broken relative spin-orbital sym-
metry, due to which the magnetic moment direction and
the direction of the orbital angular momentum (in this
case it is the angular momentum of the superflow around
the vortex axis, which is directed along 0) are coupled
via the order-parameter matrix R~;. ' There is no addi-
tional symmetry constraint on the expression
g„( ~

C+„I
—

~

C „~ ); therefore, the net magnetization
is nonvanishing for each of the vortices. The distribution
of the magnetization for the different vortices are shown
in Fig. 16.

The magnetic moment of the vortices was observed
due to its specific influence on the NMR signal, which de-
pends on the direction of rotation: The energy in Eq. (7.2)
produces an orientational effect on the order parameter
Ra;(n, L9p), which changes its sign when the direction of
magnetic field (or rotation) is reversed. The correspond-
ing orientational gyromagnetic energy, which is linear in
H and 0, is obtained by averaging (7.2) and (7.3) over the
vortices, which are assumed to have the equilibrium densi-
ty n„:

Fs ———,as(HaR;0; ), (7 &)
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0.3,

02-

vortex magnetization 6=00
where

mc(2n. g'Ggn„) J drrg(~C+„[ —[C „( ).
V

(7.6)

0.1—

0.0

0.0 2.5
I

5
r/ge„

'10
I
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Here again the parameter a is introduced to compare the
gyromagnetic energy with the other orientating effects
FDH [Eq. (6.5)] and E, [Eq. (6.10)]. Here, instead of z,
the unit vector Q along 0 is introduced: The vortex. axis
z is directed along the angular velocity vector Q and it
changes sign with the reversal of rotation due to the
change of the circulation quantum number m to the oppo-
site, such that z=Q. The values of the integral in (7.6)
are shown in Tables II and III for the different vortices
and for different values of the strong-coupling parameter
5.

For a rough estimation of the order of magnitude of a,
let us take the following values for the parameters in-
volved [all the parameters, except g, are taken at the pres-
sure p = 18 bars (Refs. 11 and 40)]:

0.3

0.2—

(b) v vortex magnetization

6= 0.0

y= —2)&10 G 'sec ', g=0.05,
n, =0.3&& 104 cm (at Q=1 rad/sec),

b, =10 (1—T/T, )erg

N(0)=10 erg 'cm

gGL
——1.6X10 '(1 T/T, ) '—cm

0 +c =3.2)& 10 erg,

(7.7)

0.1— and then

z-(4G) I dFr(iC+„i —iC „i2). (7.8)

00-

0.0
I

2.5 10
I

25

This is in agreement with the experimental data on v,
within the order of magnitude. However, the detailed
comparison is quite difficult, due to the poorly known
value of the parameter q and also because the more reli-
able experimental data for a is obtainable only far from
T, . The experimental data for ~ at p = 18 bars and low

temperatures 0.5 & T/T, &0.7 may be written as~3

FIG. 16. Normalized magnetization density m (r)
= g„(C+„—C „). (a) For the o and u vortices in 3He-Bin the
weak-coupling limit. The large value of the u vortex magnetiza-
tion is essentially due to the distribution of the spontaneously
ferromagnetic P phase in the core. The vanishing of the o vor-
tex magnetization on the vortex axis is due to the normal core.
(b) The distribution of the U vortex magnetization as a function
of the strong-coupling parameter 5. For 5=0.0 the ferromag-
netic P phase peaks on the vortex axis [cf. Fig. 7(a)]; this leads
to the large value of m(r =0). For increasing 5 the value of the
intercept C+0(r =0) in Fig. 7 decreases. This leads also to the
decrease in the magnetization at the vortex axis. However, the
extent of the P phase grows simultaneously and leads to the
broader distribution of the vortex magnetization, resulting in
roughly the same integrated value for m (cf. Table III). For
5=0.46 the rapid increase of another ferromagnetic phase, the
A' phase [C++, cf. Fig. 7(c)], associated with the above-
described behavior of the P phase, accounts for the features seen
in this figure.

x(Q= 1 rad/sec)-(50 G)(0.8—T/T, ), (7.9)

which is in quite reasonable agreement with the magni-
tude of the vortex magnetization [Eq. (7.8) and Table III]
calculated in the present paper for the v vortex.

VIII. PHYSICAL PROPERTIES
OF VORTICES %KITH BROKEN PARITY

One of the most interesting phenomena which occur
when parity P is broken is the appearance of a spontane-
ous electric polarization of the vortex. Here we consider
this effect and other consequences of parity violation. We
are interested in physical properties that are invariant
under gauge transformation and spin rotations, such as
electric polarization P and supercurrent j,. For them, all
the elements of these transformations are trivial, and we
have the following simplification for the discrete symme-
try elements P], P2, and P3'.
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~2 ITU2 ~3 TU2 (8.1)

with U2 denoting an orbital rotation through ~ around an
axis perpendicular to the vortex.

Let us consider the symmetry of the projection of the
electric dipole moment d of the vortex on the vortex axis
Q. This quantity, d Q, has the following parity proper-
ties under the transformations given in Eq. (8.1):

A, -+ -+ w -+ A.
I'~ d.Q= —d.Q Pqd. Q= d 0, P3d 0= —d.Q .

(8.2)

P(r)=P~ I (V' / )+P2
&

I &((v, —v„)+P3( l V') I

(8.4)

These parameters P; were estimated to be

pi —p3-p2- (10 ' —10 )(1—T/T, ) V,
pi+p3-10 (1—T/T, ) V .

(8.5a)

(8.5b)

Integrating P(r) in Eq. (8.4) over the cross section of
the twofold degenerate Anderson- Toulouse-Chechetkin
vortices (8.3), we obtain the dipole moment d per unit
length of the vortex line:

This is just the symmetry property of the variable v in Eq.
(3.23b). Since d Q changes sign in the P~ and P3
transformations, it should vanish for those vortices where
these symmetries are conserved. Therefore, the spontane-
ous electric dipole moment may arise only when the sym-
metries I'& and I'3 are broken, and the variables represent-
ed as v appear. This is just the case for the v (cf. Fig. 7)
and uuw vortices in the 8 phase, and for the Anderson-
Toulouse-Chechetkin vortex texture in the A phase of su-
perfluid He, which according to its symmetries is also a
I'2 symmetric v vortex.

Let us first consider the electric polarization in this A-
phase vortex. The Anderson- Toulouse-Chechetkin vortex
texture has the following form in terms of superflow v,
and the orbital anisotropy vector I:

I =z sin[g(r)]+r cos[g(r)],
(8.3)

v, = I 1 —sin[g(r)] I P .
2P?l 3 P'

This is a continuous axisymmetric m =2 vortex texture.
For a detailed discussion of the symmetry classification of
the axisymmetric A-phase vortices, see Refs. 15 and 17.
The signs + above indicate the degeneracy of the u vortex,
g changes from m/2 at the vortex axis to m/2 out—side
the vortex core region. The difference in the physical
properties of these two degenerate states is described
below. The polarization P(r) in the A phase arises due to
the so-called flexoelectric effect, which is well known for
ordinary (nonsuperfluid) liquid crystals, where the elec-
tric polarization is caused by the bending of the anisotro-
py axes.

In the A phase there are three flexoelectric parameters,
relating P( r ) with the gradients of the order parameter:

d=+Q 2m f dr —,'Pzcosg(1 —sing)

+(P3 P—, )r cos g
~'9 2 (8.6)

The magnitude of d is the same for both vortices and it is
proportional to the radius r,«, of the vortex core. How-
ever, they have the opposite senses for the direction of the
electric dipole moment along the vortex axis, which re-
flects the degeneracy resulting from the broken P symme-
try. Note that only the parameters Pz and P, —P3 are in-
volved in the dipole moment d in Eq. (8.6), because the
parameter P~+P3 is a prefactor of the term in Eq. (8.4),
which is a pure derivative, and therefore cannot contri-
bute to the total dipole moment of the vortex.

The same effect of spontaneous polarization also takes
place for the U and uuw vo~ices in 3He-8. The quantity
d is here proportional to the core radius of these vortices,
which is -gGL. The estimation of d may be carried out
readily on recalling that the cores of these vortices
predominantly consist of the A phase; therefore, the same
parameters P; as in Eq. (8.4) are involved:

d -+«&i —A)kGr. . (8.7)

The twofold degeneracy of the U vortex gives rise to to-
pologically stable kinks or point solitons separating two
parts of the vortex line with different electric polariza-
tions. Such a point on the vortex line has an electric
charge e' associated with it, which is of the order of

e*—(P& —P3)g- 10 e, (8.8)

for the vortex line in the 8 phase. In the above, e denotes
the elementary charge of an electron.

For the A-phase vortex in an applied magnetic field,
where the core radius r„„is of the order of the dipole
length gD —10 ' cm, the corresponding electric charge as-
sociated with a point soliton is of the order of

e' —(p( —p3)gD —10 e . (8.9)

An equal amount of electric charge ought to be concen-
trated on the endpoint of the vortex line at the surface of
the container.

Under ordinary circumstances, the signs of these
charges at the surface are randomly disordered, due to the
disorder in the sense of the direction of the vortex polari-
zation, d —+Q. Thus the bulk liquid has no features of
the broken symmetry. However, the situation will be dif-
ferent if a strong orientating electric field is applied for a
period of time along the axis of rotation. In this case,
there will result a surplus of vortices with their polariza-
tion d along the electric field, and the bulk liquid He will
acquire features of the broken symmetry. This is exactly
analogous to a liquid crystal containing chiral molecules
with broken parity, which corresponds to the v vortices in
rotating superAuid He. If the signs of chirality of these
molecules are disordered, this is an ordinary nematic
liquid crystal. But if there is a surplus of molecules with
a given sign of chirality, then the parity in the liquid crys-
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tal is violated, and it becomes a cholesteric liquid crystal.
Due to the parity violation, the free energy of the
cholesteric contains an additional term, which is linear in
the gradient of the order parameter; this produces the hel-
icity in the order-parameter distribution.

Essentially the same phenomena will occur in rotating
superfluid He, if there is a surplus of vortices with a
given electric polarization, produced, for example, by
turning on an external electric field for a period of time.
In the B phase these vortices will produce terms, in addi-
tion to those in Eqs. (6.10) and (7.5) in the macroscopic
free energy (i.e., on a length scale larger than the intervor-
tex spacing), which are linear in the gradient of the order
parameter R;, which is a slow variable on the intervortex
distance. They may be extracted from the ordinary qua-
dratic terms in the gradient expansion in Eq. (4.4) if one
inserts the order parameter

A;=Raj(r)Aq, (r) (8.10)

into this Eq. (4.4). Here A~;.(r) denotes the order parame-
ter in the vortex core texture with the asymptotics
Az,.—b,5&,

. far from t—he vortex core, and Raj is the slow
variable of the macroscopic texture, as in Eqs. (6.10) and
(7.5). Inserting Eq. (8.10), for, example, into the second
term of the gradient energy in Eq. (4.4), one obtains the
following term, which is linear in the gradient of R«..

colin +2 apr)iRaq(AqiVj Apj +Aqi Vj Apj) (8

The last part of this equation, which is nonzero only in
the vortex core, may be integrated over the cross-sectional
area of the vortex core. If the vortices are identical, this
yields-

0 & 9 0
colin ir p+2RapdiR'aq I dS(AqiVJ Apj +Aqi Vj Apj )

(8.12)

The integral is nonvanishing for the v and uvw vortices,
and its part, which produces nonzero Eq. (8.12), equals

E2 I dS ( AVqij Apj +Aq& Vj Apj ) =&(&qi&p &pizq )

(8.13)

where the parameter e is of the order of p, gGL(trlm3) .
If the vortices are not identical, then Eq. (8.12) should

be multiplied by the fraction rj of the relative surplus of
the vortices with the electric polarization in the z direc-
tion. Hence, g =0 for randomly disordered electric polar-
izations (or for vortices with zero polarization), while
qj = 1 for the fully saturated polarization. Equations
(8.12) and (8.13) produce an additional orientating effect
on the order-parameter texture in the rotating B phase,
which is due to the presence of vortices. Hence the NMR
signal should change after turning on the external electric
field for a period of time necessary to result in an ordered
polarization of the vortices, if there are v or uvw vortices
in the rotating He-B.

Note that if the vortices are polarized, there occurs a
nonvanishing surface density of electric charge ge'nl,
which results in a spontaneous electric field in the rotat-
ing bulk liquid He, which is given by age n~.

Let us now consider the symmetry of the superflow

-+
along the vortex axis, j, Q. Under the symmetry
transformations, this quantity changes as the variable w
in Eq. (3.23c):

P&j, Q= —j, Q,

P3j, Q=j, Q.

P2 j,-Q= —j, Q,
(8.14)

This implies that a spontaneous superflow arises in the
cores of the w and the uvw vortices. The superfluid
current along the vortex axis in the He-B vortex is of the
order of

js —+&ps kor. .
m3

(8.15)

IX. DISCUSSION

We have presented the classification of the possible axi-
ally symmetric vortices in superfluid He. Using this
classification, we have constructed the Landau theory of
the phase transitions inside the vortex core matter of the
He-B vortices. It is possible that the observed first-order

phase transition in the vortex core structure is determined
by this theory. However, the complete identification of
the vortices that have been observed. in the NMR experi-
ments in terms of our classification scheme is not possible
at present, especially because all the numerical calcula-
tions of the vortex core structures and of their mutual sta-
bility were carried out in the Ginzburg-Landau regime
near T, . Therefore, it is most importarit to find out ex-
perimentally whether or not the vortex phase transition
line actually tends to T, . Near T„we have found only

t

Just as for the electric dipole moments of the v and uvw
vortices, the axial supercurrents in the m and uvre@ vortices
may be ordered or disordered. The ordering may be pro-
duced by an external superflow applied along the axis of
rotation.

The superflow along the vortex axis could be observed
with ultrasound applied along the vortex axis: For a ran-
domly disordered superflow array, there should occur a
Doppler splitting of the ultrasound absorption, while in
the case of fully aligned sup erflo, only a single
Doppler-shifted ultrasound absorption spectrum should be
observed.

A spontaneous superfiow may also exist in the A-phase
vortices. The real vortices in the NMR experiments are
not axially symmetric. However, they do possess the
same elements of discrete symmetry and hence a similar
symmetry classification. Numerical calculations showed
that there are two possible candidates for the observed
vortex: the U vortex and the w vortex. Both have similar
magnetic properties. However, the ~ vortex possesses a
spontaneous superflow, which is 3 orders of magnitude
larger than that for the B-phase w vortex, while the elec-
tric polarization of the v vortex is also 3 orders of magni-
tude larger than that for the B-phase v vortex. This fol-
lows essentially from the fact that the core radius of the
continuous A-phase vortices is larger by a factor of 103
than the radius r„„ofthe B-phase vortices.
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one stable vortex core structure —the v vortex —in which
one of the discrete vortex symmetries is broken, and
which displays a superfluid core structure with A phase
accompanied with the spontaneously ferromagnetic P
phase.

Recently Passvogel, Tewordt, and Schopohl have re-
peated our numerical calculations of the structures of the
o, u, u, w, and uuw vortices which were first reported in
Ref. 8 and they have reconfirmed our previous result that
the v vortex is the stable one among the singly quantized
axisymmetric vortices in superfluid He-B for all pres-
sures in the Ginzburg-Landau regime. However, Fetter
and Theodorakis have argued that there should be a
transition from the U vortex at low pressures to the o vor-
tex at high pressures. This is contrary to our results,
reproduced by Passvogel, Tewozdt, and Schopohl. Our
calculations (and also those in Ref. 46) are based on a full
numerical minimization of the vortex energy functional.
This is vital, since the vortex energies are sensitive to any
numerical inaccuracies. At present it is not yet clear
whether the phase transition that Fetter and Theodorakis
suggest is only due to (i) the extremely rough numerical
scheIne that they employ to approximately describe the
vortex structures (for which full minimizations already
exist) such that the approach of Fetter and Theodorakis
apparently loses any quantitative predictive power, or
whether it is due to (ii) properties of the Sauls-Serene
parametrization of the strong-coupling corrections to the
P parameters, which yields a phase transition even in bulk
He from the B phase to the A phase at too low a pres-

sure. Certainly one should not calculate the vortex core
structure in the B phase with P values corresponding to
stable A phase.

Further arguments suggesting that the results of Fetter
and Theodorakis are suspect to be an artifact of either of
the above causes are the following. (i) Our phenomeno-
logical Landau theory of the phase transitions among the
axisymmetric vortices (first presented in Ref. 8 and in de-
tail in Sec. III of the present paper) suggests that the tran-
sition from the U vortex to the o vortex should be of
second order; therefore, the transition that Fetter and
Theodorakis suggest probably has nothing to do with the
first-order transition ' seen in the experiments. (ii) Espe-
cially, unlike Fetter and Theodorakis, we find that the A-
phase amplitude and its extent in the vortex core increases
with pressure [see (a)—(c) of Fig. 7 in the present paper],
as one should expect on physical grounds since the nu-
cleation of the A phase is preferred at higher pressures
also in the bulk superfluid He. (We note in passing that
ion trapping by the B-phase vortices and the possible

consequent measurements of ion mobility along the vortex
lines in He-B could potentially shed interesting new in-
formation on the nature of the pairing state in the core of
the high-pressure vortex in the B phase. )

Provided that the vortex phase-transition line in fact
does approach T„ then there should coexist two different
stable vortex solutions at the appropriate pressure in the
Ginzburg-Landau regime. Therefore, the U vortex should
be unstable towards further breaking of symmetry, be-
cause in this' case several different vortices may appear
with the first-order phase transition between them. All of
these new vortices in fact have superfluid cores which are
magnetic. The investigation of these instabilities requires
a lot of numerical efforts, but the expenditure of this com-
puter time will be justified if the vortex transition line will
be found to really approach T, . If the vortex transition
does not tend to T„ then it is possible that far from T,
the U vortex transforins either into the u or the to vortex.
Since these have broken symmetries different from that of
the v vortex, the v~u-and the v —+m transitions may be
only of the first order. In this case it will be necessary to
investigate the vortex core structure with the use of the
Gor'kov equations. However, the information necessary
for the vortex identification may be extracted from the
qualitative inspection of the vortex phase diagram upon
comparing it with the results of the catastrophe theory.
This must include the systematic detailed measurement of
the catastrophe lines, which may be found from experi-
ments on the vortex metastability phenomena, which have
already been partially observed in the course of measure-
ments under continuous rotation.
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