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Crystal structure from one-electron theory
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We have studied the crystal structures of all the 3d, 4d, and 5d transition metals at zero pressure
and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem.
We find that, although the structural energy differences seem to be overestimated by the theory, the
predicted crystal structures are in accord with experiment in all cases except 79Au. In addition, we
have investigated the effect of pressure upon the alkali metals (3Li llNa 37Rb 55Cs) and selected
lanthanide metals (57La, 58Ce, 7lLu) and actinide metals (9oTh, 9lPa). In these cases the theory gives
accurate predictions of the stability of the close-packed structures but is found to be less accurate for
open structures such as a-U.

I. INTRODUCTION

The crystal structures of elemental metals tend to occur
in certain sequences when viewed as functions of atomic
number or hydrostatic pressure. The most prominent ex-
ample of this phenomenon is the d transition metals,
where all three transition series, excluding the four mag-
netic 3d metals, exhibit the same hcp —&bcc~hcp —&fcc
sequence as the d bands become progressively filled (Fig.
I). Qualitative explanations of this trend have been given
by Brewer' in terms of Engel correlations between the
valence sp electrons, and by Kaufman and Bernstein in
terms of semiempirical thermodynamic calculations of
phase diagrams, whereas Deegan, Dalton and Deegan, "
and Ducastelle and Cyrot-Lackmann have attempted
more quantitative approaches based on one-electron
theory.

Dalton and Deegan ' showed that the stability of the
bcc phase for nearly-half-filled d shells might be ex-
plained by differences in the sum of one-electron band-
structure energies, and they pointed to the special double-
peak structure of a bcc state density as being responsible
for this stability. Later, Pettifor ' extended the work of
Dalton and Deegan and showed that the entire crystal-
structure sequence of the transition metals could be ac-
counted for by a one-electron approach. In his calcula-
tions, Pettifor found no evidence for the Brewer-Engel
correlation, ' which relates crystal-structure stability to the
sp-occupation numbers, and instead he related the
hcp~bcc~hcp~fcc sequence to the change in d occu-
pation which takes place across a transition series. This
latter viewpoint has proven to be very fruitful in that it
may be used as a simple "one-parameter theory, " which,
in many cases, provides remarkably good estimates of
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FIG. 1. Crystal structures of the metallic elements at low temperature.
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structural stabilities also for nontransition metals, such as
the alkaline earths.

The crystal structures of the trivalent lanthanides, i.e.,
59Pr through 7&Lu, except for 63Eu and 7pYb, exhibit such
regularity, as functions of atomic number, pressure, and
temperature, that Johansson and Rosengren' were able to
construct a single generalized phase diagram for these
metals. In this case the crystal structures observed under
ambient conditions" are found to be part of the sequence
hcp —+Sm-type~dhcp~fcc~fcc' established by high-
pressure experiments' ' and alloying. Here fcc' refers
to the recently discovered distorted fcc structure. ' The
lanthanide sequence is also found in 39Y (Ref. 22), where
there are no occupied f states, and in the heavier ac-
tinides, at pressures where the Sf states are still local-
ized. Qualitative explanations of the hcp~Sm-type
~dhcp~fcc sequence have been attempted in terms of
pseudopotential theory by Hodges, and in terms of a 4f
contribution to the bonding by Gschneidner and Vallet-
ta, while Duthie and Pettifor ' gave a quantitative ex-
planation in terms of one-electron theory.

Duthie and Pettifor ' showed that the lanthanide
crystal-structure sequence could be explained by differ-
ences in the total one-electron band-structure energies, and
they found a strong correlation between crystal structure
and d-occupation number. Hence it appears that the
lanthanide metals, as far as their crystal structures are
concerned, behave as ordinary Sd transition metals with a
d occupation ranging from approximately 2.0 in 57La to
1.5 in 7&Lu. This result is very appealing because there is
a one-to-one correspondence between the calculated d-
occupation number and the single f parameter used by
Johansson and Rosengren' ' to rationalize the lanthanide
crystal-structure sequence, and because it is immediately
possible to understand the behavior of 39Y and the heavy
actinides within the same framework.

It may at first sight seem surprising that the crystal
structures of so many metals can be explained on the basis
of differences in the total one-electron band-structure en-
ergies alone, since the total electronic energy, apart from
the one-electron term, also has contributions from double
counting and from exchange and correlation. However, it
has recently been shown ' that, provided the one-
electron potential is kept frozen upon a displacement of
the atoms, the corresponding changes in the double-
counting and exchange-correlation terms cancel to first
order in the appropriate local electron density, and hence
the difference in the sum of the one-electron energies, ob-
tained by means of the frozen, i.e., not self-consistently re-
laxed, potential, will give an accurate estimate of the cor-
responding self-consistent change in the total electronic
energy. It is exactly this cancellation, which also leads to
the Hodges-Nieminen-Pettifor ' pressure expression,
and to the more general force relation derived by Ander-
sen, that, in turn, justifies the simple band-structure ap-
proach taken, for instance, by Pettifor.

In their work, Pettifor and Duthie and Pettifor '

focused their attention on the contribution to the total en-
ergy from the d bands and either neglected hybridization
with the sp bands entirely or included hybridization ap-
propriate to some average element. Hence their picture is

essentially a canonical one, in which the energy-band
structures depend only on crystal structure and not on
band filling. It is obvious that such a picture, although
adequate for the d transition metals, will fail in cases
where states of non-d character are equally or more im-
portant, as they are, for instance, in the alkali, the
alkaline-earth, and light actinide metals. Fortunately, the
force theorem is not restricted to the canonical approxi-
mation and it has recently been used in theoretical investi-
gations of crystal structures in the third-row metals
the alkaline-earth metals, and in 55Cs above the s-d tran-
sition.

In the present work we go beyond the canonical approx-
imation and use the force theorem to calculate the
structural energy differences for all the 3d 4d, and 5d
transition metals at zero pressure and temperature. In ad-
dition, we investigate the effect of hydrostatic pressure on
the crystal structures of alkali, alkaline-earth, lanthanide,
and actinide metals.

Traditionally, the nontransition metals, e.g., alkali and
alkaline-earth metals, have been treated by means of pseu-
dopotential theory, and the crystal structures predicted
from this approach are generally in good agreement with
experiment. It has, however, not been straightfor-
ward to generalize the pseudopotential method to treat
narrow-d-band materials, and to do so one has had to add
localized orbitals to the plane-wave basis set. Thus the
d band in &9K is described by the d component of plane
waves, while that of 29Cu is described by additional d or-
bitals, which is somewhat inconsistent with the smooth
lowering of the 3d band through the series»K 2pCa,

2 J Sc 29Cu. The method has, however, proved to be
very accurate.

The present approach, based upon the linear muffin-tin
orbital (LMTO) method, has the advantage of employ-
ing the same type of basis functions for all the elements,
thus leading to a conceptually consistent description of
trends throughout the Periodic Table. In addition, the
LMTO method is extremely efficient on a computer, re-
quiring only the solution of an eigenvalue problem of
9 X 9 (or 16X 16 if f states are included) per atom at each
point in reciprocal space. Since we are mainly interested
in trends, we have neglected the nonspherical contribu-
tions to the charge density, which may explain what
seems to be a systematic overestimate of the calculated
structural energy differences. We have, furthermore,
neglected a structure-dependent electrostatic interaction
between atomic spheres, except in the few cases where it
contributes significantly to the energy differences.

II. ONE-ELECTRON THEORY
OF STRUCTURAL STABILITY

At low temperature the crystal structure of a metal is
determined by the total electronic energy U, in addition to
a small contribution from the zero-point motion which
we shall neglect. Hence, if one wants to determine the
stability of some crystal structure, say bcc, against some
reference structure, which we shall take to be the close-
packed fcc structure, one may calculate the total energy of
both phases and form the structural energy difference
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OCC

g ei Edouble counting +Eelectrostatic (2)

If the difference (1) is negative, the bcc structure will be
stable against fcc.

Total energies for, say, a 4d metal, are of the order of
10 Ry, mainly because of the contributions from the
low-lying core levels, while typical structural energy
differences are of the order of 10 Ry. Hence, extreme
accuracy is needed in order to use (1) directly, and one
would like to have a numerically more satisfactory pro-
cedure. The force theorem gives rise to such a pro-
cedure, but, more importantly, perhaps it casts the prob-
lem of finding stable crystal structures into a form where
the significant contribution comes from the one-electron
valence energies and neither from double counting, nor
from the deep core levels.

The force theorem dictates the following procedure.
For a given metal at a given atomic volume one must
solve the energy-band problem self-consistently, assuming
the reference crystal structure. To this end we use the
LMTO method within the atomic-sphere approximation
(ASA), including the combined correction to the ASA. 9

In addition, we take into account the relativistic effects,
except for spin-orbit coupling, which we neglect, include
exchange-correlation in the form given by von Barth and
Hedin, and freeze the appropriate cores. This part of
the calculations is described in detail by Skriver. We
have now minimized the energy functional UIn I with
respect to changes in the electron density n, and obtained
the ground-state density nt, c. Because of the stationary
properties of U, one may obtain, for instance, Ub„ from a
trial charge density nb„constructed by positioning the
self-consistent fcc atomic-sphere potentials in a bcc
geometry, solving the one-electron Schrodinger equation,
and populating the lowest-lying one-electron states.
Hence,

~bCC-fcc UbCC fCC ~

where the total energy according to the local-density ap-
proximation ' may be written as the sum over occupied
states of the one-electron energies c.; corrected for double
counting, plus electrostatic terms, i.e.,

and the structural energy difference (3) may be obtained
from

fc, ——I ENb„(E)dE J—ENfcc(E)dE

where N(E) is the one-electron state density. Further-
more, the ASA allows a separation of the potential- and
crystal-structure-dependent parts of the energy-band prob-
lem. '" ' Hence, all that is required at a given atomic
volume, in addition to the self-consistent fcc calculation,
is to calculate the energy bands of the relevant crystal
structures with the use of the self-consistent fcc potential
parameters, evaluate the sums of the one-electron energies,
and subtract according to Eq. (4). This procedure is quite
general, treats all s, p, d, and f electrons on the same
footing, and may be applied to all metals in the Periodic
Table.

III. MADELUNG CORRECTION TO THE ASA

The errors of neglecting the struture-dependent electro-
static terms in (2) may be estimated by means of what has
been called either the muffin-tin or Ewald correction
to the ASA. To derive this correction, one observes that
the electrostatic energy per ion of a lattice of point ions of
charge q, I

e
I

embedded in a negative neutralizing uni-
form charge density is given by the well-known Madelung
expression

s

where aM is the lattice Madelung constant and S is the
atomic Wigner-Seitz radius. In the ASA this expression
is approximated by the energy of an ion embedded in a
single neutralizing atomic sphere, whereby aM (ASA)
= 1.8. The correction is therefore

1.8 —O, M~UM= —,'(qs Ie I)'
S

In a muffin-tin model the effective charge q, I
e

I
is the

charge density in the interstitial region between the
muffin-tin spheres multiplied by the volume of the unit
cell. In the ASA this becomes

tr SCb,bc, t„=Ub„ I n b„ I
—Ut„ I n b„I, (3) q, Ie I

= ', mS'n(S)
I

—e I,
where the errors relative to (1) are of second order in
nb'„nb„—Now, . the use of a frozen, i.e., not self-
consistently relaxed, potential, to generate nb'„ensures
that the chemical shifts in the core levels drop out of Eq.
(3), and also that the double-counting terms cancel.
Hence, the core-level energies and the double-counting
terms may be neglected entirely in Eq. (2), leaving only
the valence one-electron energies and the electrostatic
terms to be considered. The fact that the freezing of the
potential leads to such a computationally simple and con-
ceptually important result was already noted by Pettifor
in his derivation of the pressure expression.

Within the atomic-sphere approximation, the atomic
Wigner-Seitz sphere of an elemental metal is neutral, and
there is therefore no electrostatic interaction between the
spheres. Hence the electrostatic terms in Eq. (2) vanish

TABLE I. Madelung constant to be used in Eq. (6).

1.8 —a~ (1.8 —a~); —(1.8—a~)fgq

( X 10+') ( X 10+')

fcc
bcc
hcp
a-U'

1.791 747 23
1.791 858 51
1.791 676 24
1.784 182 98

8.253
8.142
8.324

15.817

—0.111
0.071
7.564

'b/a =1.964, c/a =1.709, and y =0.1.

where n (S) is the electron density at the atomic radius.
For close-packed crystal structures, aM is approximate-

ly 1.8 (see Table I), and hence the correction (6) is smallest
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in these. Typically, q, /S lies in the range from 0.5 to 5
a.u. , so that the Madelung correction for the bcc and hcp
structures relative to the fcc structure lies in the range
0.05—0.5 mRy.

IV. STRUCTURAL STABILITY
FROM CANONICAL BAND THEORY

1.0 I I I l f I & I I

0.0

—1.0

-2.0
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d occupation f states/atom j

FICx. 2. Structural energy differences obtained from canoni-
cal d bands, by means of Eq. (4), as functions of the calculated
canonical d occupation.

In order to make contact with previous calcula-
tions, ' ' we shall here briefly state the results of canon-
ical band theory. ' According to this, an unhybridized,
pure l band may be obtained from

~~u
Ei;(k) =C(+ (g)

@AS 1 yt—
where the W~; are the canonical bands, which depend
solely on the crystal structure, S is the atomic Wigner-
Seitz radius, C~ is the center of the l band, p~ is the band
mass, and yI is a distortion parameter. The three poten-
tial parameters C~, pI, and y~ depend on potential and
volume, but not on crystal structure.

In a transition metal one may, to a good approximation,
neglect all but the d bands. Since, furthermore, yd is
small, one has the following potential-, i.e., atomic-
number-, independent estimate of the band contribution to
the cohesive energy E„

pdS Ec= PdS E —Cd Nd E dE

wd Nd (wd )d P'd, (9)

in terms of the first-order moment of the canonical state
density Nd. Andersen et al. have evaluated (9) as a
function of d-occupation number nd and found the ex-
pected parabolic behavior, which may also be obtained
directly if Nd(E) is approximated by a rectangular state
density.

Since the center Cd and the band mass pd are indepen-
dent of crystal structure, the first-order moment (9) may
be used to estimate the structural energy differences ac-
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FIG. 3. Structural energy differences obtained from canoni-
cal d bands, by means of Eq. (4), in the d-occupation-number
range appropriate to the lanthanide crystal-structure sequence.

cording to Eq. (4). The result shown in Fig. 2 is identical
to that of Andersen et al. , and similar to that obtained
by Pettifor. It accounts qualitatively for the crystal
structures of the nonmagnetic transition metals (Fig. 1) in
the beginning of the series, but fails to predict the fcc
structure at high d occupations. This failure is attributed
either to a failure of the force relation or to hard-core ef-
fects not included in Eq. (9).

The lanthanide metals are found to have d-occupation
numbers varying almost linearly with atomic number
from 1.99 in 57La to 1.45 in 7~Lu (Ref. 59), or from 2.5 to
2.0 if hybridization is neglected. ' Furthermore, their
crystal structures are as closely packed as those of the d
transition metals, and hence their structural energy differ-
ences may be estimated by Eq. (9). The results shown in
Fig. 3 are qualitatively similar to, but, on the average, a
factor of 1.7 smaller than, those obtained by Duthie and
Pettifor. ' In this comparison one may take the d-band
width to be approximately 25/pdS in order to bring their
Fig. 2 onto the scale of our Fig. 3. The results in Fig. 3
account qualitatively for tlie hcp~Sm-type~dhcp se-
quence found experimentally upon going from Lu to La,
and, more importantly perhaps, since the d occupation for
the lanthanides is calculated to increase with pressure and
decrease with atomic number, they also explain that part
of the same sequence is realized when a particular
lanthanide metal is subjected to pressure. It therefore fol-
lows that the d-occupation number, which is essentially a
measure of the relative position of the s and d bands, may
be used to rationalize the structure of the generalized
phase diagram for the lanthanides constructed by
Johansson and Rosengren. '

At the present stage, one should realize that the results
obtained by canonical band theory and shown in Figs. 2
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FIG. 4. Canonical estimate of the most stable close-packed crystal structure as a function of the calculated d-occupation number
compiled from Figs. 2 and 3 (horizontal bars). Given below are two estimates of the actual d-occupation numbers of the Sd metals,
together with the experimentally observed crystal structures.

and 3 are only qualitative. Indeed, if one considers Fig. 4,
where the canonical estimates are compared with experi-
mental crystal structures, one finds that the canonical
theory in several cases does not predict the correct crystal
structure independently of whether one uses the self-
consistent d-occupation numbers or those obtained con-
ventionally by nonlinear interpolation along a row in the
Periodic Table (see Fig. l). 57La, 75Re, and ~7lr, for in-
stance, are examples of incorrect predictions, but here one
may argue that the correct crystal structure is nearby, and
hence the failure of the theory may be considered to be
less important. 56Ba is another example, and in this case
there is no nearby bcc structure. However, in 56Ba the d-
occupation number is only a fraction of the total number
of electrons, and hence a theory based solely on unhy-
bridized d bands is probably inapplicable. The most im-
portant failure is connected with the d-occupation range
from 1.6 to 2.6 states/atom. According to Fig. 4, &7La,

59Pr, 60Nd, and 6~Pm should incorrectly form in the Sm-
type structure, while zzTi, 40Zr, and 72Hf are expected to
be part of the lanthanide sequence. Instead, the latter
three metals form in the hcp structure, which is the least
stable among those considered in the d-occupation range
above 2 states/atom.

It may be concluded that the simple estimate of
structural energy differences obtained by means of the
first-order moments of the canonical state densities is of
limited value as a predictive tool. It is, however, of suffi-
cient physical significance to warrant a study of the crys-
tal structure of metals using a more accurate one-electron
theory and to be used in the interpretation of the results of
such a study.

V. STRUCTURAL STABILITY
FROM LMTO BAND CALCUI. ATIONS

In the following we shall present structural energy
differences for most metallic elements to the left of and
including the noble metals, as obtained by means of the
procedure described in Sec. II. The results will be valid
only at low temperature and at atmospheric pressure,

strictly T=0 K and P =0 GPa, except in a few impor-
tant cases where structural stability has been followed as a
function of pressure.

A. The alkali metals
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FIG. S. Structural energy differences for the five alkali met-
als as functions of the relative volume V/Vo. At the top is
given the calculated LMTO pressure P. The calculations in-
cluded s, p, and d orbitals and the Madelung correction, Eq. (6).

The calculated structural energy differences for alkali
metals at equilibrium are almost 2 orders of magnitude
smaller than those of, for instance, the alkaline-earth met-
als. To judge the accuracy of our approach, we have
therefore studied these differences as functions of pres-
sure, as shown in Fig. 5, from equilibrium down to a
compression of 2.5. The results in Fig. 5 include the
Madelung correction (6), which turns out to be crucial in
the comparison with recent pseudopotential and LMTO
results.

From Fig. 5 it is expected that the heavy alkali metals
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at low temperature and pressure should form in the bcc
structure, while Li should be hcp. Experimentally, it is
known that all five alkali metals at room temperature
form in the bcc structure, and that they remain in this
structure down to 5 K, except for

& ~Na, which below 51 K
transforms into the hcp structure, and 3Li, which at low
temperature exhibits both an hcp and fcc phase. Hence,
except for Na, the low-pressure structures are correctly
predicted.

Recently, Moriarty successfully estimated the
structural stability for some 20 nontransition metals by
means of his generalized pseudopotential theory (CAPT).
He found incorrectly (see his Table VIII) that all the al-
kali metals at T =0 K and I' =0 GPa should form in the
hcp structure, but pointed out that at a slight compression
the experimentally observed bcc structure would be stable
in the heavy alkali metals, ~9K, 37Rb, and»Cs. A similar
problem is encountered in another recent pseudopotential
study, in which the structures of 3Li and &9K at low
temperature and pressure are predicted in agreement with
experiment, but where ~~Na is expected to be fcc. On the
other hand, in view of the extremely small energies in-
volved (see Fig. 5), it is not surprising that the prediction
of the low-pressure part of the alkali-metal phase dia-
grams is a severe test of any calculation.

In their work on the third-row metals, McMahan and
Moriarty compared structural energy differences ob-
tained by means of the LMTO and OPT methods and
found excellent qualitative agreement, except for &INa. If
we compare our Na results in Fig. 5 with their Fig. 1, we
find, somewhat surprisingly, that our calculations are in
closer agreement with their GPT than with their LMTO
results. There are several reasons for the differences be-
tween the two LMTO calculations. Firstly, we have in-
cluded the Madelung correction (6), without which the
calculated bcc curve is entirely above, and the hcp curve
entirely below, the fcc, in qualitative agreement with their
LMTO results. Secondly, we have sampled the Brillouin
zone on a finer mesh, i.e., 916, 819, and 448 k points in
the irreducible wedge for fcc, bcc, and hcp, respectively,
and, finally, we have improved the convergence of the
reciprocal-lattice sums in the expression for the
combined-correction terms, whereby the numerical er-
rors in the structural energy differences for Na are below
0.01 mRy. As a result, it appears that in the case of close-
ly packed crystal structures the LMTO method, including
the Madelung correction (6), has an accuracy comparable
to that attained by pseudopotential theory.

Owing to the fact that we have only included three
crystal structures in Fig. 5, »Cs is incorrectly calculated
to transform into the bcc structure at a compression of
2.2. However, in a recent study of Cs above the s-d tran-
sition, i.e, beyond the pressure range of the present work,
McMahan ' found that, before the bcc structure became
more stable than fcc, Cs had transformed into the Cs IV
structure, in agreement with high-pressure experi-
ments

F

B. The alkali metals at moderate compression

According to Fig. 5, all the alkali metals should, at low
temperature, be part of the same crystal-structure se-
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quence, bcc~hcp —+fcc, and one would anticipate that
these transitions are driven by the pressure-induced lower-
ing of initially unoccupied d states through the Fermi lev-
el, whereby electrons are gradually transferred from the s
into the d band. If one plots the calculated crystal struc-
tures as functions of d-occupation number, as in Fig. 6, it
is seen that only in the heavy alkali metals ]9K 37Rb, and
»Cs is this mechanism at work, while the transitions in
3Li and ~ & Na, at least below 35 GPa, have a different ori-
gin.

The experimental situation at room temperature may be
summarized as followed. ' Li exhibits a bcc~fcc tran-
sition at 6.9 GPa, while Na remains in the bcc structure
up to at least 30 GPa, which substantiates the notion
that the s-d transition is unimportant in these two metals.
The heavy alkali metals all exhibit a bcc—+fcc transition
[)9K (Refs. 63 and 64), 37Rb (Ref. 67), 55Cs (Ref. 68)] be-
fore they transform into more complex structures, of
which only the so-called Cs IV has been solved so far.

There are, to our knowledge, no low-temperature high-
pressure experiments which could substantiate the ex-
istence of the predicted bcc—+hcp —+fcc sequence, where,
according to Figs. 5 and 6, the hcp phase, at least in &9K,
should be stable over an appreciable pressure range. How-
ever, in view of the fact that temperature at atmospheric
pressure. stabilizes the bcc phase to the extent that all the
alkali metals are bcc above 100 K, it is not unreasonable
to assume that the intermediate hcp phase, which is only
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marginally stable, is also suppressed at higher tempera-
tures. Thus, in a high-pressure experiment at room tem-
perature, one would see a direct bcc~fcc transition, as
indeed has been observed. ' ' ' If the hcp phase is
suppressed, the best estimate of the room-temperature
bcc—+fcc transition pressure is the critical pressure for the
low-temperature hcp~fcc transition (cf. Fig. 5). We find
the transition pressures to be 11, 5.5, and 1.4 GPa for I9K,
37lb, and 55Cs, respectively, which should be compared to
the experimental values of 11 GPa (Ref. 64), 7 GPa (Ref.
67), and 2.2 GPa (Ref. 68).

Independent of whether the intermediate hcp phase ex-
ists or not, the high-pressure fcc phase in }9K 37Rb, and
5&Cs is much more stable than the initial bcc phase (see
Fig. 5). Bardeen suggested as early as 1938 that the
transition observed at 2 GPa in Cs was from the normal
bcc to an fcc phase, and that it resulted from the nonelec-
trostatic interaction energy of the ions, the important
term being the Born-Mayer repulsion between the ion
cores. Here we shall show that the fcc phase in the heavy
alkali metals owes its stability directly to the pressure-
induced s-d transition, which is also shown to be the force
behind, for instance, the isostructural fcc-fcc transition in
Cs 71

In Fig. 7 we compare the important parts of the fcc and
bcc band structures of Cs at the zero-pressure volume Vo
and at the volume where the fcc phase is becoming more
stable than the initial bcc phase. The four band structures
may be characterized as nearly-free-electron-like and s-
like below the Fermi level EF and d-like above EF. Typi-
cal d' states have symmetry labels such as I ~q, I 25, HI2,
and X3, and they are seen to approach the Fermi level
under compression. At V=Vo the fcc and bcc band
structures are found to be extremely similar in that range
below EF, which is important in the sums over occupied
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FIG. 8. Structural energy difference hb„~„ for Cs {upper
panel) and the position relative to the Fermi level EF of the bot-
tom of the gap at X in the fcc structure (lower panel) as func-
tions of atomic radius Sor relative volume V/Vo. V= {3 7T)S

states in Eq. (4): They are both parabola shaped and
"touch" EF at a single symmetry point, I.I for fcc and
XI for bcc. As a result, the sums of the one-electron
band-structure energies are almost equal, and the main
contribution to the stability of the bcc phase comes from
the electrostatic Madelung term (6), which is negative; see
Table I.

At V=0.7VO, hybridization with the descending d
band has moved the XI and neighboring levels below EF,
thereby lowering the energy in the fcc phase with respect
to that in the bcc phase, to the extent that the Madelung
term is overcome and the structural energy difference is
zero. Under further compression, the X& level continues
to descend and the fcc phase becomes increasingly stable
(see Fig. 8). This trend is eventually broken because the
maximum in the I Ib, IX~ band moves away from X, and
because the X3 level drops below the Fermi level. Both
effects destabilize the fcc structure and, subsequently, Cs
transforms into the Cs IV phase. We shall not discuss
this development here, but refer to th~ experimental work
of Takemura et al. and the theoretical treatment of
McMahan. '

The presence of a gap at X (see Fig. 7) near the Fermi
level in the compressed fcc phase, which has no counter-
part in the bcc phase (nor in the hcp phase), stabilizes the
fcc phase over the bcc in exactly the manner discussed by
Jones in his classical work on the phase boundaries in
binary alloys. ' The. electron states below the gap have
their one-electron band energies lowered and are more
densely populated than their free-electron or, here, bcc
counterparts. The way the fcc phase is stabilized in Cs
under pressure is shown in Fig. 8, where one notes that
the stabilization occurs gradually from the point where
the X& level crosses EF. Hence, although the fcc phase
eventually becomes more stable than the bcc phase be-
cause of the presence of the band gap at X, there is no
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direct relation between the volume ( V=0.70Vo) where
the phase transition occurs and the volume ( V=0.82VO)
where the Van Hove singularity connected with the X&
level moves through the Fermi level. This delayed action
is characteristic of many electronically driven transitions.

In the discussion of the stability of the fcc phase, we
have, for simplicity, considered only Cs, but examination
of the band structures for K and Rb shows that the above
picture applies equally well to these two metals, although
there are quantitative differences between &9K 37Rb, and
55Cs caused by the fact that the zero-pressure position of
the initially unoccupied d band drops relative to the Fer-
mi level as the atomic number increases.
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semimetallic is indicated by horizontal bars. The calculations
included s, p, and d orbitals, but not the Madelung correction,
Eq. (6).
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The calculated structural energy differences for the
alkaline-earth metals under pressure are shown in Fig. 9.
In the figure the metals are ordered according to their cal-
culated d-occupation number at equilibrium, and we have
included the two divalent rare-earth metals 63Eu and 7pYb,
but excluded the divalent metals 4Be and i2Mg since they
do not really belong to the crystal-structure sequence we
shall presently be discussing. The results at zero pressure
for Be and Mg may, however, be found in the preliminary
account of the present work.

According to Fig. 9, 2pCa, 7pYb, and 38Sr at low tem-
perature and pressure should form in the fcc structure,
while 63Eu, 88Ra, and 568a should be bcc. These predic-
tions are in agreement with experiments, except for
7pYb, which, at low temperature, takes up the hcp struc-
ture. However, at a slightly expanded volume the hcp
phase is calculated to be the stable phase, and hence one
may not have to appeal to zero-point motion to explain
the anomalous low-temperature hcp phase in 7pYb. Previ-
ous pseudopotential calculations have explained the bcc
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FICx. 10. Calculated crystal structures for the alkaline-earth
metals as functions of the LMTO pressure and d-occupation
number.

structure in 568a and the pressure- (and temperature-) in-
duced fcc~bcc transition in 38Sr, but gave an incorrect
(bcc) zero-pressure crystal structure in 20Ca. Later pseu-
dopotential results indicated that the stable structure at
ordinary pressure should be the fcc structure for all the
alkaline-earth meta1s. Hence, it is still a challenge to
pseudopotential theory to predict the crystal structures of
the alkaline-earth metals as a function of both atomic
number and pressure.

There is a strong correlation between the calculated d-
occupation number and the calculated crystal structure, as
may be seen in Fig. 10, according to which the heavy
alkaline-earth metals should be part of the same
hcp —+fcc~bcc~hcp sequence. At zero pressure each in-
dividual metal may be characterized as being at different
stages on the continuous s-to-d transition, i.e., by their d-
occupation number, and the structural phase transitions
are then driven by the pressure-induced lowering of the d
band with respect to the s band. The correlation is, how-
ever, not perfect, and the calculated crystal structure
changes occur over a narrow range of d-occupation num-
bers.

Experimentally, one observes, at room tempera-
ture, the fcc~bcc part of the above sequence, but the
bcc—+hcp transition is only found in 568a, whereas the
lighter alkaline-earth metals transform into more complex
high-pressure phases not considered here. The critical
pressures for the fcc—&bee transition in 20Ca, 3&sr, and
7QYb, plus the bcc~hcp transition in 568a, are calculated
to be 21, 3.8, 5.5, and 10 GPa, respectively (cf. Fig. 10).
At room temperature, Olijnyk and Holzapfel find, ex-
perimentally, 19.7 GPa for the transition in 20Ca, while a
low-temperature extrapolation of the high-pressure crys-
tallographic measurements by Jayaraman et al. gives
4, 5, and 5 GPa for the latter three transitions. In view of
the fact that no adjustable parameters have been used to
construct Fig. 10, the agreement with the calculated criti-
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cal pressures may be considered satisfactory.
The band-structure calculations show, in agreement

with the high-pressure resistivity data, that 20Ca,
3sSr, and 7OYb in the fcc phase should undergo a metal-
semimetal-metal transition under pressure, as is described
in detail for z&Ca by Jan and Skriver. Recently, Dunn
and Bundy remeasured Ca and found the pressure range
of the semimetallic phase to be much narrower than that
found in earlier measurements or predicted by band
theory. ' Jan and Skriver, for instance, predicted
that fcc Ca should be semimetallic from 4 to 29 GPa. In
the present extension of those calculations, it is seen, Fig.
9, that before Ca reaches 29 GPa it is expected to
transform into the bcc phase, whereby the semimetallic
behavior will be terminated already at 21 GPa. This ter-
mination of the semimetallic phase at approximately 20
GPa is in agreement with both resistivity and crystallo-
graphic measurements. However, the critical pressure of
4 GPa for the onset of the semimetallic behavior is still
too low compared to that obtained from the resistivity
data, and this discrepancy must be due to a failure of
local-density theory of the kind mentioned in Ref. 83.

In recent high-pressure measurements, ' both 63Eu
and 7oYb are found to transform from the bcc to the hcp
phase, in seeming agreement with the systematics exhibit-
ed in Fig. 10. However, since 7oYb, and presumably also

63Eu, ' ' are changing valence under pressure, their high-
pressure hcp phase is more appropriately thought of as be-
longing to the rare-earth sequence (see Fig. 1), whereby it
follows that 63Eu and 70Yb at very high pressure should
exhibit the well-known hcp —+Sm-type —+dhcp —+fcc tran-
sitions.

D. The transition metals

The calculated structural energy differences for the 3d,
4d, and 5d transition metals are shown in Fig. 11, and, as
a comparison will show, the crystal structures of all the
metals included in this figure, neglecting the three fer-
romagnetic 3d metals, are predicted in agreement with the
experimentally observed crystal structures, Fig. 1, except
for the case of Au, where the bcc structure is calculated to
be marginally more stable than fcc. Hence, it follows that
by including complete, i.e., fully hybridized, band struc-
tures for each individual metal, but still retaining the
force theorem, one has cured most of the problems con-
nected with the simple canonical picture discussed in Sec.
IV and exemplified in Fig. 4. Furthermore, one should
note that the correlation between crystal structure and d
occupation, which the canonical description predicts,
remains valid also for the complete calculations.

The results in Fig. 11 are very similar to those obtained
by Pettifor for the 3d metals and by Williams ' for the
4d metals. However, despite the facts that the theoretical
calculations agree within 25% and that the crystal struc-
tures of 27 metals are correctly predicted by the theory,
the calculated structural energy differences are found to
be as much as a factor of 3—5 larger than the enthalpy
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FIG. 11. Structural energy differences for the 3d, 4d, and Sd
transition metals calculated at the experimentally observed
equilibrium volume and plotted as functions of the d-occupation
numbers. The calculations included s, p, and d orbitals, but not
the Madelung correction, Eq. (6).
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FIG. 12. Calculated (bcc)—(fcc) and (hcp) —(fcc} structural
energy differences (solid and broken lines) for the 4d metals
compared with the enthalpy differences derived from phase-
diagram studies (Ref. 92) (open circles).
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differences obtained from the study of binary phase dia-
grams, Fig. 12. At present, the cause of this discrepancy
is not known. The most likely candidates are either
neglect of nonspherical terms in the charge density or a
genuine failure of the local-density approximation. The
force theorem itself does not seem to be the cause of the
discrepancy, since %'illiams ' obtains results similar to
ours by subtraction of total-energy calculations. Finally,
the "experimental" results derived by Miedema and
Niessen are certainly model dependent and may there-
fore have larger error bars.

E. The lanthanide metals
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FIG. 13. Structural energy differences for La and Lu calcu-
lated as functions of pressure P and plotted vs d occupation
number nq The calcul. ations included s, p, d, and f orbitals, 4f
for La and Sf for Lu, but not the Madelung correction, Eq. (6).

The calculated structural energy differences for the two
lanthanide metals 57La and 7~Lu, which bracket the
lanthanide series, are shown in Fig. 13. To compare
directly with the canonical results, Fig. 3, the energy
differences have been brought onto the canonical scale
and plotted as functions of the calculated d-occupation
number. The results in Fig. 13 are qualitatively similar to
the canonical results, but the energy differences are gen-
erally smaller, approximately a factor of 2, judged by, for
instance, the minimum in the Sm-type curve, than their
canonical counterparts. Furthermore, the lanthanide se-
quence has been shifted to lower d-occupation numbers,
whereby the problems connected with the canonical
description in the d-occupation range above 1.6 have been
removed. Hence, 22Ti, 4pZr, and 72Hf are no longer part
of the lanthanide sequence and are, instead, correctly
predicted to form in the hcp structure, Fig. 11.

In an account of the cohesive properties of the
lanthanides, Skriver found that the d-occupation num-

0 — tcc

bct —-
t I I
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FIG. 14. Structural energy differences for La calculated as
functions of pressure P and plotted versus atomic radius. The
equilibrium radius So ——3.92 a.u.

bers calculated at the experimentally observed equilibrium
volume decreased approximately linearly with atomic
number between 57La and 7~Lu. Hence, Fig. 13 may be
used to estimate the equilibrium crystal structures of the
lanthanide metals, excluding 58Ce because of its y-a tran-
sition, and the two divalent metals 63Eu and 7pYb. We
find, in agreement with experiments, ' that 57La, 59Pr,
6pNd, and 6jPm should form in the dhcp structure, while
62Sm should be Srn-type. However, the heavy lanthanides
are incorrectly estimated to form in the Sm-type struc-
ture. The immediate reason for this failure seems to be
that the stability of the hcp structure at a given d occupa-
tion is calculated to be too low compared with dhcp and
Sm-type, but the deeper cause is not known at present. As
a result, the Sm-type structure extends over too wide a d-
occupation range.

Figure 13 may also be used to predict the behavior of '

57La and 7 ILu under pressure. We find that Lu should
transform from hcp to the Sm-type structure at —2 GPa,
and into the dhcp structure at 35 GPa. Because of a 2%
error in the calculated equilibrium radius, and because of
the failure mentioned above, the first estimate is in error
by 25 GPa, the experimental critical pressure being 23
GPa. ' The second transition has not been observed yet.
Under pressure, La is predicted to transform from dhcp
to the fcc structure at 8 GPa, see also Fig. 14, which corn-
pares favorably with the experimental room-temperature
transition pressure of 2.5 GPa. ' The distorted fcc phase
discovered by Cxrosshans et al. ' has not been considered,
but we shall return to the high-pressure properties of La
in the following section.

F. Cerium metal under pressure

The behavior of 58Ce under pressure has been a subject
of long-standing and some controversy, primarily because
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of the unusual isostructural y~a transition. Here we
shall be concerned with the fcc~a-U~tetragonal
crystal-structure sequence exhibited by metallic Ce at low
temperature in the pressure range up to 20 GPa (see Fig.
15). In the calculations we shall treat the s, p, d, and 4f
electrons on the same footing, i.e., as band electrons.
Hence, we favor the picture of the y~a transition sug-
gested by Gustafson et al. and elaborated on by
Johansson, according to which pressure induces a Mott
transition within the 4f shell such that the 4f electron
goes from a localized state in y-Ce to a delocalized, i.e.,
band state, in o,-Ce.

According to the Mott-transition picture, Ce metal at
pressures above the y —+a transition is different from the
other lanthanides (and indeed from all the other metals we
have considered so far), in that it has a fourth conduction
electron residing in the 4f band. It is this occupation of
the 4f band which is expected to be responsible for the
stability of the a-U structure found experimentally above
5.6 GPa, and perhaps for the tetragonal phase found
above 12.1 GPa. To shed light on this question, we shall
now present a series of calculations of structural stabilities
for Ce under pressure, and compare the results with those
obtained for La were the 4f band is essentially empty.

The orthorhombic o.-U structure may be viewed as dis-
torted fcc, where some of the face-centered atoms have
been moved away from their positions, as described by the
parameter 2y, see Fig. 16. If 2y =0.5a and a =b =c, one
'has the usual fcc unit cell. In the case of Ce the
Madelung contribution to the structural energy favors a
2y of approximately 0.3 (see top panel of Fig. 16), but the
one-electron contribution moves the minimum in the ener-

gy difference to 2y =0,21, which is the 2y value found ex-
perimentally in 92U. Under pressure, the minimum is
seen to move to slightly lower 2y values, and eventually

FIG. 16. Energy of Ce in the a-U structure, relative to the
fcc phase, calculated as a function of the positional parameter
2y (see inset) and atomic radius s in a.u. The individual
Madelung and one-.electron contributions for one particular ra-
dius are shown in the upper panel.

the a-U structure becomes more stable than the fcc.
From Fig. 16 it is expected that Ce will exhibit a

fcc~a-U phase transition at a pressure which is calculat-
ed to be 11.7 GPa. The experimental transition pressure
is 5.6 GPa, and the discrepancy may be attributed to the
fact that the atomic-sphere approximation is less suited
for open crystal structures such as the o.-U structure. As
may be seen in Fig. 16, the Madelung correction, which
we could neglect for the close-packed crystal structures of
the alkaline-earth and transition metals, is now of the
same order of magnitude as the one-electron contribution.
Hence, inadequacies in the Madelung approximation of
the electrostatic contribution to the structural energy are
magnified and lead to errors in the estimate of the stabili-
ty of the a-U structure. A similar problem was recently
encountered in the case of the open Cs IV structure in
55Cs metal. '

If we compare the structural energy differences for Ce
and La (Figs. 14 and 16) under pressure, we find that
while the a-U structure eventually becomes more stable
than fcc in Ce, it does not do so in La. Since the 4f band
is essentially unoccupied in La, whereas Ce has approxi-
mately one 4f-band electron, the n'otion that f-band states
are responsible for the stability of distorted crystal struc-
tures such as the a-U structure is strongly supported by
the present calculations. It follows that the e-U structure .

would not become stable in Ce under pressure unless the
4f electrons were delocalized, i.e., bandlike, and therefore
any adequate description of the a and cx' phases in Ce
must treat the 4f states on the same footing as the s, p, d
states. In short, Ce is a 4f-band metal.

The high-pressure tetragonal structure of Ce may be
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energy differences for Ce under pressure. Owing to the
less accurate description of open structures discussed
above, the a-U structure is seen not to be the stable phase
in the pressure range considered, and, instead, Ce would
be expected to go directly from the fcc into the bct phase.
However, if we move the a-U curve down by 4.5 MRy
(broken line in the figure), which is 20% of the Madelung
correction (see Fig. 16), we obtain agreement with experi-
ment, ' in the sense that Ce is now expected to exhibit
the crystal-structure sequence fcc~o.-U —+tetragonal.
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regarded as a distorted fcc structure in which the unit cell
has been elongated along the c axis such that the c/a ra-
tio in a body-centered-tetragonal (bct) description is ap-
proximately 1.7; see Fig. 17. In the same description, bcc
and fcc correspond to c/a =1 and v 2, respectively. Ac-
cording to the structural energy differences in Fig. 17, Ce
should, as a function of pressure, start out in the fcc
structure and then transform into a bct structure with a
c/a ratio which increases with pressure. In this case the
4f states do not seem to be responsible for the pressure-
induced transition, since the same bct structure is also cal-
culated to be the stable high-pressure phase of La, Fig. 14.

In Fig. 18 we have collected the calculated structural

20 10

P [GPa]
5 0

I I

Ce

FIG. 17. Energy of Ce in the body-centered-tetragonal (bct)
structure, relative to the fcc phase, calculated as a function of
the c/a ratio and atomic radius (the pressures can be inferred
from Fig. 18). The inset shows the bct structure.

Cz. The light actinide metals

The calculated structural energy differences for the
light actinide metals 9oTh—94Pu are shown in Fig. 19,
from which we deduce the most stable close-packed struc-
ture to be fcc in 90Th and 9~Pa and bcc in 92U, 93Np, and
94Pu. This indicates that, although these structures are
not the stable low-temperature structures in 9~Pa—94Pu,
they are at least close in energy to the distorted structures
observed experimentally, and may therefore be realized at
elevated temperatures. Experimentally, one finds the fcc
structure to be stable in 9oTh up to 1670 K, and there
are indications that 9~Pa has a high-temperature fcc
phase. Furthermore, neither 9zU nor 93Np has a high-
temperature fcc phase, but instead they become bcc before
melting. 94Pu has a high-temperature fcc (5) phase, but
since this phase becomes unstable at a pressure of only 0.1

GPa it is most probably associated with a localization of
the 5f electrons, and the relevant high-temperature phase
in the present context is then the bcc (e) phase. Thus, ex-
perimentally, the most stable close-packed structure ap-
pears to be fcc in 9OTh and 9~Pa, and bcc in 92U, 93Np, and
94Pu, in agreement with the findings in Fig. 19.

The low-temperature tetragonal structure (a) in Pa may
be viewed as a distorted bcc structure in which the unit
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FIG. 18. Structural energy differences for Ce calculated as a
function of pressure P and plotted vs atomic radius. So indi-
cates the experimentally observed equilibrium radius of Ce in
the a phase. The calculations included s, p, d, and f orbitals
and the Madelung correction, Eq. (6).
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FIG. 19. Calculated structural energy differences for the
light actinide metals plotted vs atomic number. The calcula-
tions included s, p, d, and f orbitals, but uot the Madelung
correction, Eq. (6).
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I I I i I 1 I I onal a phase in Pa. Thus, the situation here is very simi-
lar to that found earlier in Ce where the presence of one
4f electron stabilized the high-pressure a-U structure, and
again we take this to mean that the 5f states in the light
actinide metals are itinerant, i.e., bandlike, and give rise to
distorted crystal structures.

VI. CONCLUSION
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FIG. 20. Energy of Th and Pa in the bct structure, relative to
the fcc phase, calculated as a function of the c/a ratio. The
upper panel shows the one-electron contributions, the inset
shows the shape of the Madelung correction, and the lower
panel shows the total-energy differences.

cell has been compressed along the c axis such that the
c/a ratio is approximately 0.82; see Fig. 20. According to
Fig. 20 the Madelung contribution favors bct structures
with c/a in the range 0.95—1.50, whereas structures with
e/a outside this range rapidly become extremely unstable.
In contrast, the one-electron contribution tends to favor
c/a outside the central range, and, as a result, the
energy-difference curve for Th has one minimum at
c/a =v 2, corresponding to fcc, in agreement with experi-
ment, while that of Pa exhibits three minima, one of
which is close to the c/a observed experimentally in the a
phase.

As in the case of the a-U structure in Ce, we are again
experiencing problems stemming from the atomic-sphere
approximation and, in particular, the Madelung correc-
tion, which leads to slightly incorrect estimates of the
structural energy differences for open crystal structures.
Thus, in the case of Pa, the most stable structure is calcu-
lated to be bct with c/a =1.6, which incidentally is the
high-pressure phase of Ce, whereas the minimum which
corresponds to the experimental cz structure lies 1.3 mRy
above the absolute minimum and is shifted to a c/a of
0.92. However, in view of the rapidly changing Madelung
correction in the range below c/a =0.95, it is not unlikely
that a better calculation of the electrostatic contribution
to the structural energy differences may correct both er-
rors.

Since the Sf band is unoccupied in Th, while Pa has ap-
proximately one 5f electron, it follows from Fig. 20 that
the Sf states are responsible for the stability of the tetrag-

We have studied the stability of the crystal structures of
some 40 elemental metals within a one-electron approach.
The effective one-electron equations have been solved
self-consistently by means of the LMTO method and the
structural energy differences calculated by means of
Andersen's force theorem. This approach has the advan-
tage of treating s, p, d, and f states on the same footing,
thus leading to a conceptually consistent description of
trends throughout the Periodic Table. However, the
present implementation of the method is only accurate for
close-packed crystal structures, and for that reason we ex-
clude in our study open structures such as Cs IV and the
more exotic structures found in the actinide series. On
the other hand, this shortcoming is not fundamental and
will undoubtedly be remedied in the near future.

We find that the theory correctly predicts the crystal
structures observed experimentally at low temperature and
atmospheric pressure in 35 out of the 42 cases studied. In
those few instances where the theory fails, we find that
the correct crystal structure is only marginally less stable
than the calculated structure —this is the case for

& &Na,

79Au 7pYb and 9]Pa—or that the metal is magnetic at
low temperature, as in z&Mn, z6Fe, and q7Co. For the light
actinide metals 9zU, 93Np, and 94Pu we have not con-
sidered the experimentally most stable crystal structures,
but only the most stable close-packed structures, and we
find the predictions of the theory to be in qualitative
agreement with the known phase diagrams.

In a comparison between the calculated structural ener-

gy differences for the 4d transition metals and the enthal-

py differences derived from studies of phase diagrams, we
find that, although the crystal structures are correctly
predicted by the theory, the theoretical energy differences
are up to a factor of 5 larger than their "experimental"
counterparts. The reasons for this discrepancy may lie in
the local-density approximation or in the neglect of the
nonspherical part of the charge distribution. Further-
more, the derived enthalpy differences are certainly model
dependent and may change as the model is improved.

In addition to the equilibrium properties, we have stud-
ied the crystal structures of the alkali, alkaline-earth, and
some rare-earth metals under pressure. We find that the
heavy alkali metals ~9K, 37Rb, and q~Cs should be part of
the crystal-structure sequence bcc~hcp~fcc where the
intermediate hcp phase may be suppressed at room tem-
perature, and explain the experimentally observed
bcc~fcc transition in terms of the pressure-induced de-
scent of a zone-boundary energy gap which exists in the
fcc band structure but has no counterpart in the bcc case.
For the alkaline-earth and rare-earth metals we find
crystal-structure sequences which correlate with the calcu-
lated d-occupation numbers and which are in agreement
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with experimental high-pressure observations if we neglect
some complex structures found in zoCa and 38Sr.

Finally, we have studied the high-pressure crystal-
structure sequence fcc~a-U~tet for 57La and &sCe. We
find that under compression, the cz-U structure becomes
more stable than fcc in 58Ce, but not in 57La. This indi-
cates that the presence of itinerant 4f states is responsible
for the fcc—+a-U transition observed experimentally in
Ce. In both La and Ce the calculations predict a tetrago-
nal high-pressure phase. This phase is seen experimental-
ly in Ce, but not in La, where one observes, instead, a dis-
torted fcc structure not considered in the present work.

In conclusion, we have studied the stability of crystal
structures of metals both at equilibrium and at high pres-
sures by a one-electron approach. We find that we can ac-
count for the occurrence of most of the close-packed
-structures observed experimentally. In the few cases
where the theory is in disagreement with experiment, we
find that the correct crystal structure is only marginally
less stable than the predicted structure. In order to

describe open structures, such as o.-U or Cs IV, with the
same accuracy as the close-packed structures, one needs a
more accurate approximation for the electrostatic contri-
bution to the total energy.
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