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%'e discuss the response of a metal surface to an external electric field which varies slowly in
space and time. An earlier calculation of the power absorption due to the creation of electron-hole
pairs is improved with the inclusion of an interference term between "bulk" and "surface" excitation
processes. %ith these improvements, we obtain excellent agreement with the measured inelastic-
electron-scattering cross section for Cu(100).

I. INTRODUCTION

The response of a metal surface to an external elec-
tromagnetic wave enters many important problems in sur-
face science. ' Despite this, our present understanding qf
the dynamic behavior of realistic metal surfaces is far
from complete. ' Because of their complex electronic
structure, a quantitative analysis of the response proper-
ties of transition-metal surfaces is still out of reach and
for this reason most of the theoretical effort has focused
on the simple metals. However, even in this latter case it
is now known that a self-consistent treatment of the sur-
face electronic structure is necessary in order to obtain a
realistic description of the surface response properties.
Calculations based on simple models, such as the infinite
barrier or hydrodynamic models, have shown that such
models are often too crude to provide a quantitative (and
in some cases even qualitative) explanation of experimen-
tal data.

The most realistic calculations presented so far for the
simple metals have been those by Feibelman, ' Persson
et al. and Eguiluz. All these calculations make use of a
jellium model in which the metal ion cores are smeared
out into a uniform positive background which terminates
abruptly at the surface plane. The rationale for the model
is that the ionic potentials are effectively weak and there-
fore do not influence significantly the characteristic
response of the valence electrons. The ground-state elec-
tron density profile can be calculated self-consistently us-
ing a density functional theory as in the work of Lang and
Kohn. The surface potential and corresponding single-
particle electronic states can then be used to treat the
dynamic response within the random-phase approxima-
tion (RPA). With this approach, Feibelman has studied
in considerable detail the nature of the charges and
currents induced by an external electromagnetic field
which varies slowly in space (q~~/k~ &&1) but rapidly in
tiine (co) co&/2). The very good agreement achieved be-
tween these calculations and the surface photoelectric
measurement of Levinson et al. for Al, supports the va-
lidity of the jellium model in this case.

For optical radiation, the incident fields indeed have a
slow variation along the surface of the metal and are
characterized by a parallel wave vector q~~ &&kz. Exploit-
ing this small parameter, Feibelman was able to calculate
the leading corrections in q~~ to the reflectivity factors for

s- and p-polarized light which take into account the non-
local dielectric response of the metal surface. It is impor-
tant to note, however, that in a dynamic situation two in-
dependent parameters characterize the response of the
metal, namely q~~/kz and il '=q~~uz/co. Expansions in
powers of q~~ are possible only if both of these parameters
are small compared to unity, a situation reached for arbi-
trary frequency when

q~~
is sufficiently small. The pa-

rameter ii ' is a measure of the relative magnitude of the
Fermi velocity to the phase velocity of a wavelike distur-
bance propagating along the surface. Its physical impor-
tance is related to the fact that an external field can excite
electron-hole pairs more effectively for ii&1 than for
q & 1. The sharp Fermi cutoff in the electron state occu-
pation is ultimately the origin of the nonanalytic behavior
found in various response functions at il = l.

In contrast to the situation considered by Feibelman,
the work of Persson and Lang and Persson and An-
dersson" is concerned with the low-frequency regime
(co «co& ), where in general it is not possible to perform an
expansion in q~~. The inelastic scattering of low-energy
electrons froin a metal surface is one example in which
values of the parameter q~~u~/co greater than unity are en-
countered. The electric field of the incident electron
penetrates into the metal where, in particularly, it can ex-
cite electron-hole pairs. In the so-called dipole-scattering
regime, the momentum transfered to the excitation is
small, being given by q

~ ~

—kpRco/2E p (where
Ep ——A' kp/2m is the kinetic energy of the incident elec-
tron), so that in this case q~~u~/co —k~/kp ) 1 if
Ep/ep & 1. In Ref. 4 it was shown that with a few plausi-
ble assumptions it is possible to determine the dielectric
response for arbitrary il provided q~~/kF and co/a~&&1.
The resulting theory was found to be consistent with'
Andersson's data for inelastic-electron scattering from
Cu(100). This theory, however, was incomplete and one
aim of the present paper is to study in more detail some of
the assumptions made by Persson and Andersson. In par-
ticular, the separation of the surface and bulk excitation
of electron-hole pairs is examined more critically and
their interference, previously neglected, will be calculated.
This analysis leads to an improved and more consistent
explanation of the experimental data.

Finally, we wish to comment on the possibility of ex-
tending our results beyond the small q~~/kz and small
fico/eF limit. The approach of Eguiluz is based on the
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study of a jellium film geometry and in principle is valid
for arbitrary

qadi
and co. However, if the thin slab is to

represent semi-infinite jellium, then the film thickness
must satisfy I. »1/qadi. Thus, from a practical point of
view, it is difficult to study the small

qadi
limit using this

method. Nevertheless, it does provide a way to go beyond
the small q~i limit which is now quite well understood
from the work discussed above and in the present paper.

The paper is organized as follow: In Sec. II we review
some basic equations necessary for the following sections.
In Sec. III we evaluate the interference term between bulk
and surface excitation of electron-hole pairs and in Sec.
IV the theoretical results are compared with experimental
data. Section V contains our conclusions.

II. SOME BASIC CONCEPTS AND EQUATIONS

e(co) —1

e(co)+ 1

which is independent of
qadi

because of the assumed local
dielectric response. A real metal does not have a steplike
surface profile but a profile which varies smoothly on a
microscopic scale. Furthermore, the dielectric properties
of the surface are characterized by a nonlocal tensor,
e&„(z,z',

qadi, co) which depends on z and z' as well as the
wave vector qadi. Thus (5) is not correct for arbitrary qii
although one can prove that it is exact for qiI ——0.

Feibelman' has shown that the leading correction in

qadi
to (S) can be written as (with the jeihum positive back-

ground edge located at the origin) .

e(co ) —1 e(co )[e(co )—1)+2qi[dz(~)E'co +1 [e(co)+1] +O(qadi)

In this section, we will review some basic concepts and
equations which are required in the following sections.
Assume that a semi-infinite jellium occupies the half-
space z ~ 0 and consider the response of this system to an
external electric potential of the form

(1)

An arbitrary electric potential can always be decomposed
into evanscent plane waves of this type in a region of
space where there are no external charges, V $,„,=0. The
external potential (1) will give rise to an induced potential
which outside the metal (z & 0) can be written as

—g
(
(Z I [q(

i

X—Q)f)

P;„d———
g(qadi, co)e e +c.c. (2)

This equation defines the linear-response function

g (qadi, co). It has been implicitly assumed that the external
potential P,„, is so weak that the metal responds linearly
to it. The function g(qadi, co) is itself related to the density
response function of the metal by

g(qadi, ~)= f dz f dz'e e P(z,z',
qadi, ~)

dz e p;„d(z, qadi, o1),g)iZ (3)

where the second equality defines the induced surface
charge density.

The quantity Img can be identified with the power ab-
sorption in the metal due to the electronic excitations in-
duced by the evanscent external potential (1). As such, it
is given in terms of the total transition rate, w, by the use-
ful relation

Img =Mw/(Aqui),

where A is the surface area. This equation, which has
been used in several earlier works, is proved in Appendix
A.

In the standard textbook treatment of the dielectric-
response of a metal surface, one assumes that the solid is
characterized by a local dielectric function e(co) which
jumps discontinuously at the surface, i.e., e=e(co) for
z &0 and e=1 for z &0. From the continuity of P and
edgldz at the solid-vacuum interface, one obtains the
well-known result

This expansion in
qadi

is useful if qadi/k~ && 1 and when the
parameter q '=qiivF/co «1. [Actually (6) also gives the
correct zero-frequency result, g (qadi, 0)= 1+2qiidz (0).
However, it cannot be inferred from this that (6) remains
valid for arbitrary z). The fact that g(qadi, co) does not in
general admit an expansion of this type is associated with
its nonanalytic behavior at g=1. See Eq. (33).] The
linear-response function dz(e) occurring in (6) is the cen-
troid of the induced charge density, i.e.,

f dz zp;„d(z, co)
dz (co ) = ao (7)f dz p;„o{z,co)

For co&0, dz(co) is a complex number. It defines the
frequency-dependent image-plane position according to
the formula

dzp(a1 ) = e(67 )
dz(co) .

e{co)+1
(8)

ao CORedZ(O1 )
Redz(co) = ——P f de'

0 (~')
(10)

From these relations and the known high-frequency
behavior of dz(co), one can derive several useful sum
rules, e.g.,

f da)coImdz(co)=g(r, )o1z, (11)

f des Redz(co) =0,
where

(12)

In the static limit (co=0), (8) reduces to dz(0) which is
the reference plane position of the image potential for an
external point charge. The absorptive part of the cen-
troid, Imdz(co), represents the absorption due to the real
excitation of electron-hole pairs and to plasmons, if
CO )COp.

It is clear from (6) that dz(co) is a causal response func-
tion [because both e(co) and g(qadi, co) are causal response
functions] and that it therefore fulfills the Kramers-
Kronig relations

ao co Imd1(co )
Red&(co) = P f d—co'

(~') —co
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g(r, ) =—f dz no(z) (13)

only depends on the ground-state electron density profile,
no(z), normalized so that no(z)~l as z~ —00. The pa-
rameter g(r, ) determines the behavior of dz(co) for large
co via

2

A similar approximation for Imp;„d in (3) would of course
be meaningless since Img depends explicitly on these exci-
tation processes.

We assume that the surface screening charge is essen-
tially localized within a microscopic width, a, of the sur-
face. The total potential deep in the metal then behaves
as

2
dg(co) ———g

CO
(14) '[ —Q(q~~, )l (19)

Furthermore, we observe that the integrand in Eq. (12)
must change sign so that as a function of frequency, the
real part of the controid will pass from one side of the jel-
lium background edge to the other. We finally note that
if Imdi (co) has the low-frequency behavior,

ce dco Red j (co)= —P
ky Q)p

(16)

The parameter g is determined in the following section.

III. EXCITATION OF ELECTRON-HOLE PAIRS
FOR SMALL qIi AND co

In this section we will study the structure of Img(q~~, co)
for small q~~ and co. This problem has been considered in
an earlier paper where, however, a contribution to Img
coming from the interference between the "bulk" and
"surface" excitation of electron-hole pairs was neglected.
We will calculate this term here and discuss under what
conditions it is important. An alternative derivation of
Img is given in Appendix B.

Following Ref. 4, Img is calculated from (4) as follows.
First, we calculate the rate at which the external potential
(3) excites electron-hole pairs in the metal. Using the gol-
den rule formula, we get (a.u. )

io=2m. f d k d k'(fk —fk )

Imdg(co)=, co ((cop
ky cop

as is found to be the case, then the following relation is
fulfilled:

where

Q ( qadi, co)= —f dz e p;~d(z, qadi, co) (20)

m opt 2M 2

Q(q~~,~)=1+, + ~ ~ ~

m Q)p
(22)

In the jellium model, m», is, of course, the free-electron
mass but we have allowed for a more general situation
with the applicatiori to Cu in mind.

We now define the bulk potential Pb„ii, to be of the form
(19) throughout all space and the surface potential by the
difference

4..Az q~~ ~)=4(,q~~, ~)—4b 1k(,q~~, ~} .

The surface part can be shown to satisfy the equation

(23)

The quantity Q (q
~
~, co ) is closely related to g (q

~
~, co ),

differing only in the sign of the exponent in (20}. It can
be expanded in a similar fashion to g (q~~, co) in (6),

e(co) 1 — e(co) —1 z
Q(q~( co)=

e(co)+ 1 [e(co)+ 1]
+o(q)() .

(21)
This result is strictly valid in the large g limit. That the
coefficient of q~~ vanishes when co=0 is, however, an ex-
act result and suggests that the second term in (21) can be
neglected when considering the real part of Q(q~~, co) in
the long-wavelength limit. This quantity then depends
only on the frequency through the bulk dielectric func-

riting e(co)=1—(cop/co )(m/m»i) for the low
frequency behavior, where co& 4vrne —/—m is the jellium
plasma frequency and m,„, is the optical mass, (21)
reduces to (neglecting the second term)

x I &k'141k & I
's(E, —e, —~), (17) dz2

= —2q((p;„d(z, q((, co)

in which matrix elements of the complex total potential,
P=P,„,+P;„d, appear (see Appendix 8}. Here fk is the
finite-temperature Fermi-Dirac distribution function.

Secondly, we require an expression for the total poten-
tial

+ dz'e p;.d(z', q[(,~},q))Z —
q)) fz —z'(

which in general requires a self-consistent calculation of
the induced charge density. However, we shall make use
of the fact that for small qI~ and co, the integrated screen-
ing charge must be close to the classical electrostatic re-
sult. The modification of the real part of p;„d at low fre-
quencies by electron-hole pair production is a weak effect
and can be neglected when estimating P to be used in (17).

+q~~ dz'(e —e )p;„d(z', q~~, co) .qll /
z —z'

l q//(z z )

(24)

The second term on the right-hand side vanishes in the in-
terior of the metal and is of order q~~a relative to the first
in the surface region. Thus, it can be neglected in the
evaluation of P,„~. Furthermore, for the small values of
q~~ and co of interest, we can replace p;„d(z, q~~, co) by
po„d(z) —=p;„d(z, 0,0) which is the charge density induced by
a static uniform electric field perpendicular to the surface.
This quantity has been calculated by Lang and Kohn. Its
use in (24) leads to the surface potential considered by
Persson and Lang, P,„~=—(q~~/2m)A(z) with A(z) the
solution of
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%'e write

&k'I(&-~+Nb») lk&= — »@kII+qll kI'I)M«(27)

so that

M,„.= &y„, I
~k,'

I y, &

~surf

mopt+2'
kF'

qII+(k, —k,' )
(28)

d A(z) p=4mp;„d(z) .
dz

(25)

A (z) is the induced potential in the metal due to a uni-
form charged sheet outside the metal surface and carrying
one unit of charge per unit area. Apart from Friedel os-
cillations, P,„~is localized in the surface region.

Finally the bulk potential from (19) and (22) is given by

(26)
m cop

We note that the amplitude of Pb„jk is negative relative to
the external potential implying that the surface charge
density overscreens the externally applied field at finite
frequencies. The total potential and its decomposition
into bulk and surface terms is shown schematically in Fig.
1. Equations (25) and (26) are expected to provide an ac-
curate representation of p in the small qII and cp limit.

%e thus have

&k'll lk&=&k'Ids. ~lk&+&k'l0'b lklk&

and the rate m will have three contributions,

~ =~Surf+ bund+ aint ~

The interference term m;„t was neglected in the treatment
presented in Ref. 4 but we will consider it here. It was
shown in Ref. 4 that

r
-S~ '

I'O S~~ ~~~ ~ ~ ~ ~ ~ ~ gag~ ~ 0ag-
'4ulk ("5)

kFZ

FIG. l. Electric potential P (equal to external plus induced
potential) in the surface region of a metal due to an external
current distribution. Relative magnitudes of. the surface and
bulk contributions (p=p, „„t+pb„lk) are representative of r, =3
jellium for ~-O. I eV and q~~-0. 02 A

m =4~
(2~) m. kp f d'«f. f') I

Mkk—'
I
'ik'

(29)

where kII ——kII+qII and e'=a+co. In deriving (29) we
have used the identity

I 5(kII) I

= 6(kII),
(2rr)

where A is the surface area. Substituting (29) into (4)
gives

Img= „ f d k(f, f )IM«—
I Ik,' .

m4kF4
(30)

Now, if E(k) is an arbitrary function of k which varies
slowly with c., then we have for co ~(cF,

f d k(f, —f, „+)F( )k

= f dek(f, f,+„)f d&k+(—k)

=rokF f dQkE(k)
I k

2' kF
=re f dy f dk, F(k)

I k (31)

This is precisely the result one woold have obtained in the
zero-temperature limit. From (30) and (31) we get

z
(32)

Substituting (28) in (32) we obtain the following after
some simplications:

Img = (Img ),„~+(Img )b„lk+ (Img );„, ,

where

Using (17) and (27) and accounting for the electron spin
[which introduces an extra factor of 2 in (17)] we get

'2

and

z ~(kII+qII —kiI) &'4; I
~

I @k.&

'2

(Img), „~——2g'
kF Ct)P

1 mopt(Img)b»=
2 m

2

g G(g), (33)

2 mopt
&k lfb l Ik& ——

m

X +(kll +qll
—

II
)
qII+(k, —k,') With

8 m opt 1
(Img );„,=—

m kFao co~

2

gH(g),
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0.5

H(ri) with the approximate formula (36). The function
h (r, ) is given for r, =2, 3, and 4 in Table I together with
some other useful parameters introduced in Sec. II. All of
the quantities in Table l are ground-state quantities which
have been calculated using the local-density approxima-
tion of the density functional scheme.

From (33) we can obtain an expression for di(ro) valid
for co «cop. First note that for co «roz, (6) reduces to

g ( g ) (,co ) = 1 +2g
) )
d i (co ) +0 (q

( ~

)

of
0—
0

I I I I I

1 2 3 3 5

FIG. 2. Function H(g) as given by Eq. (35). The curve
denoted by "Appr. " is the approximation given by Eq. (36).

Img (9((,co) =29))lmdi(co)+0(0[)) .

For q~~~0 and ~ fixed, g~ao and we have

(38)

8 for q&1
G(ri)=

8[1—(I+ —,
'
g )(1—ri )'~ ] for ri & I

and

(34)
and 6 (g) —3/r) . Substituting this in (33) gives

(l(„ I
~k,' I li„)

H (ri) = Im f dk, , (35)
(q —1 2iqkzl—k~) ~

Img =2/
kp Q)p

where

(39)

H(ri) =Im 1

(g —1 —2ir))'~

kF
x f dk, (pk IAkgI@ )I

(

(36)

where

kF
h(r. )= f, dk. (A, I ~kF'Ilk, ) . (37)

In Fig. 2 we compare (for r, =3) the exact expression for

The third equation in (33) is the new interference term not
included previously. %'e also note in passing that the
second term in (33) differs from that used in Ref. 4 by the
factors of the optical mass and a factor of —,

' which was
missed previously.

Since the matrix element (gi, I
Ak~

I Pk ) is strongly

peaked for k, =kz (see Ref. 4) we have as a good approxi-
mation

2
8 ~opt u

m kpao COp
(40)

Explicit expressions for g and g are given in Appendix B.
Comparing (38) and (39) we see that Imd&(co)-co as co~0
as previously claimed. In Table I we give g for r, =2, 3,
and 4.

These results for g define the low-frequency behavior of
Imdz (co) which can be compared with the numerical cal-
culations of Feibelman. ' Although the two sets of calcu-
lations do not overlap in frequency, the extrapolation of
the low-frequency behavior as defined in Eq. (40) is con-
sistent with the numerical results obtained at higher fre-
quencies. This comparison is discussed in more detail in
Ref. 9 in the context of the van der %'aals interaction of
an atom with a metal surface. There it is shown that the
use of the g values as given by Eq. (40) leads to an approx-
imate satisfaction of the exact sum rule given by Eqs. (11)
and (13). Thus, there is independent evidence to suggest
that Eq. (33) indeed gives a reliable description of the
low-frequency, long-wavelength absorptive response of
free-electron-like metal surfaces.

TABLE I. The values of g [defined in (B15)]are taken from Ref. 8. g and h are evaluated using Eqs.
(40) and (37), respectively. q(r, ) as given by (13) is calculated using the equilibrium jellium density pro-
file of Ref. 6. The static centroid d&(0) is taken from Ref. 17.

dg(0)/ao

2
3
4
2.67 (Cu,
interpolation)

2.359
0.296
0.0939

0.49

1.041
0.368
0.482

0.460

0.72
0.85
0.94

0.82

1.60
1.42
1.30

1.47

4.29
1.26
0.496

1.84
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IV. COMPARISON OF THEORY
%ITH EXPERIMENTAL DATA

It has recently been shown that Img(qadi, co) can be mea-
sured directly using inelastic electron scattering from
clean metal surfaces. Such measurements have been per-
formed by Andersson et al. ' on Cu(100), and here, we
will compare his experimental data with the theory for
Img presented in the last section. We will start with a
brief review of electron-energy-loss. spectroscopy (EELS).

Consider an electron with a few eV energy incident
upon the surface. The electric field from the electron
penetrates into the medium where it can excite, e.g.,
electron-hole pairs, plasmons, or phonons. Let k and k'
denote the wave vectors of an incident and inelastically
scattering electron, respectively. Thus, iriqii

——A'(kii —kii) is
the momentum transfer (parallel to the surface) to the ex-
citation, in the medium and fico=fr (k k' )/2—m is the
energy transfer. Let P(k, k')d Qi, d(fico) be the probability
that an incident electron is scattered inelastically into the
range of energy losses between fico and fi(co+dco) and into
the solid angle dQk around the direction of k'. For small
momentum transfer, qii « k, one has from standard
dipole-scattering theory"

z 0

LU

t

0
290K

„)04 1

'3
meV

~1-
(f)

Ul

z 0

Ni (100)

0
(deg. )

u(100)

P(k, k')=. . .(n„+1)Img(qii, co)
2 1 k' qll

(eaoir)' o k
) qii+qg )

' -40 -20
l

20 40
LOSS (tneV)

=—~ (k, k')Img(qi[, ~), (41)

where qz ——k, —k,' and where a is the angle of incidence
and n the Bose-Einstein factor. Thus, the inelastic
scattering probability is a product of two factors —a
kinematic factor A (k,k') which depends strongly on the
loss energy (A -co as co~0) but which is independent
of the properties of the medium, and the loss function
Img (qadi, co) which is proportional to the power absorption
in the medium due to an external potential of the form
(1). g (qii, co) enters the inelastic scattering probability (41)
because it determines the induced electric field outside the
substrate [via (2)] and it is this time varying field that can
scatter the incident electron inelastically. Note that to ob-
tain the scattering probability on the gain side (co &0) one
must replace (n„+1) by n

i
„

i
in (41).

In the analysis presented below, we have actually used
an improved dipole-scattering theory which accounts for
the force on the incident electron from its own image in
the metal surface. This scattering probability expression
is somewhat more complicated than (41) and we refer the
reader to Ref. 12 for the explicit expression.

The excitation process, which leads to the inelastic
scattering probability (41), starts already when the in-
cident electron is at large distance d from the surface
where d —(2EO/fico)/ko with Eo ——A' ko/2m being the ki-
netic energy of the incident electron. The momentum
transfer is therefore small,

qadi
—I/O-ko(fico/2Eo) and

the dipole-scattered electrons form a narrow lobe centered
close to the specular direction. The width of the lobe is
58-Rco/2E0. In the experimental data to be discussed
below, Eo-2 eV, Ace-0. 1 eV so that d-40 A, ql1-0.02
A-', and 50-1..

FIG. 3. Electron-energy-gain and -loss spectra from the
Cu(100) and Ni(100) surfaces measured in the specular direction,
0=0', for a 2.3-eV electron-beam incident at 55. The inset
shows the elastic peak intensity (solid curve) and the inelastic in-
tensity at 25 meV (open circles) for Cu(100) vs collection angle 0
(positive towards the surface normal).

Equation (41) indicates that retardation effects always
can be neglected in EELS involving slow electrons. This
is formally proved by noting that the energy loss fm in di-
pole scattering is related to the momentum transfer fiqii
via qii -(fico/2E)k =co/u where u is the velocity of the in-
cident electron. Thus,

qadi
»co/c as long as v «c (which,

of course, is satisfied in EELS involving low-energy elec-
trons) and retardation effects can therefore be neglected.

In EELS one does not measure P(k, k') directly, but
rather P(k, k') integrated over the solid angle of detection

b, P(~)= f dQkP(k, k') .

The experimental, data discussed below were obtained with
the analyzer in the specular direction (angle of incidence
a=54 ) and with an acceptance angle (full width at half
maximum) of 0.9'. Figure 3 shows electron-energy-loss
data from Cu(100) and Ni(100) at room temperature and
at a lower temperature. ' The inelastic intensity on the
loss side is proportional to n„+1 while the intensity on
the gain side is proportional to n and thus smaller. For

~

~
~

&coo, where coo is the highest phonon frequency in
the metal, it is only possible to excite electron-hole pairs
while for

~

co
~

&coo phonons also can be excited. This ex-
plains the rather sharp change in the loss intensity at
Sicko(Ni)=36 meV and irido(Cu)=30 meV which are the
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highest longitudinal phonon frequencies in Ni and Cu,
respectively, in the [100] direction. In what follows, we
will only focus on the electron-hole pair continuum and
refer the reader to Ref. 13 for a discussion of the phonon
excitation -process.

The energy-loss data analyzed below involves excitation
of very low energetic electron-hole pairs, fico-0. 1 eV.
Thus, m &~cop and q~~ &~ kF and we can use the expression
for Img derived in Sec. III which we now write

Img = (Img )D»d, + (Img )»~+ (Img )b„ii,+ (Img );„„.

20-
l,

CU

CL

10—

C

Here, we have added the Drude contribution

&(co)—1 cop mopi 1 co
(Img)D d,

——Im —4
e(co)+ 1 cop m kpl cop

(43)

representing phonon scattering in the bulk; l =UF~ is the
corresponding phonon mean free path. Note that l~oo
as T~O so that the Drude contribution to Img vanishes
as T~O. The other three terms in (42) are given explicit-
ly in (33). For Cu we have m, p, =l.5, and (see Table I)
/=0. 49 and h = 1.84 so that

Cu {100)
Eo= 2.3eV

s-

Img= +b +cil'G(il)
F F ~p 1+g2 cop up

where a =3.89, b =0.98, c =1.125, and d =3.10.
Figure 4 shows how the inelastic scattering probability

hP, for Cu(110), depends on the loss energy fico. The inset
shows the measured data' for b,P at iiico=0. 1, 0.15, 0.2,
and 0.3 eV and for several temperatures. We note that hP
varies linearly with temperature which is also expected
from optical data for copper. This is also the prediction

0-
2 3 0 5

Etet:tron energy (eV)

FIG. 5. Inelastic scattering probability bP vs incident elec-
tron energy. The open and solid circles denote the experimental
AP values at T =293 K and T =80 K, respectively, for 0.1-eV
loss energy and specular condition. The solid curves are the cal-
culated results at the corresponding temperature.

from standard theory of phonon resistivity for T & 0.2T&
(where TD is the Debye temperature). The open circles in
Fig. 4 correspond to the AP values obtained by extrapolat-
ing the data in the inset to T =0 K. The solid circles
show the Drude contribution to AP at room temperature
as given by bP(T =293 K) —b,P(T=O K). The solid
curves are theoretically predicted results for b,P using
Img = ( Img )»z+ ( Img )bulk+ ( Img )int for the upper curve

0
and Img =(Img)D d, with l =221 A for the lower curve.
We note that there is almost perfect agreement between
theory and experiment with respect to the dependence of
b,P on the loss energy fico. The absolute value AP in Fig.
4 deviates only by 10% from the theoretical result. Over
a range of impact energies, the discrepancy on average is
even less than this, as can be seen in Fig. 5. The open and
solid circles correspond to experimental data for fico=0. 1

eV obtained at 293 and 80 K substrate temperatures,
respectively. The solid curves correspond to the calculat-
ed contribution using the expression for Img given by (42)
for T =293 K (l =221 A) and T=0 K (1=0 A). The

I

m 4
CL

C3

2- =0 K)

25

20-

Df'Ud

0.4

0

0 0.1 0.2 0.3
ENERGY LOSS {eV)

FIG. 4. Inelastic scattering probability hP vs loss energy, fico,

and temperature, T (see inset), for 2.3-eV electrons; specular
condition. The open and solid circles represent the extrapolated
experimental AP(T=O K) and AP(T=293 K) —EP(T=O K)
data, respectively. The solid curves are the theoretically predict-
ed results for the Drude and electron-hole pair ( T =0 K) contri-
butions. The theoretically predicted electron-hole pair contribu-
tion has been scaled by a factor of 0.9 in order to emphasize the
agreement with regard to the energy-loss dependence.

15—
I

O
10—

CL

-10 I I I I

FIG. 6. Various components of the inelastic scattering proba-
bility as obtained from Eq. (42) contributing to the total result in
Fig. 5.
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-4m
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hu(meV)

FICx. 7. Filled circles show the experimental gain probability,
AP, for Cu(100) at 290 K. The dashed and solid curves show
the calculated contributions to AP from electron-hole pair exci-
tations and the sum of electron-hole pair and phonon excita-
tions, respectively. The inset shows separately the experimental
(solid curves) and calculate (solid curve) phonon contribution to
AI'. The theoretical electron-hole pair contribution is scaled
with a factor of 1.2

-10

agreement between theory and experiment is very good,
with regard to the dependence of hP on the incident elec-
tron energy, the absolute value of AP and the relative
magnitude of the Drude contribution. Figure 6 shows
separately the various contributions to AP for the case
shown in Fig. 5.

Figure 7 shows the function KP(co) on the gain side of
the electron-energy-loss spectrum. The black dots are the
experimental data points (the same as in Fig. 3) and the
dashed line is the calculated contribution to b,P using (41)
but with n„+1 replaced with n ~„~. The full line is the
result obtained by adding a contribution caused by excita-
tion of longitudinal bulk phonons, propagating normal to
the metal surface into the bulk, as is described else-
where. ' Using the same parameters as above (in, ~, =1.5
m and l =221 A) the contribution from excitation of
electron-hole pairs deviates only by about 20%%uo from the
measured data points.

V. SUMMARY AND CONCLUSIONS

In this paper we have studied the excitation of
electron-hole pairs at a metal surface by an external per-
turbation varying slowly in space and time. We have
shown that the total self-consistent potential can be
separated into bulk and surface parts which each contri-
bute to the pair production rate. In an earlier treatment
the interference between bulk and surface excitation pro-
cesses had been neglected, but we find that it in general
gives an important contribution to the loss function Img.
Reanalyzing the experimental electron-energy-loss data of
Andersson, we now find even better agreement between
theory and experiment, with typical discrepancies being of
the order of 10%%uo. We note that the only adjusted param-
eter in the theory is the mean free path l.

However, there still remain a few questions which
should be considered in more detail. Our results are based
on the jellium approximation which obviously is not valid

APPENDIX A

Here, we will prove (4). The electric potential outside
the metal (z ~ 0) is given by

(
g~(Z

—
g((Z) 1 q(('X(( —CO

(Al)

The power absorption is obtained by integrating the
Poynting vector over the metal surface

in the case of transition metals such as Ni. For the noble
metals, the approximation is more reasonable since the
low-frequency excitations are associated with a free-
electron-like s-p band. One aspect of the electronic band
structure has been included through the use of the ap-
propriate bulk dielectric function in the definition of the
bulk potential in Eq. (26). This leads to the appearance of
the optical mass in Eq. (33). However, the nature of the
electronic states will also influence the magnitude of the
matrix element in Eq. (27). Since Pb ]i, ls a slowly varying
function of space, the replacement of plane-wave states by
Bloch states will not affect this matrix element signifi-
cantly. However, it is difficult to assess the error incurred
by using jellium states in evaluating the matrix elements
of the surface potential. Judging from the good agree-
ment between theory and experiment it would seem that
the approximation is well justified in the case of Cu but
further work is needed to clarify the situation for other
metals.

A second question concerns the Drude contribution in-
troduced in Eqs. (42) and (43). This term accounts for the
energy absorption mediated by phonon scattering in the
bulk. In fitting to the experimental results for Cu, we ob-
tained a room-temperature mean free path I of about 200
A. This should be compared with l =400 A as obtained
from dc conductivity measurements and with /= 125 A as
obtained from ir light reflection measurements. Now, the
Drude formula is strictly valid only if the screened exter-
nal electric field varies slowly in space on the length scale
1. But in EELS the spatial variation of the electric field is
determined by q~~-ko(fico/2EO), i.e., 10 A ' in our
case. Thus, the electric field varies strongly over the
length I and we are formally in the anomalous skin effect
region. It is therefore not clear to what extent the phonon
contribution can be represented by Eq. (43) and what the
physical interpretation of the mean-free-path parameter /

really is. These questions can only be settled by explicitly
including electron-phonon interactions in the evaluation
of the electron-hole pair production rate in Eq. (17).
These considerations, of course, do not affect our con-
clusions regarding the zero-temperature pair production
mechanism.

Finally, we note that there are several other interesting
applications of the formahsm presented in this work. For
example, the surface response function g(q~~, co) deter-
mines (a) the lifetime of excited states at surfaces ' (b)
the Dan der 8'aals interaction between an atom and a sur-
face ' (c) the surface power absorption (d) the friction
force on a charged particle mouing above metal surface
(e) the surface photoelectric current. ' We refer the reader
to the quoted references for details concerning these appli-
cations.
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%cow= —f d x z.EXB .
4m.

Now,

E= —VP

so that

ficow = —f d x z ( —Vp) X 8
4m

f d2x(z XVp).8
4m

r

ficow = Re d x(1—g*)( —icoq~~ )(1+g)
2m

~qll 3 Img,

so that

Img = Mw

q()A

as given in (4).

But

f d xpzXV. B=— f d xpz'VXB.
4~ 4m

1 BE 1VXB=— = —— VP,c Bt c Bt

APPENDIX B

In this appendix we shall derive some of the results of
Sec. III from a slightly different point of view. We define
the response function

C

f(q~~, co)= f dz f dz'e "e '
X(z,z', q~~, co)

so that which is related to g (q
~
~, co) by

The time-averaged power absorption is thus

Brow= J 1~x(P P}

In the RPA, f (q~~, co) is given by

f (q~~, )co= f dz fdz'P, „,(z)X z' qll co)P(z'),

(82)

(83)

Re fdxP& (A2)

where P,„, and P are the potentials considered previously
and X is the independent particle response function of the
system. In particular (83) gives

Imf(q~~, co)= f dz f dz'P*(z)1m' (z,z', q~~, co)P(z') .

(where ( ),„ indicates time average). Substituting P& from
(Al) into (A2) gives For the jellium model we have

(84)

ImX (z,z', q((, )c=od Ic() dk, dk,' fg(1 fk )uk (z)uk, (z)u—p (z')uk, (z')5(ag —eg —co),
0 0

(85)

where the wave vectors are

k=k()+k, z,
k'= k((+ q((+ k,' z,

and the wave functions uk (z) are solutions of the one-dimensional Schrodinger equation
z

1
d uk(z)

dz
+u (z)uk (z) = —,

' k, uk (z) .

(86)

(87)

(88)

u(z) is the potential confining the electrons in the metal. Substitution of (85) into (84) leads to a result consistent with
(17). Here, we shall consider, however, the evaluation off (q~~, co) only in the large r) limit. It is then appropriate to use
the q~~~0 limit of (85) which for small co is

kF kF
ImX (z,z', O, co)==co — f dk, fk dk,' uk (z)uk (z')uk, (z)uk, (z')5(ek, —sk —co) .

z

We require the matrix elements

l

& k' I db. u I k. &

( k,'
I P,„~ I

k, ) = — f dz uk, (z)A (z)uk (z)

and

(89)
Opt CO

m P

In particular, it can be shown that to order q~~.

(810)
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dz uk, (z) uk (z)+O(q~)) .dU 2

(E —sk )k' g

(811)
Using (89)—(811) together with (88) in (84), we find

Imf (q ~~, co)

which follows on integrating by parts and making use of
the Schrodinger equation (87). Thus, from (82) and (38)
we obtain

Imd1 (co)
2

(814)
2

f' F
dk

1
k ~ 47T mopt dU

=COq() 4 g z z
oz dz z

(812)

The coefficient of co in (814) gives g in (40) with

kFf dk, /(k, )A fk, ) ['.
Z

(815)

Finally we note that

(813)

Results for arbitrary tI can be obtained using (BS), howev-
er in this case, the matrix element (811) must be replaced
by —,q~~/[q~~+(k, —k,' ) ]. One then finds the results
quoted in Sec. III.
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