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Path-integral method for soliton-bearing systems. II. P and sine-Gordon theories
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Making use of the collective-coordinate technique, we investigate systematically the higher-order
corrections in t (= T/E, ) to the soliton density n, for one-dimensional soliton-bearing systems in
the classical limit (where T is the temperature and E, the soliton energy). Under the ideal-soliton-
gas approximation we obtain a general formula for n, which includes the higher-order corrections
expressed by diagramatic expansions. The n, calculated for the P and the sine-Gordon models give
rise to corrections to the soliton free energy, which coincide exactly with the corrections found re-
cently by the transfer-integral method. The static correlation functions are also reexamined in the
same approximation, and we refine the earlier prescription in order to match them with the results
of the transfer-integral method.

I. INTRODUCTION

Since the pioneering work by Krumhansl and
Schrieffer, the statistical mechanics of solition-bearing
systems have been studied extensively in recent years.
There are basically three different theoretical approaches
to reveal the roles of solitons in the equilibrium statistical
mechanics: the transfer-integral method, ' the path-
integral method, ' and the Bethe-ansatz method. "' The
transfer-integral method (TIM) is only available in the
classical limit, but it allows one to calculate the thermo-
dynamic functions of a system exactly. Furthermore, the
TIM gives criterion on the validity of other methods since
any quantum theory should reproduce the results of the
TIM in the classical limit. The path-integra1 method
(PIM) is worked out within quasiclassical expansions
around the solitons. The solitons are treated as classical
objects and the phonons as quantum ones. The classical
limit of the PIM is pursued extensively in this paper. The
Bethe-ansatz method (BAM) gives the exact quantum
thermodynamic functions. However, the SAM can be
used only for integrable systems, and so one cannot use
the BAM for the P model, for example, which is a nonin-
tegrable system. Furthermore, the classical limit of the
SAM is not well understood at the moment. '

In our previous work" (hereafter referred to as I), we
have developed the path-integral method for the classical
statistical mechanics of solitons in a one-dimensional
sine-Gordon (SG) inodel. We have shown that the
method of collective coordinates, introduced by Gervais
and Sakita'~ in dealing with the quantum field theory,
provides an appropriate formal scheme to deal with the
higher-order corrections.

In this paper we shall generalize our method to the oth-
er one-dimensional nonlinear Klein-Gordon models. ' The
general expressions of the higher-order corrections to the
soliton density are given by diagrammatic expansions.
Explicit calculations are done for the P" model which is
compared with the previous calculations of the SG

model. " These soliton densities yield the soliton free en-
ergies consistent with the results of the TIM. ' ' Fur-
thermore, we improve the prescriptions given in I to cal-
culate the static correlation functions, in order to make
them consistent with the results of the TIM. ' ' Finally
we comment briefly on difficulties related to the double-
quadratic (DQ) model.

Here P is a dimensionless real scalar field and II the field
conjugate to P. L is the system length and m the phonon
mass of the discrete system, and g a dimensionless cou-
pling constant. The local potential V(P;g) is assumed to
satisfy the following relationship:

V(P;g)=g 'V(gg;1) . (2)

Furthermore, we assume V(P;g) has at least two degen-
erate minima, is an even function of P, and reaches its
minima ( V=O) at /=+Pc [in the case of a periodic po-
tential V(P;g) has the period 2go], and we also scale
V(P;1) so that d V(P;1)id/ =1 at P=gPc. Examples of
such potentials are listed in Table I. The soliton energy
E, of this model is given by'

sko
E, =amlg, a= f dg[2V($;1)]', (3)

where a is a model-dependent number listed in Table I.
The thermodynamic properties of this system in the clas-
sical limit are determined by the partiton function Z de-
fined as

z= rr e-~~, (4)

II, METHOD OF COLLECTIVE COORDINATES

The general class of one-dimensonal soliton-bearing sys-
tems which we consider is defined by the following Ham-
iltonian (the nonlinear Klein-Gordon inodel)

2
L/2 ) 1 (lgH= f dx —,

' II +— +m V(P;g) . (1)
2 Bx
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TABLE I. The local potentials V{());1),the minima $0 of V(P;g ), the one-soliton solutions P,{x)of
V{/;g), and the numbers a, A, and C which characterize the models are shown for the (()~, SG, and DQ
models.

Models V{/;I)

—,
' (P' —1)'

P,{x)

—tan(Tmx)1

g
2&3/2

1+cos(() —[4 tanh 'le )—n.j
g

DQ —sgn(x)(1 —e )

ng
——I Z] /Zo . (6)

Here Zo and Z) are the partition function of the soliton-
free sector and the one-soliton sector, and n, is a soliton
density. C is a color of solitons listed in Table I. Our
definition of n, for the P and the DQ models is different
by a factor of 2 from the definition given in Ref. 13, since
we do not distinguish between solitons and antisolitons in
these systems and we call them solitons. En other words,
solitons and antisolitons with topological constraint in
Ref. 13 are equivalent to the present solitons without to-
pological constraint, which is clear from our construction
of the partition function (see, for detail, Appendix A).

Z() for the soliton-free sector can be analyzed perturba-
tively If we assu. me

where p=T (with units in which k2) ——1) and N[p]
&[11] imply functional integrals over all p and II

configurations with periodic boundary conditions on the
interval L. P and II depend only on x, the spacial coordi-
nate.

Next we limit our analysis to the low-temperature re-
gion (r && I), so that we can neglect the interactions be-
tween solitons and antisolitons (i.e., ideal-soliton-gas ap-
proximation). ' Under the ideal-soliton-gas approximation
one can factorize the functional space, " and finally we
obtain the following expression for Z:

Z =Zoexp(Cn, L ),
and

fi= 1) as follows:

Zo —— Q()33co„) 'exp( (e ' —1 )„„„), (12)
n

where ( ) means the thermal average with respect to
Hc and the suffix conn means that only the connected di-
agrams are included; con is the eigenvalue of the following
eigenvalue equation:

+m u„(x)=conun(x),
8x

(13)

H =Eg+Ho+H)+H2, (14)

(15)

under periodic boundary conditions on the interval L. If
we perform a diagrammatic expansion of Eq. (12),' it is
easy to show that the free energy caused by Z() completely
agrees with the corresponding terms of the TIM.

We shall now focus our attention on Z), the one-soliton
contribution. As shown in I, according to the collective
coordinate technique introduced by Gervais and Saki-
ta, '2' we perform a canonical transformation from
the original variables (P;II ) to the new variables
(X,g;PT, II„) where X is the soliton position and PT the
total momentum of the field The .Hamiltonian in the
one-soliton sector is recast as

the Hamiltonian in the soliton-free sector can be rewritten

H =Ho+HI,
where

(n —2)

3

72 —2
H(n —2) jd ~2g V(n)(gy .I)~n

n!

Pz. +f dx Ii„ri'
H2 (2E,)——

+

(16)

Hi= g HI"
Pl =3

(10)
g'=E, ' f dx P,'q',

nf
V(n)(gy . I )+n

and V(")(P;I ) =d"V(P; I)/dP". Zo is calculated (with

where P, is the one-soliton solution listed in Table I. The
primes on ri and P, imply spatial derivatives. Now Z) is
evaluated as follows:
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r

Z, =e '~'(2m) ' f dX fdPr f W[g]5 f dxP,'i) f~[II„]6 f dxP,'Il„exp[ P—(Ho+Hi+H2)], (20)

Z =L(E /2m. P)' e ' ' II (P~i)
l 0(~ )

x p( &

"'—1&,'.,)(1+& g (21)

where &
~ &' means the thermal average with respect to

Ho and co& is the eigenvalue of the following eigenvalue
equation:

d2
+m V' '(gg„l) ui(x)=coiui(x), (22)

under periodic boundary conditions on the interval L.
There is always the so-called zero-mode solutions in Eq.
(22), which reflects the translation invariance of the sys-
tem. ' In the following argument we have to distinguish
the zero-mode solution from other eigenmode solutions.
We assign I =0 to the zero-mode solution. The normal-
ized zero-mode solution is given by

uo(x)=E, '
P,'(x), cop ——0. (23)

In Eq. (21) we have excluded the zero mode in the expres-
sion for the infinite product.

III. SOI.ITON DENSITY

From Eqs. (6), (12), and (21), one can obtain the soliton
density n, as

where Dirac's 5 functions restrict the available functional
space of g and II& in such that g and II& do not contain
the zero-mode component which is already extracted by
the X and I'T integrals. ' Since X is a cyclic coordinate its
integral gives simply the system length L. One can also
integrate over Pr when the configuratons of g and II& are
fixed. After the Gaussian integral over PT, we obtain

where

x(1+ & ge
'

&,'.„„), (28)

(0) g —1/2 t —1/2e —1./t
S (29)

n,' ' is the soliton density within the harmonic approxima-
tion which makes the soliton free energy consistent with
the main term of the results of the TIM. The higher-
order corrections are expressed by the diagrammatic ex-
pansions in Eq. (28). The origin of the higher-order
corrections is very clear. It is simply the. contribution
from the anharmonicity due to Hl, Hi, and g.

Let us calculate the lowest-order (t) correction to n,' '.
There are only four diagrams in this order when we per-
form the average in the one-soliton sector. They are
shown in Fig. 1. Diagrams (a)—(c) are due to the ex-
ponent in Eq. (28), and (d) is due to the last term in Eq.
(28) 23

In order to calculate these diagrams, we introduce the
Green s function in the one-soliton sector in the classical
limit as

D'(x,y) =
& r)(x)il(y) &'

=T g ul(x)ui*(y) .
l (~0) ~l

The explicit forms of the real-space Green's function for
the P" and the SG models are shown in Table II, and the
value of each diagram is summarized in Table III. The
detailed derivations of the diagramatic calculations are
given in Appendix B. Since the nonlocal terms which are
proportional to L in the one-soliton sector are canceled

n =(E,/2') ~ e

Xexp(&e ' —1&,',„„—&e ' —1&,,„„)

x(1+&pe ' '&.'.„„),
where

(24)

(a)

(b)
(25)~= II(p-. ) II (p-) -'

n l (~0)

The value of R can be calculated generally as follows: '
8 =PA~2m, (26) (c)

where A is a model-dependent number which is deter-
mined by the asymptotic form of the normalized zero-
mode eigenfunction uo(x). ' 3 is given by the follow-
ing limit:

uo(x)~Am'~ e ~" ~ as ~x
~

~ca . (27)

The explicit values of A are listed in Table I. Finally we
have reached the general expression for n, as

FICx. 1. The diagrams contributing to the 1owest order (t)
corrections to n,' ' are shown.
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TABLE II. The real-space Green's functions for the P" and SG models are shown.

4" model

where

D'(x,y) = T
j 1+T~ {o)[tanh{ Tmx )—tanh( z my }]1 1

+ T2{cr }[tanh{ 2 mx ) —tanh( 2 my )] ]e

1ca= 2 m(x —y)

T1(o.)=2sgno. +cothcr

T2{o'}=—8 [3(1+2
~

o
( }+4{4sgno+3o}cotha+ {11+6

~

o
~

)coth o]
SG model

D'(x,y) = T [1+T{cr}[tanh{mx}—tanh{my)] Ie
2fPl

where
u=m (x —y)
T{o'}=—2 [cr+{1+

~

cr
~

}cotho]

=n,'"[1—» t+O(t')] . (31)

exactly by the contributions from the soliton-free sector
diagram by diagram, we finally obtain the following ex-
pressions for n, in the P and SG models.

(1) P model,

n, =n,' 'exp[ —,",
0 t+O(t )][1——,o t+O(t )]

S /&, /2(x y) & cos[ H'(x)]cos[ gy(y') 1 ) (34)

where &
. . ) means the average with respect to the full

Hamiltonian equation (1). S,/2, /2 is a soliton-sensitive
correlation function, but S,/q «2 is not.

Let us first investigate the contributions from the
soliton-free sector extensively. Using the notation of the
preceding section, we obtain

(2) SG model,

n, =n,'"exp[ ——,", t+O(t')][1 ——,', t+O(t')]
SF+(x y ) = &+(g j &II'p+ rl(x ) J )+(g jpp+ tl(y) J )e ),

(35)

=n,'"[1 ', t+O(t')] —. — (32)

IV. STATIC CORRELATION FUNCTIONS

Although the static correlation functions a're calculable
both in the soliton-free sector and in the one-soliton sector
as shown in I, more care is required to construct the total
static correlation functions. In this section we reinvesti-
gate the static correlation functions much more carefully
than before and improve the prescriptions given in I. We
restrict ourselves to the SG model and choose the follow-
ing correlation functions:

These higher-order corrections give rise to corrections to
the soliton free energy, which coincide exactly with the
corrections found by the TIM. '

0
Ss/z, s/2 (»y)

0Scn, c/2 (x&y )

~p(t)+ g A2n(t)exp[ —2n82»(t)m
~

x —y ~
],

n=1

(36)

C2 —1(t)exp[ (2n 1)D2 —1(t)nt
I
x —y I ]

n=1

where F(P) =sin(P/2) or cos(P/2).
The diagrammatic technique allows one to calculate the

above expression perturbatively. %'e have calculated up to
order t and obtain the following results:

S /2 /2(x, y )= &»n[ —,
'

g&&t (x )l»n[ -,' g 0(y) ] & (33) (37)

Diagram

(b)

(c)

(d)

P" model

1 97
( 16 ) 1680

—mL( ——,6 t) —
560 t

1 53—mL ( —,4 t )—1260 t
49
60

SG model

—mL( ——t)——t1 53
4 60

7—t20
3

40
5
12

TABLE III. The explicit values of each diagram in Fig. 1 for
the P4 and SCx models are shown.

where the first few terms of jA2„I, jBz„I, jC2„&I, and

jD2„& I are shown in Table IV.
If we compare these with the results of TIM (see Ap-

pendix C), we conclude that S,/2, /z agrees but S,/2, /2
does not, especially as far as the Ap(t) term is concerned.
This indicates that for the soliton-insensitive correlation
functions the contribution from the soliton-free sector is
sufficient, but on the other hand, the multisoliton contri-
bution is essential for the soliton-sensitive ones.

From the above argument we proceed to investigate the
one-soliton contributions to S,~2,~2, which are written as
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Ao(t) =1—t —2 t —t +O(t )

A, (t) = —,t'[1+—,t+O(t')]

C, (t) =t [1——,t'+O(t')]
C,(t) = —,t'[1+0 (t)]

B2(t)=1—
2 t+O(t )

D((t) =1—t —t +O(t )

D, (t)=1+0(t)

1S /2, /2«y)

fdX(sin[ —,'g Igs(x —X)+g(x —X) j ]I.

TABLE IV. [Az„j, [Bz„j, [Cz„&j, and [Dz„&j appearing
in Eqs. (36) and (37) are shown.

ss/z, s/2(x~y) —[1—(2/L )
I
x —y I

]Ao(t)
00

+ g Pz.(' m
I
x —y I

)
mL, „

Xexp( 2—nm Ix —y I
), (40)

where Pz„(t;m
I

x —y I
) is a polynomial in t and

m lx —y I." Next we have to consider the question of
how to construct S,/2, s/2 in terms of S /2, s/2 and S,'/2, /2
under the same approximation as in the preceding section.
Now we shall define S,/2, /2 and S,'/2, /2 as follows:

X sin[ —,
'
g I Q, (y —X)+g(y —X) J ]

X(1+/)e ')', (38)

and

S,/2, /2(x, y) =Ao(t)

/2 s/2(»y)=[1 —(2/L )
I

x —y I
]Ao(t)

(41)

and

Agian the diagrammatic technique yields"

(39)

These are the parts of the correlation functions which sur-
vive in the limit lx —y I

tends to infinity, while other
terms vanish exponentially with

I
x —y I

. The more pre-
cise prescription to construct the correlation function is
given by

+ g Az„(t)exp[ —2nBz„(t)m
I
x —y I ] .

n=1

10
OO Ss/2, s/2(X~y)

S*/z, /2(x y) =S /2, s/2(x, y)exP 2n, L —1
Ss/z, s/2(»3')

Noticing that A0 in S,/2, /2 and S,'/2, /2 cancels out, we obtain

(42)

S./z, ./2(»y) =Ao(t)exp( —4n.
I
x —y I

)+ g Azn(t)exp[ 2nBzn(t)m
I
x —y I ]

n=1
(43)

which completely agrees with the results of TIM. Al-
though we eliminate completely the Pz„ terms in Eq. (40),
and their roles are unclear for the moment, we can repro-
duce the results of TIM and obtain the correlation length
of the soliton as

gs '=4n, . (44)

In the case of the P model the situation is quite similar,
so one can easily generalize the argument in this section to
other nonlinear .Klein-Gordon models.

V. CONCLUDING REMARKS

Limiting ourselves to the classical limit of the nonlinear
Klein-Grodon models, we have examined systematically
the higher-order corrections in t to the soliton density n,
in the ideal-soliton-gas approximation. We have general-
ized the previous calculations for the SG model" to the
nonlinear Klein-Gordon models and obtained a general
formula for n, which contains the higher-order correc-
tions expressed by diagrammatic expansions. Explicit cal-
culations have been done for the P and the SG models.
Both higher-order corrections to n, yield corrections to
the soliton free energy, which are consistent with the
corrections found by the TIM. '" ' These agreements
have proved the validity of the ideal-soliton-gas approxi-

mation, even- when we include the higher-order correc-
tions in both models. Furthermore, it is confirmed that
the method of the collective coordinate provides a general
framework for studying the higher-order corrections. We
have also improved the previous analysis" for the static
correlation functions and proposed prescriptions to con-
struct them, and compared them with the results of the
TIM.

Our calculations in the classical limit can be easily ex-
tended to semiclassical calculation, where we treat only
phonons as quantum objects. According to Matsubara's
technique at finite temperature, the Greens function in
Eq. (30) is simply replaced by a thermal Green's function.
After some renormalization one can obtain the higher-
order corrections. The results will be reported in future
publications.

Finally we comment on the obstacles which prevent us
from performing a similar analysis for the DQ model.
The local potential V(P;g) in the DQ model has a cusp at
/=0. If we formally expand V(P;g) around the one-
soliton solution P„ the interaction Hamiltonian I, in Eq.
(14) contains higher derivatives of Dirac's 5 function.
Since these singular vertices cause divergences when we
evaluate the diagrams shown in Fig. 1, we have not yet
succeeded to get the higher-order corrections to n,' ' in
this special Inodel. Even if we were able to get the finite
corrections to the soliton density, there is another problem
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for the soliton correlation lengths g, . According to the
exact results of the TIM, g,

' ~n, is no longer valid for
the DQ model if the higher-order corrections are includ-
ed. ' On the other hand, according to the argument in the
preceding section, we always obtain g, 'ccn, under the
ideal-soliton-gas approximation. This discrepancy may
indicate a possible breaking down of the ideal-soliton-gas
approximation for this special model. ' Although the DQ
model is a mathematical toy, further investigations are
clearly desirable.

(n L )n+m

Zn, m Zp n!m!
(A3)

the P and the DQ models suffix n means the n-soliton
sector. In contrast to Ref. I3, we do not distinguish be-
tween solitons and antisolitons in the latter systems. Since
the soliton is always followed by the antisoliton, we con-
sider them as the same particle without any topological
constraint.

Now within the ideal-soliton-gas approximation, we ob-
tain
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(n,L)"
Zn Zp n'!

where

n, L =Z)/Zo,

Z1 —Z1 0~ Zp —Zp p

From these follow Eq. (5) in text.

(A4)

(A5)

(A6)

APPENDIX A: PARTITION FUNCTIONS
FOR SOLITON-BEARING SYSTEMS

APPENDIX B: CALCULATION
OF THE DIAGRAMS IN FIG. 1

ZSG = g Znm,
n, m =0

(A 1)

For partition functions for the SG, P and DQ models
are given as

Since the evaluations of the integrals which are
represented by Figs. 1(a) and l(d) is simple, we concen-
trate on the integral corresponding to Figs. 1(b) and 1(c).
These terms are due to the second-order contribution in
H &" [which is given by Eq. (17)],and we obtain

Z~, ——g Z„,
n=0

(A2) (81)

respectively, where for the SG model suffix n, m indicates
the sector with n solitons and m antisolitons, while for

This is expressed in terms of the Green's function
D'(x,y) given in Eq. (30) as

J=—P2(m2g/3!) f dx fdy V' '(gP, (x);1)V' '(gP, (y);1)t9D'(x,x)D'(xy)D'(yy)+6[D'(xy)] I, (82)

where the first term corresponds to Fig. 1(b) and the
second to Fig. 1(c). In Appendix A in I, we have per-
formed the k-space calculations for the SG model. The
k-space calculations for the P model are so difficult that
we rely on the real-space calculations to evaluate J, where
D'(x,y) is explicitely given in Table II.

Let us calculate the second term of J which we call J,
for the P model, which is the most cumbersome,

where in the case of n=0 we obtain a nonlocal term
which is proportional to I..

In order to evaluate P„(o ), we introduce the fundamen-
tal integral R„(o)as follows:

&n(o) =f dp[sech(o+p)sechp]", n =1,2, . . . (85)

which is easily evaluated as

J, =3(Pm g/2) f dx f dy tanh( —,
' mx)tanh( —,

'
my) R„(o)=2" 1 1

„Sn(cr),
(n —I)) (sinhcr)"

(86)

X[D (x y)] (83) and
n —1

After changing the integral variables x and y to
cr=m(x —y)/2 and p=my/2, we first perform the p in-

tegral. We encounter the following type of integral:

P„(o ) = f dp[tanh(o. +p)]tanhp]

&& [tanh(o'+p) —tanhp]", n =0,1,. . . (84)

S„(o) = (sinho )" a
s1nho- Bo

CT

smhO
(87)

S„(o) is a polynomial of cr and cotho and satisfies the fol-
lowing recurrence formulas which are essential to our cal-
culations:

S„+~(o) =(2n —1)(cotho )S„(o)—(n —1) Sn ~(o ), (88)
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S„'(o.)= —(n —1)(cotha)S„(o)+(n —1) S„~(o) . (89)

The remaining o. integral is given by the Laplace
transform of S„(o) multiplied by polynomials in o and
cotho. , which one can calculate by the use of the re-
currence formulas, Eqs. (88) and (89). The tedious but
straightforward calculations yield the results listed in
Table IH. The first term of J for the P model is also cal-
culated in a similar manner.

APPENDIX C: CALCULATION
OF THE CORRELATION FUNCTIONS

BY THE USE OF THE TIM

According to the mell-established TIM, ' the static
correlation function for F(gg) is exactly given by as fol-
lows:

value structure e„has a pair structure'

&2I =a«I r—2I »
e2I+I a—(—EI+a'2I+I), 1 =0, 1,. . .

(C4)

(C5)

(at) d
2 + V(P;1) +I(P)=«IqII(P) (C6)

under the proper boundary conditions discussed in detail
in Ref. 15. We solve the differential equation (C6) by the
use of the so-called modified WK8 method. ' We assume

where EI is the 1th eigenvalue of the isolated well of
V(p;1) (order 1) and r2I and r2I+I are the tunneling con-
tributions (order e '~'). Let us introduce a subsidiary dif-,
ferential equation in order to solve Eq. (C2)

S (x,y) = (F(gg(x) )F(gg(y) ) )

f (n fF(@)f0) f

(n
f

n)(0f0)

—1
)&exp (e„—E'o)m

f

x —y fat
I

(Cl)

q l(0)=~o (4)exp[(1«)~'"i(4')] 1+ Q ~'."(4)t"

and solve Eq. (C6) under the given EI,

EI y I I)t

n=1

(C7)

(C8)

( n
f
F(y)

f
m ) =fdy e*„(y)F(y)e (y), (C3)

and a is the model-dependent number listed in Table I. In
the low-temperature region (t «1) we assume the eigen-

I

where e„ is the eigenvalue of the following pseudo-
Schrodinger eigenvalue equation

p2
+ V(P;1) N„(P)=e„4„(P), (C2)

and the bra-ket notation in Eq. (Cl) means

If we neglect e '~' compared with 1, the eigenvalues and
eigenfunctions are well approximated by

~2I e2l+1 aEI~

C'2I(It)=C'2I'+i=q'I(P) ««&&&2~,
(C9)

(C10)

which we need to evaluate the correlation functions. Let
us restrict ourselves to the SG model and choose F(Itp) as
sin(P/2) or cos(P/2).

The general expressions for EI and the first four +I are
summarized by'

21+1 21 +21+1 2 21 +31 +31+1 3 4
1 2 22 23

qIo(p)= —exp[ —(1 w')/t] —1+, , + 4 2+ 4 + 6,+ 4+ 6 +O(t }=1 2 1 t' 1 3 t' 6 6 15 4

w w w 2 w w w
I

(1—w )' t 3 t 9 15 t 90 90 105'P,(P)=, exp[ —(1—w')/t] 1+, , +, , +, +, , +,+, +O(t")
w w 2 w w 26 w w4 w

(Cl 1)

(C12)

(C13)

1 — 2

%'2(p) =
3 exp[ —(1—w )/t] 1+ 1 6+ +

1 —u ' w' 2'
11 24 45
—w' w' w4

+ +

159 339 405 4202+ 2+ „+ 6 +Ot
1 —w w w w

(C14)

2)3/2
0 3(p) = exp[ —( 1 —w )/t] 1 +u' 22

3 10
2 w2 24 w2 w2 w4

t3

26
1065 645 1155 1260

1 —w' u' w4 w6
. + + + +O(t') (C15)

where
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N =cos
S,zz, q2(x,y)

(C16)

This I +i) is the correct low-temperature expansion of the
Mathieu functions.

The above expressions allow us to calculate the matrix
elements in Eq. (Cl) as expansions in t. After symmetry
arguments which determine the selection ruled for the
matrix elements, we finally obtain

~(&)exp[ —(2n —1)D2„,(t)rn
~
x —y ~

],
lf =1

(C18)

j I+2„) Ic2„~I, and ID2„~ ) are shown in
Table IV, and

Ssn, sn~sc&y)

1
=Qp(t)exp — (&p+&i)m I

x —y I

1—(up+ r) ) =4n, . (C19)

+ g A2„(t)exp[ —2n82„(t)m
~

x —y ~ ),
n=1

(C17)

Here n, is the soliton density under the ideal-soliton-gas
approximation given in Eqs. (32). Equations (C17)—(C19)
are compared with the results of the PIM in Sec. IV.
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