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Symmetry-adapted functions are the appropriate coordinates for the description of orientational
disorder in crystals. Here this approach is extended and orientational fluctuations are classified ac-
cording to the irreducible representations of the space group of the crystal. As a counterpart to the
theory of lattice vibrations, normal-mode coordinates are introduced for orientational fluctuations.
The coupling of translational and rotational motion is studied. The nonequilibrium free energy for
molecular crystals with translation-rotation coupling is derived. The results of the present work al-
low a systematic description of the symmetry reduction at phase transitions which involve orienta-
tional degrees of freedom.

I. INTRODUCTION

Orientationally disordered crystals are built up either
from molecules or from molecular ions and single atoms.
The equilibrium positions of the centers of mass of the
molecules (or molecular ions) and of the individual single
atoms form a crystalline lattice. The molecules (or molec-
ular ions) are taken as rigid bodies. The centers of mass
of the molecules and of the single atoms perform small
oscillatory motions around their equilibrium lattice posi-
tions. These motions constitute the lattice vibrations or
translational degrees of freedom. They will be called lat-
tice vibrations or, even loosely speaking, translations. The
elementary excitations which correspond to collective lat-
tice vibrations are called phonons.

In addition to translations, molecular crystals usually
possess rotational degrees of freedom. One distinguishes
essentially two situations. Firstly, in strong potentials and
at low temperature, the molecules are orientationally well
localized. They can reorient among equivalent positions
by quantum-mechanical tunneling. In addition the mole-
cules carry out small oscillations around their equilibrium
orientations. The corresponding elementary excitations,
called librations, are very similar to optical phonons.
Group-theoretical methods have been used' in their clas-
sification. Secondly, there is the case of orientational dis-
order, generally found at high temperature and relatively
low potentials. Then the amplitudes of orientational
motion are large. A description of the dynamics of these
crystals on the basis of small angular displacements is in
general not adequate. In fact no well-defined equilibrium
positions exist in orientationally disordered phases. The
full angular dependence of orientational motion can be
dealt with by an analysis of physical quantities in terms of
spherical harmonics (in the case of linear molecules) or in
terms of Wigner D functions (in the general case of non-
linear molecules). This situation is also well known from
molecular liquids. In molecular solids, the symmetry of
the crystalline state reduces the number of angular-

dependent functions to certain linear combinations of
these functions. These linear combinations are called
symmetry-adapted functions.

In connection with orientational motion, this approach
was used early by Devonshire. " He studied the rotation of
a linear molecule in an octahedral field and expanded the
single-particle orientational potential in terms of cubic
harmonics. These symmetry-adapted functions had been
introduced previously by Bethe for the study of electronic
term splitting in crystals. Later on, extensive use of
symmetry-adapted functions was made by James and
Keenan, who gave a theoretical description of the phases
in solid heavy methane. More recently symmetry-adapted
functions have been used for the analysis of orientational
disordered structures as well as for the study of static
and dynamic correlation functions. The main quantity
which is measured by diffraction experiments in orienta-
tionally disordered crystals is the single-molecule
(molecular-ion) orientational distribution function, ' also
called the probability density function. A systematic way
of expanding the probability density function in terms of
symmetry-adapted functions, made on the basis of group
theory, was given in Ref. 11. This description takes into
account the symmetry of the molecule and of the crystal-
line site.

In the present paper we extend the scope of previous
work' "' and give a description of orientational fluctua-
tions in solids which is based on the symmetry of the
crystalline space group. In analogy with the classifica-
tions of the normal modes of lattice vibrations in crystals
according to the irreducible representations of the space
groups, ' ' we shall present a systematic way of classifi-
cation of orientational fluctuations according to the ir-
reducible representations of the space group.

In Sec. II we start with a formulation of the single-
molecule orientational distribution function in terms of
site-adapted rotator functions. Subsequently (Secs. III
and IV), we describe a group-theoretical method which al-
lows us to find systematically the irreducible representa-
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tions of orientational fluctuations. The method is based
on the multiplier or ray representation' ' of the point
group of the wave vector k. It was used previously for
the classification of normal lattice vibrations. In Sec. V
we show that the intermolecular potential, which is given
as a sum over atom-atom potentials, can be formulated in
terms of normal coordinates of rotations and translations.
Next (Sec. VI), we derive the Helmholtz free energy which
corresponds to orientation- and translation-dependent in-
teractions. Contributions up to fourth order in the orien-
tational order parameters are included. Thermodynamic
consequences are discussed in the framework of a Landau
theory, where all coefficients are explicitly derived from
the interaction potential.

II. SYMMETRIES GF THE ORIENTATIONAL
DISTRISUTION

Here we give a general formulation of the orientational
distribution function in terms of symmetry-adapted func-
tions. Though our considerations are closely related to
previous work, ' " a self-contained treatment was ap-
propriate for the preparation of the subsequent sections.

Rotational properties of physical objects are con-
veniently expressed by means of spherical harmonics
Yi (Q), where Q—:(8,y). (We shall follow closely the no-
tations and conventions of Bradley and Cracknell. '

) If in
addition, the problem has a symmetry defined by a point
group P, it is useful to combine the spherical harmonics
to symmetry-adapted functions. ' ' These functions,
denoted by Si'(p)(Q), are surface harmonics which form a
basis of the irreducible representations of the point group
P. A famous example is the Devonshire potential. Gen-
erally speaking, the 2l + 1 functions Yl for given 1 are re-
lated to the 2l +1 symmetry-adapted functions SI' by the
unitary transformation

YI (Q) XSI(P)(Q+l(PI (2.1a)

I

Si(p)(Q)= g Yl (Q)aI(p)
m= —1

(2.1b)

Here r = (I,v, p) stands for the irreducible representations
I of the point group P under consideration, v labels the
independent I subspaces if the representation I occurs
more than once in the decomposition at a given I, and P
labels the components of I . The index ~ takes 2l+1
values. The transformation coefficients are unitary and
satisfy

m~ ~m' vm mA,
Ql(P)P~I(P) 5m, m ~ ~ Pl(P)AI(P) =5', . (2.2)

m= —l'r

The matrices P l(p) ——a i(p) are Hermitian conjugates.
(Here and in the following an underline indicates the ma-
trix. ) The values of the coefficients al(p) are given in the
tables of Ref. 16. The symmetry-adapted functions form
a complete and orthonormal set.

Under rotation R with Euler angles co=(a,p, y), the
spherical harmonics transform according to

R(~)Yi (Q)= g YIDnm(o)),
n= —1

(2.3a)

where D„'m denote the Wigner rotator functions. The
latter functions form a orthonormal set

2

(~)D„(~)= 5li 5„„52I+1 (2.3b)

In analogy with Eq. (2.3a), the symmetry-adapted func-
tions transform according to

R (co)SI(p) ( Q ) =QSI(p) (Q ) Ui(p) (c0), (2.4a)

where the quantities
I

Ul(p)(~) = g Pl(p)Dnm(~)+I(p) (2.4b)

are called rotator functions. They have been introduced
in Ref. 6 for the particular example of tetrahedral rotator
functions and used more generally in Refs. 10 and 11.
For operations 8, which belong to the symmetry elements
h of the point group P, including the elements which are
given by the product of a proper rotation and an inver-
sion, the transformation law (2.4a) simplifies to

R (h)SI(p~)(Q) =QSI(p~)(Q)pl"(p~)~(h), (2.5a)

I'vP'P(h) y plvP'nDI '(h) ml vP

n, m= —1

(2.5b)

In Eq. (2.5a) summation is reduced to components p' of
one irreducible representation I". The matrices p i(p)(h)
form an irreducible representation of the point group P.
If I corresponds to the unit representation I 0, the matrix
p~ reduces to unity:

p i(p)(h) = 1 (2.6)

We now consider a molecule which is taken as rigid
body and resides in a crystal site of point-group symmetry
SQ, We define an orthonormal system of axes (X,Y,Z)
attached to the crystal site and another one (x,y, z) at-
tached to the molecule. The origins of both systems of
axes coincide with the center of mass of the molecule.
The molecular symmetry is described -by a point group
Mo, the operations of which are defined in the molecular
system of axes. The molecular orientation is described by
the Euler angles co=—(a,p, y). A rotation by co brings the
system of axes (x,y, z) in coincidence with the crystal site
system (X,Y,Z). As has been discussed in Ref. 11, one
has to discriminate among the operations of So and Mo,
which are proper rotations, from those which are improp-
er ones (inversion rotations). By writing So ——S+h;hS,
Mo ——M+h;h'M, where h and h' are proper rotations and
h; is the inversion, we see that S and M are the subgroups
of So and Mo, respectively. Yvinec and Pick" have
shown that all orientational properties of the molecules
should be analyzed with the aid of rotational subgroups S
and M instead of the full point groups So and Mo.
Therefore, below, in referring to the molecular or site
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QSl(M)(Q }
I ~t' v

+Pl(M)ccl(s) Sl(s) (Q } ~ (2.7)

where we have used relations (2.1a) and (2.2). Here
Q', —= (8',y'„) determines the position of the atom v on the
spherical shell in the molecular system of axes and the
prime at 0 indicates that both systems of axes coincide.
The angle Q:—(8,y) is defined in the site system of axes
(X,Y,Z). So far the orientation of the molecule is fixed in
the site system of axes. In course of time, the molecule
changes its orientation. We want to write down the distri-
butions of atoms (2.7) if the molecule has been rotated
from the initial position Q„' to the final position Q„by the
Euler angles co =(a,P,y },i.e.,

Q =R(co)Q„'. (2.8)

Defining the distribution of mass of the rotated molecule
as

symmetry groups we shall mean their subgroups S and M
of proper rotations.

We shall apply symmetry considerations in order to
describe the mass distribution of one kind of atoms on a
spherical shell in the molecule. We start with a molecular
orientation such t'hat the axes (x,y, z) of the molecular
system coincide with those of the site (X,Y,Z). Then the
location of one kind of atoms on a spherical shell with
fixed radius can be represented by the distribution func-
tion

+5(Q —Q' ) = g g Sl(s)(Q' )Sl(s')(Q)
l, v v

(3.5), where it is denoted by b, l . In Ref. 11 the functions
b, l are used as relevant basis function for the expansion
of physical quantities. We prefer to use the functions
bl'(co) which are related to the rotator functions U by Eq.
(2.11a). The coefficients gl" account for the structure of
the molecules, Eq. (2.11b}; they are nonzero only if I,
refers to the identity representation I p(M). Otherwise
gl"=0. Therefore the sum over l in Eq. (2.10) is restricted
to such values of l for which the list of irreducible repre-
sentations of the molecular group M contains the identity
representation I'p(M).

The functions bl'(co) with r=(I', v, t()l) will be called
site adap-ted rotator functions The. y transform according
to the same laws as the basis functions Sl'(s) of the irredu-
cible representation I of the' site rotational point group S.
Indeed, from Eqs. (2.11a) and (2.5a) one finds

R (h) bt""~(co)=+bi" ~(co)pl(~~)~(h), (2.12)
P'

where the symmetry element h belongs to the point group
S, and the matrices pl(s) form an irreducible representa-
tion I of S. For an arbitrary rotational motion only those
site-adapted rotator functions of a given l do not vanish
for which at least one geometrical factor [Eqs. (2.11b) and
(2.12)] of the same l is nonzero. Otherwise

bl(co)=0 if all gl =0, (2.13)

for a specific l.
The site-adapted rotator functions form an orthogonal

set. Using Eqs. (2.11a), (2.2), and (2.3b), one finds

f dco bl'(co)[bl' (co)]' =rtl5ll 5„, (2.14a)

where

f(Q;co) =R (co)+5(Q —Q', ) =+5(Q —R(co)Q' ), (2.9)
2

))I
2i 1 g gl

8m
( g)2 (2.14b)

and using Eqs. (2.4a), (2.4b), and (2.7), we find

f (Q ~ co ) =g QSl (g) (R ( co )Q& ) Sl (s ) ( Q )
I,r v

+bi (co)Sl(s)(Q)
I 'r

(2.10)

where

bl (~) QSl($)(Q ) Qgl +l(MS)(co)
'V

with

gl ySI(M)(QV) ~

(2.1 la)

(2.11b)

Ut(M, s)(co) +Pl(M) nm(co)~t(s) '
n, m

(2.11c)

The rotator function (2.11c) depends simultaneously on
the representations A, and ~ of the molecular symmetry
point group M hand the site point group S, respectively.
Both representations belong to the same l. The function
Ul(M~) has been previously introduced in Ref. 11, Eq.

III. REPRESENTATIONS OF PHONONS
AND OF ORIENTATIONAL FLUCTUATIONS

So far we have shown how to assign to the leading
orientational fluctuations the irreducible representations
of the rotational site point group S. That approach is
adequate if we restrict ourselves to local properties as the
single-particle orientational distribution function. The sit-
uation is then comparable to the crystal-field-splitting
problem where one considers the atomic orbitals at an iso-
lated site. ' On the other hand, in order to study collec-
tive phenomena as orientational phase transitions and the
interaction of orientational fluctuations with lattice vibra-
tions, one should know the representations of the leading
orientational fluctuations in the space group of the crys-
tal. In fact the last problem has analogy with the study of
electronic band structure in crystals, where both the
point-group symmetry of the atomic sites and the transla-
tional symmetry of the lattice are relevant.

We start with reminding some basic concepts of the
symmetry of crystals. ' ' ' ' ' As is well known, the
space group F of the crystal can be decomposed into left
cosets with respect to the invariant subgroup of transla-
tions:
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I'={fI IAj&+{fr IP2j&+ +{fjl&jj&. (3.1)

+= {pI I yIjG«)+ ' ' ' + {p~ I y~ jG«» (3.3)

where t =jlq is the number of arms in the star of k. All
elements {g; I

a; j and the generators {p; I y; j occur in the
set of elements {f; I P;j. All point-group symmetry ele-
ments of the space group G(k) leave the wave vector k
invariant, i.e.,

g;k=k+b, (3.4)

where 1 is equal to zero or to a reciprocal-1attice vector.
The point-group symmetry elements p; of the generators
{p; I y; j define all different arms of the irreducible star
{k; j, such that

&i =S ~& &2=p2& - . .k~ =S ~&

with t =j/q.
The point group

G(k)={gI g2,

(3.5)

(3.6)

which consists of all point-group symmetry elements of
the space group G(k), expression (3.2), is usually called
the group of the wave vector k. The representation
I (k; {g I

a j ) of the space group G (k) and the representa-
tion I (k;g) of the point group G(k) are related by

I (k;g) = I (k; {g I
a j )exp(ik a) . (3.7)

I (k;g) is called multiplier or ray representation. '

The position of the center of mass of the a.th object in
the nth unit cell of the crystal is denoted by

R(n, ~) =X(n,a)+u(n, a),
where X(n, a) denotes the equilibrium position

X(n, a ) =X(n) +x(a. ) .

(3.8a)

(3.8b)

Here X(n)=nIa+nqb+n3c; n=(nI, n2, n3) are integers
and a, 1, and c primitive lattice translation vectors. The
vector x(a) fixes the equilibrium position of the ath object
in the unit cell, with x=1,2, . . . , s or x=1,2, . . . , m,
where s and m are the numbers of individual atoms and
molecules in the unit cell, respectively.

The lattice displacements u(n, a) can be expanded in
new coordinates:

u;(n, Ir)=,&z g g Q(k, j,p, a)exp[ik. X(n,a )]
1

(NM ) g jp g

)&e;(I~ Ik,j,p,a), (3.9)

Here we have used the Seitz notation for the symmetry
element {f I P j which consists of proper or improper ro-
tations f; and partial translations P;. Note that P;&0 in
the case of nonsymrnorphic groups. The index j is an in-
teger with value equal to the number of symmetry ele-
ments of the corresponding crystal class.

The space group G(k) of the wave vector k (called
also' little group of k) is a subgroup of F and can also be
decomposed into cosets of T:

G(k)={gi I~Ij&+ +{g,I~, j&, (3.2)

such that

where Q (k,j,p, a) refers to the amplitude of the new coor-
dinate. Here k and j denote the wave vector and the in-
dex of the irreducible representation D'J'(k) of the space
group of the wave vector G(k) and p labels the com-
ponents of the irreducible representation D'J'(k),
p = 1,2, . . . , dj, where d~ is the dimension of D'J'(k). ' '
A given representation D'J'(k) can occur in the expansion
(3.9) aj(k) times. To account for that we have introduced
the index a, which takes on the values 1,2, . . . , aj(k).
The triplet of indices (j,p, a) takes 3(s +m) values. M„ is
the mass of the object a' and X is the number of unit cells
in the crystal. The quantities e;(a.

I
k,j,p, a) are the polari-

zation vectors which bring the phonon dynamical matrix
to the block form.

A specific instantaneous orientational configuration can
be analyzed in terms of Fourier coordinates:

b (En, ~)= g g b~(k,jp, c)exp[ik. X(n, v)]
k j,

xh;(~ Ik,j,p, ,c) . (3.10)

Here and in the following we write bI'(n, a) instead of
b~'(co(n, a) }. Equation (3.10) is the orientational analog of
expression (3.9) for the center-of-mass displacements.
Here again j is the index of the irreducible representation
D'J'(k) of G(k) and p= 1,2, . . . , dj labels the com-
ponents of D'J'(k). The site-adapted rotator functions
bI'(n, a) form an infinite set with respect to 1. The usual
approximation, however, will be to confine the treatment
to a small finite set of such l which are allowed by the
symmetry of molecules and sites. Each 1, however, con-
stitutes a subsystem in the sense that no symmetry opera-
tion can transfer any quantity indexed by I to the subsys-
tem of i' when l'&/. A given irreducible representation
D' '(k) can occur in the expansion (3.10) for a specific 1,

cj '(k) times. In Eq. (3.10) the index c takes the values
c=1,2, . . . , cj '(k). The index triplet (j,p, c) for a given I
takes g„,y„(21+1) values, where y„=l if the I is al-
lowed by the symmetry of the molecule at site a, and
y„=0 otherwise.

A configuration of orientations {co(n,a) j can be speci-
fied by a set of amplitudes bI(k, j,p, c) of the site-adapted
rotator functions. Different configurations {co(n,a) j are
characterized by different sets of amplitudes b~(k,j,p, c).
The polarization vectors h~'(~

I
k,j,p, c) describe the pat-

tern of molecular orientations in the crystal, and they
bring the orientational coupling matrix of the specific l,
which is an analog of the dynamical matrix for phonons,
to the block form. Each block contains elements labeled
by the same irreducible representation D'J'(k), and has di-
mension d~cz '(k) Xd~c~' '(k). The orientational coupling
block matrix can be completely diagonalized by additional
transformation of the polarization vectors hI (a.

I
k,j,p, c).

Two polarization vectors which belong to two subsystems
indexed by different l and l' cannot be transformed to
each other by any symmetry .element. The polarization
vectors e;(a.

I k,j,p, a) of the lattice vibrations and
h~'(a

I k,j,p, c) of the orientational fiuctuations generate
the physical representations of lattice displacements and
orientations, respectively. In order to specify those repre-
sentations, one has to know the transformation laws under
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a symmetry operation ( g I
a j which belongs to the space

groups of the wave vector G(k). We first consider a lat-
tice displacement related with a mode (k,j,p, a)

ui(»K) (g2 Ei(~ I k,j,p, ~)exp[ik «n)]1-

of the point group G(k) of the wave vector. The matrix
is defined by expression (2.5b). Since the matrix

(3.14c} is unitary, the representations C -,„, and p
are equivalent and have the same characters.

The symmetry element Ig I aj transfers the molecule
from site (n', a') to site (n, v):

where we have denoted

E,(a I kj,p, a ) = Q(k, j,p, a)exp[ik x(k)]

(3.11a)
X(n, ~)= Ig I

ajX(n', ~')=R(g)X(n', ~')+a . (3.15)

In order to handle this operation, one introduces the sym-
bol12, 13

xe;(~Ik,j,p, a) . (3.1 lb) 5„„Ig I aj =1 or 0 . (3.16)

3

R Ig I
aju;(n, x) = g u; ( n', x')R;;(g), (3.12)

where R Ig I
a j is the linear functional operator associated

with the operation Ig I aj and where R(g) is the corre-
sponding 3)&3 vector representation of the point-group
symmetry g.

In analogy with the considerations on lattice displace-
ments, we write for an orientational fluctuation

We shall see later that the form of the polarization vector
E;(x

I
k,j,p, a) which follows from the symmetry require-

ment is independent at the index a. Under an operation
Ig I aj, the displacement u(n, a) transforms as a vector,
and in addition the site X(n, a) is transferred to position

X(n', a')= Ig I aj 'X(n, ~) .

Consequently one obtainszo, 1z

and
&& exp [ik.X(n') ], (3.17a)

g I
a jar'(~

I
k,j,p, c)

=g HI (tc
I
k J p c)C,",-.. .(g»'-Ig I

a j
7,K

The value 1 is taken if the molecule at site (n', a') is
transferred by the operation Ig I aj to the site (n, v) and
there one finds the same kind of molecule x. Otherwise
the value is 0.

Comparing now Eqs. (3.11a), (3.lib) with (3.12), and
(3.13a), (3.13b} with (3.14a), respectively, we obtain the
transformation laws for the polarization vectors:

R tg I
ajE(a.

I kjp, a)

=+E~(a''
I kj,p, a)R;;(g)5„„Ig

I aj
i,K

b~'(n, ~)= HI'(a
I
k,j,p, c)exp[ik. X(n)], (3.13a) )& exp[ik. X(n')] . (3.17b)

with

H~'(v
I
kj p, c)= b~(k,j,p, c)exp[ik x(z)]

)&hl'(a
I keg, p&c) . (3.13b)

The transformation properties of the site-adapted rotator
functions have been established in Eq. (2.12) for symmetry
operations of the site point group S'"'. It is easy to extend
the transformation properties of b~'(n, a) to all symmetry
elements of the space group G (k) of the wave vector. Us-
ing relations (2.11a), (2.1a), (2.1b), (2.5a), and (2.5b), and
replacing the symmetry-adapted functions of the rotation-
al point group S'"' by those of the point group G(k), one
obtains

Without loss of generality we have here assumed
X(n)=0. Note that in Eq. (3.17a), the indices sc and v'

refer to all objects (i.e., individual atoms and molecules) in
the units cell, while in Eq. (3.17b) they refer only to the
molecules in the unit cell.

Using Eqs. (3.16) and (3.4), one finds

k.X(n') =k.[x(v)—Ig I
a jx(K )] . (3.18)

Combining Eqs. (3.17a), (3.18), and (3.7), one arrives at
the physical ray representation of displacements (pho-
nons),

[I (k;g)]„; „;=R;;(g)5„„IgIaj
&& expI ik. [x(~)—gx(x')]j (3 19a)

R Ig I
a jb&'(n, x)=gb&'(n', ~')C ',„, (g),

with the definitions

n.,a P

(3.14a) and at the physical ray representation of orientations,

[I i «;g)].~„=&,'„-,&.&,
(g»..{g I

a j

&(exp I ik. [x(v) —gx(v')] j . (3.19b)

I

+~(g(a) G) ~ ~I(g(&)) I(&)
m= —1

(3.14c)

Here ~,~' label the irreducible representations and their
components of the site rotator point group S' ', and
o =(m, a) or (m, P) refer to the irreducible representations

The physical representation of orientations shows that the
polarization vectors hT(v

I
k,j,p, c) for different l can be

treated as independent quantities, which means that the
symmetry operations of the space group G (k) do not mix
the polarization vectors h~'(~

I kj,p, c) and hT(sc
I
kj,p, c)

provided l&l', although they may belong to the same rep-
resentation r or (j,p). In the form of direct products, Eqs.
(3.19a) and (3.19b) read
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I (k;g) =R(g)h(k, [g I aJ ),
~H1, (k;g)=C(„)es(k, [g Ia]),

(3.20a)

(3.20b)

IV. DECOMPOSITION INTO IRREDUCIBLE
REPRESENTATIONS

It is possible to decompose the reducible representations
I and I by projecting them onto the irreducible ray
representations D (~)(k;g) of the point group G(k). The
corresponding projection operators can be obtained by
known methods. They are given by

Pqq (k) = g [D (k;g)]„*pl' (k;g),—PP

P) „qi)(k)= g [D (~)(k;g)]'„„I P(k;g),PP + 7 PP 9 7

(4.la)

(4.1b)

where g P G(k), where dj is the dimension of the irreduci-
ble representation D ~ ((k)) and Ng is the number of the
symmetry elements in the point group G(k). Hence, the
polarization vectors which correspond to the same irredu-
cible representation D 'J'(k) and the same index a or c, are
related by

E(k,j,p, a) =P&„(k)E(k,j,p', a ),
H(«j p c)=P»' «)H(«j p' c) .

(4.2a)

(4.2b)

Here the E(k,j,p, a) and H((k, j,p, c) are the column vec-
tors having 3(s +m) and g„&y„(2l+ 1) components,
respectively. The projection operators [Eqs. (4.1a) and
(4.1b)] are square matrices of the corresponding dimen-
sions. By applying the projection operators of the same
components pp, i e , P„&i).(k. ) or P&~l)(k) to an arbitrary
vector, it is possible to find from Eqs. (4.2a) and (4.2b) the
general form of the polarization vectors E;(a

I
k,j,p, a)

and Hi'(a
I
k,j,p, c). The symmetry implies some restric-

tions on the components of the polarization vectors. The
coordinates Q(k,j,p, a) and b((kj,p, c), for fixed values
of a and l,c, do not depend on the components (i,x) and
(r, a. ), respectively; therefore, they transform as the bases
for the irreducible ray representation of the point group
G(k). Thus

P(g) Q(k, j,p, a) =QQ«j, p', a)[D"'(k;g)],„ (4.3a)

P(g)b((kj p, c)=Pb((kj p', c)[D'J'(k;g)1„„. (4.3b)

where

[~(k lg I aI )]„„=5~'~fg
I
a ']exp jik. [x(a)—gx(a')] J .

(3.21)

The lattice displacements form a basis of the ray represen-
tation I (k;g) of the point group of the wave vector. ' '
Here we have shown also that the orientational fluctua-
tions, described by site-adapted rotator functions, provide
a basis of the ray representation I P(k;g) of the point
group of the wave vector.

In general the ray representations of displacements
(3.19a) and orientations (3.19b) are reducible, and can be
decomposed into irreducible ray representations. The ir-
reducible ray representations D '1'(k;g) of all point groups
G(k) for the wave vectors of the Brillouin zone of all
space groups are listed in the tables by Kovalev. ' The
knowledge of the representations of lattice translations
and orientational fluctuations (rotations), enables us to
study the order of coupling between these degrees of free-
dom. Generally speaking, a linear coupling exists if the
direct product representation contains the identical or unit
representation I o.

(k;g) I (k;g) = I o(k;g)+ (4.4)

This statement follows. from the fact that the linear cou-
pling term in the Hamiltonian should have the full sym-
metry of the molecular crystal. In general the representa-
tions I" and I" are reducible. In order to investigate
whether their product contains the identical representa-
tion, one should decompose I and I into irreducible
ray representations. If both decompositions have at least
one irreducible representation in common, Eq. (4.4) holds.

Without further calculations, the preceding considera-
tions allow us to draw a series of useful conclusions. Mol-
ecules, for which the orientational behavior is well
described by symmetry-adapted functions with /=1, can
be treated as mass distributed dipoles. The corresponding
dipole representation is the vector representation. We ob-
serve that the permutation representation 5[g I a] in Eq.
(3.19b), which refers to the centers of mass of rotating
molecules, is also contained in the permutation representa-
tion of phonons 5[g I aj in Eq. (3.19a). From these two
statements we conclude that for any wave vector k, the
decomposition of the representation of lattice vibrations
I into irreducible representations of the space group
contains all irreducible representations of orientations
arising from the decomposition of I with l = 1. (The
reverse statement is not always true. ) Therefore the bilin-
ear coupling between translational and rotational degrees
of freedom will always be present in crystals where the
orientational behavior of molecules is described by repre-
sentations with 1=1.

On the other hand, if the orientational behavior of the
molecules can be well described by symmetry-adapted ro-
tator functions with l=2, then the corresponding repre-
sentation is that of a quadrupole, a second-rank tensor.
The strain of the crystal, being related to the wave vector
k~O, is also a second-rank tensor. Consequently, for
crystals containing molecules of symmetry D„and D„~,
one expects linear strain-rotation coupling, provided the
permutation representation of the centers of mass of ro-
tating molecules in Eq. (3.19b) contains the identical rep-
resentation. The last requirement is fulfilled for instance
in crystals described by symmorphic groups, and where
the molecules are located at sites having the symmetry of
the point group of the crystals. The strain-rotation cou-
pling occurs at the center of the Brillouin zone, it is
equivalent to a coupling of rotations and acoustic phonons
in the long-wavelength limit. In each particular point of
the Brillouin zone a bilinear translation-rotation coupling
can occur due to the coincidence of representations of
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phonons and site-adapted rotator functions. However,
each such case should be worked out separately. As an
example of the coupling of an uneven (1=1) rotational
mode to lattice vibrations, we mention NaNO2. On the
other hand, the CN molecular ion in KCN can be approx-
imated by' a symmetric dumbbell. The corresponding
l =2 orientational mode couples to acoustic phonons or
equivalently to elastic strain in the long-wavelength lim-
1t 24

The assignment of the representation to the orientation-
al degrees of freedom can also be used to analyze the sym-
metry reduction at phase transitions of molecular crystals.
As examples we mention KCN, KND2, Na02, and
adam antane.

V. ORIENTATION-DEPENDENT INTERACTIONS

Having established in the last two sections the symme-
try properties of orientational and translational excitations
in molecular crystals with orientationa1 disorder, we will
present now a systematic formulation of orientation-
dependent interactions.

%'e consider a molecular crystal built up from objects,
i.e., rigid molecules and individual atoms as specified in
Sec. III. The center-of-mass positions of the objects are
given by Eqs. (3.8a) and (3.8b). In order to condense the

I

notation, we shall contract the two indices n and a for the
object x in cell n by a single index r:—(n, ~). For instance,
we write X(r) for X(n,~). We start from the assumption
that the potential between two molecules at center-of-
mass positions r and r' can be written as a sum of atom-
atom potentials:

V(r, r')=g V(R(r) —R(r');0 (r),Q„(r')):—g V(r, r';v, v') . (5.1)

Here R(r) stands for the center-of-mass position (3.8a).
The angular coordinates Q,(r)=—(8„(r),y (r)) determine
the orientational position of the vth atom of the molecule
at r as a function of the molecular orientation with
respect to the crystal fixed system of axes. In order to
keep the notation tractable, we restrict ourselves to one
spherical shell around the molecular center of mass.
+„1=2 (~) is the total number of atoms on the shell of
the molecule K. If the molecule K is replaced by an indivi-
dual atom, 2 (~)= l.

We assume that the center-of-mass displacements of the
molecules and of the individual atoms are small and ex-
pand expression (5.1) in terms of u(r):

V(r, r')= g g, V~.'. . ; (r, r', v, v')[u;, (r) —u;, (r')] [u; (r) —u; (r')],
p v~%

where

(5.2a)

@=0
(5.2b)

with p =0, 1,2, . . . . In particular V' '(r, r';v, v') is the intermolecular potential of two molecules with center-of-mass po-
sitions at the equilibrium lattice sites X(r) and X(r ). In Eq. (5.2a), summation is understood over the repeated Carte-
sian indices i ~, . . . , iz The co.efficients V still contain the full orientational dependence of the molecules at sites r and
r'. We therefore expand V'~' in terms of site symmetry-adapted functions:

(5.3a)
L I

V~~.'. .
g (r, r'iv v')= g vi'~.'. . i S(s)(O„(r))S(s)(Qv(r))

L,L'

Here we have condensed the two indices (r, l) of the symmetry-adapted function S~ into L.; therefore, summation over L
stands for a sum over w and I (see Sec. II). In Eq. (5.3a) we have defined

L L'
v ~.'. .;, = fdQ (r)fdQ~(r')Vl~' . ; (r, r'.;v,v')S~~~(Q (r))S~z~(Qv'(r')) . (5.3b)

Translational invariance of the rigid lattice implies

L L'
(p)

p Il, K Il,K

L
(p)=V)

p Il —Il,K K
I

L
(p)=V)

p K Il —Il~ K
I (5.4)

Inserting expression (5.3a) into the right-hand side (rhs) of Eq. (5.2a) and making use of relations (2.1la)—(2.11c) we ob-
tain

V(r, r') = V' '(r, r')+ V"'(r, r')+ V' '(r, r')+ (s.sa)

The zeroth-order term on the right-hand side represents the orientational interaction between two molecules on a rigid
lattice '

L L'
V' '(r, r') = g v' ', b (r)b (r')r

L,L'
(5.5b)
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/

[Here b (r) stands for b (n, ~)=—b (m(n, ~) ).] The contributions of the deformed lattice to the orientational interaction
are given by

L L'
V(&)(r, r')= g U .'. .;, b (r)b (r')[u; (r) —u; (r')]. [u; (r) —u; (r')],

L,L'
(5.5c)

for p=1,2, . . . . We see that in expressions (5.5a) and
(5.5b) the orientational dependence of the interaction is
taken into account by the symmetry-adapted rotator func-
tions bi.

So far our considerations have been quite general, in
particular no restriction has been made with respect to the
value of L =—(l, ~). It is useful to consider the case where
either one or both of the indices L and L' have value
(0,0). In that situation the corresponding molecule is re-
placed by a spherical distribution of mass. We quote

S = =So=1/v'4m, b = (n, a)=A(x)IV'4', (5.6)

r

(2), A (~)A (~') (p)
Ui~ (r, r )=—

4~ rrU]J. i (5.7b)

where 3 (a.) is the total number of atoms on the molecular
shell. If the molecule at x is replaced by an individual
atom, A(sc)=1. We now consider the various possibili-
ties: (1) L =(0,0), L'=(0,0); (2) L =(0,0), L'&(0,0);
and (3) L&(0,0), L'&(0,0).

In the first case the intermolecular interaction (5.5b)
reduces to a constant which contributes only to the rigid-
lattice ground-state energy. The term V'" is then also
orientation independent, and since it is of first order in the
lattice displacements, it can be absorbed in the equilibri-
um conditions of the crystal. Of interest here is the term
V' ' which for L =(0,0), L'=(0,0) reduces to a genuine
translation-translation interaction:

VTT(r, r') = —,
'

uz. '(r, r')[u;(r) —u;(r')][uJ(r) —u1(r')], (5.7a)

with
=$uz~i'(r, r')b (r)[u;(r) —u;(r')], (5.12a)

where

site index x. Summing over all molecules in the crystal,
we obtain the total single-particle potential

0
L

V —=gV (r)=gggu' ' b (n, ~) . (5.10)
r n v J

This expression should have the full symmetry of the
space group, and therefore the values of L are restricted.
To find the allowed values, one uses expression (3.13a),
carries out the sum over n in Eq. (5.10), and obtains

L
V~=~N+gv( ' H (~ik=Oj, p, c), (5.11)

L

where L = (l, r) The . polarization vector Hi'(v
i
k

=O,j,p, c) transforms according to the (((th component of
the jth irreducible representation D ~(k=O;g) of the group
G(k=O). To satisfy the symmetry requirement, only
those values of j in expression (5.11) remain which corre-
spond to the identical representation. We write j=j0 and
since p =1, drop the index p. This requirement due to the
symmetry of the space group automatically restricts the
allowed values of l and insures that the symmetry of the
site is realized.

Under the assumption L'=(0,0), L&0, we obtain for
the second term on the rhs of Eq. (5.5a)

V (r, r') —= V' "(r,r')
i i

V (r, r') = V' '(r, r')
i z o——g — U' ', b (r) .

1 r
(5.8)

Summing over all "spheres" r', we obtain the total single-
particle potential or crystal-field potential acting on mole-
cule r=(n, a. ) in a rigid lattice:

L
V (r)=—g V (r, r')=QU' ' b (r),

I L

with

(5.9a)

By summing over all objects in the crystals, we obtain

V = —,'gV (rr'). (5.7c)
I', f

Next we consider case (2), L'=(0,0), L&(0,0). The first
term on the rhs of Eq. (5.5a), or equivalently Eq. (5.5b),
now reads

Uz (r, r')= U;, (1—5r., o) .
4~ ' r r' (5.12b)

V = g g U J"(r,r')b (r)[u;(r) —u;(r')) .
r, r' L, i

(5.13)

Substituting Eqs. (3.11a) and (3.13a) in Eq. (5.13), one is
able to express the translation-rotation coupling in terms
of the polarization vectors E; (a

i
k,j,p, c) and

H) (a
i k,j', (((,',c). The coupling does not vanish, provided

that both these polarization vectors belong to the same ir-
reducible representation of the crystal space group.

Finally, in case (3), L&(0,0), L'&(0,0), we rewrite
V' '(r, r'), Eq. (5.5b), as

Expression (5.12a) represents the bilinear translation-
rotation coupling. By summing over all objects in the
crystal, the total bilinear coupling reads

(0)
L

r

U"', , (1—si o) .
Ir

(5.9b)

V (r, r')= V' '(r, r')= g Uzz'(r, r')b (r)b (r'), (5.14a)

with

In the last expression translational invariance implies that
v' '(„) does not depend on the cell index n but only on the

I

Uii (r, r')=U(0) (0) (1—5go)(1 —5i ()) . (5.14b)
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The total rotation-rotation interaction on a rigid lattice is
then obtained by summing over all molecules:

VRR ~ g g v{0)(r r )bL(r)bL (r )
r, r' L,L'

(5.15)

y yTT+ yTR+ ERR+ yR (5.16)

where the various terms on the rhs are given respectively
by expressions (5.7), (5.13), (5.15), and (5.10). We rewrite
the potentials (5.7), (5.13), (5.15), and (5.10) in terms of
normal coordinates by making use of expressions (3.9) and

where r and r' run over all molecular sites. Here again
the relevant polarization vectors FE(v

~
kj,c), which occur

in the site-adapted rotator functions by virtue of Eq.
(3.13a), should belong to the same representation of the
space group. Under the same assumption, case (3), V"' in
Eq. (5.5a) gives rise to terms of the structure V R~ and
V' ' yields terms V . They follow as particular re-
sults from our general expression (5.5c). Since in this pa-
per we deliberately restrict ourselves to second order in ei-
ther translational or rotational coordinates, we shaH
neglect terms such as V, V, etc. VA'thin that as-
sumption, the total translation and rotation-dependent
crystal potential reads

Xbi(k j,p, c'), (5.17c)

V =g g vi, '(j O, c)bi,(k=oj o,c) .
lo jo

(5.17d)

Here we have defined the translational block matrix
M(kj, a, a') by

g g e;(~
~

kj,—p, a)M;";" (k)e; (a'
~
kj ',p', a')

K, K l, l

=M( k,j,a,a')5~~'5»,

with the dynamical matrix given by

(5.18a)

(3.10). The results read

V~~= —,
' g g g M(kj, a, a')Q( —kj,p, a)Q(kj, p, a'),

k jpaa'
(5.17a)

V~a=y y g g u,'"(kj,c,a)b, ( k,J—,p, c)Q(kj,p, a),
k l j a,c

(5.17b)

V = —,g g g g Jii (kj,c,c')bi( kj,—p, c)
k 1l' jp cc'

M;";" (k)=, g Qu; '(O, ~;n, v)5„„—u; '(O, a;n, a')cos[X(n)+x(~) —x(i~')](M„M„)'" „ (5.18b)

The matrix M is Hermitian. The coupling matrix ~v in Eq. (5.17b) is given by

g g hi'(v
~

k,j,p, c)u~~;—(k)e; (~'
~
k,j ',p.',a) =ui'"(k,j,c,a)5&z 5»,

K, K T, l

with

(5.19a)

uL,;"(k)=, g guL' (O,a;n, v)5« uLi'(O, a—;n, a')expIik. [X(n)+x(v') —x(ir)]I

t

where L =(l,r) The orient. ational block matrix Jii (kj,c,c ) in Eq. (5.17c) is obtained as

gg "i'«I kj p c)Ji"."i'—«)hf «'Ikj' p' c')=Jir«j c c'+,,'&»
K, K 1;7

(5.19b)

(5.20a)

with the orientational coupling matrix given by bl "(k)= g bi(kj p c)hi (~
~

k jp c) . (5.22b)

JLI (k) =purr, ' (O, a",n, a')

&& exp I
—ik. [X(n)+x(a') —x(a ) ]I, (5.20b)

Recalling that the polarization vectors e and h form
orthonormal and complete sets, we rewrite the interaction
potentials (5.17a)—(5.17d) in the form:

where L —= (l, r) and L'=(1',r'). The single-particle coef
ficient vi

' in Eq. (5.17d) is obtained from

V =-,' g g gM, ",'" (k)u, (k)u," ( —k),
k K, K' i,i'

(5.23a)

Io v.o
gh, '(~

~

k=O,J„l,c)v Xv"' =ui' '(jo,c), (5.21)
V =g g g ut"."; (k)bL ( —k)u;" (k),

k K, K L
(5.23b)

u,
"(k) = g Q. (kj, ,p, a)e;(a

~
kj, ,p, a),

J,p, a
(5.22a)

with ui i(„),L—:(l,r), given by Eq. (5.9b).
For practical reasons it is sometimes useful to introduce

intermediate coordinates defined by

V"R= —,
' g g g JIL, (k)bL, ( —k)bL (k),

k K, K' L,L'

, ,
Lo

V'=g +veau"' b,",(k=O) .
Lo

(5.23c)

(5.23d.)
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In the- next section we shall calculate the free energy,
starting from the potentials (5.23a)—(5.23d).

p=(1/Z)Tr exp( —PW),
with

(6.5a)

VI. FREE ENERGY
Z =Tr exp( —PF ),

and where

(6.5b)

The main thermodynamic quantity which characterizes
the state of a system is the free energy. The Landau
theory of phase transitions is based on an expansion of the
free energy in terms of powers of the order-parameter
variables. Since we consider crystals with translational
and rotational degrees of freedom, we want to construct
an expression of the instantaneous nonequilibrium free en-

ergy in terms of nonequilibrium expectation values of
translational and rotational coordinates. %'e shall apply a
method which has been used previously for pseudospin
systems coupled to phonons. ' Subsequently it has been
applied to derive the free energy for a system of linear
molecules on a cubic lattice by retaining terms up to
second order in the order-parameter variables. Here we
want to extend that work in several respects. Firstly, we
start from the general interaction potential (5.16) which
has been considered in the preceding section. The deriva-
tion will be general as far as molecular and lattice symme-
try is concerned. Secondly, we include third- and fourth-
order contributions. Thirdly, the self-interaction of the
molecules with the surrounding .lattice deformations will
be derived in a systematic way.

Since we are interested in static phenomena near
structural phase transitions, we can omit the kinetic ener-

gy of translational and rotational motion. The Helmholtz
free energy is given by

F=Tr(pV+Tplnp) . (6.1)

Tlp= 1 (6.2)

At present we want to formulate the free energy in terms
of instantaneous expectation values of the order-
parameter variables which belong to the active irreducible
representation of the space group of the crystal. These ex-
pectation values are given by

ur(k) =Tr[pur(k)]

beak)=Tr[pb~«)] .

(6.3a)

(6.3b)

Here ui(k) and bz(k) stand for the "intermediate" coor-
dinates, (5.22a) and (5.22b), respectively. Here, and in
most of the subsequent considerations, we use the abbrevi-
ations I—:(a.,i), A=(l, r, a) =(L,a). .

%"e want to find an expression of the free energy as a
functional of the expectation values [Eqs. (6.3a) and
(6.3b)]:

Here Tr denotes the trace, p is the density matrix, and V
is the potential energy (5.16). T=f3 ' stands for the tem-
perature, units are taken such that k~ ——1. The density
matrix satisfies the condition

7 = V—g [A,"(k)u(k)+yt(k)b(k)] . (6.6)

Here we have used a vector notation to account for the
values of the components I and A of ur(k) and bz(k),
respectively. The Lagrange multipliers A,(k) and y(k)
play the role of external fields. They are determined by
the conditions (6.3a) and (6.3b).

It is convenient to define an auxiliary thermodynamic
potential '

F'= —Tlnz . (6.7a)

Taking into account the explicit form of the density ma-
trix p, one notices that the free energy F' is a functional
of the "external" fields:

F'=F'I A(k ),y (k) I . (6.7b)

The corresponding derivatives are equal to the expectation
values of the order parameters:

BF' gFe

ak, t(k)
= '

ayt(k)
== —u'(k), = —b'(k) . (6.8)

The free energy F is related to the thermodynamic poten-
tial F' by

F=F'+Tr[p( V —P )]
=F'+ +[A t(k)u'(k)+ yt(k)b'(k)] . (6.9)

We want to obtain an expression for F' which can be
evaluated by molecular-field theory. Therefore we first
separate phonons and orientational variables by means of
a canonical transformation. Defining

u(k)=u(k)+M '[u(k)b(k) —A(k)],

we rewrite the potential (6.6) as

m= V,„+V (8)——,
' gZ'(k)M-'Z(k)+ V' .

k

Here V~h stands for the phonon potential

V~h ———,
' gu (k)Mu(k),

k

(6.10)

(6.11)

(6.12)

V (8)= —,
' g [bt(k)E (k)b(k) +Bt(k)b(k)] . (6.13)

The auxiliary field B is defined by

B(k)=y(k) —At(k)M 'u(k) . (6.14)

and V (8) represents the effective orientational interac-
tion:

F=FIui' bA) . (6.4) The interaction
We use the method of Lagrange multipliers to minimize
Eq. (6.1) under the conditions (6.2)—(6.3b). The density
matrix is found to be

E'(k) =J(k)—C'(k) (6.15)

is a sum of the direct interaction J, Eq. (5.20b), and a lat-
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tice mediated interaction:

C(k)=v(k)M 'ut(k) . (6.16)

Co= —y C(k)1

k
(6.17b)

and add it to the single-particle potential. Hence the ef-
fective single-particle potential reads

prR yR+ pr0 (6.18)

Finally V in Eq. (6.11) stands for the single-particle po-
tential (5.23d). It is necessary to separate in Eq. (6.13) the
interaction between different molecules from the self-
energy of each molecule in the vibrating crystal. The last
one corresponds to the Onsager reaction field, the im-
portance of which has also been realized in Jahn-Teller
systems. We subtract from the first term on the rhs of
Eq. (6.13) a contribution

Wo= ——,
' gbt(&)C b(k), (6.17a)

k

with

of the crystal and not to the entropy. That property is
well known for displacive phase transitions. In molecular
crystals the orientational disorder, accounted for by the
second term on the rhs of Eq. (6.22a), gives the essential
contribution to the entropy. Finally F~z, Eq. (6.22b),
represents the fast fluctuating lattice contributions which
arise from the harmonic phonon potential (6.12). This
thermal phorion part can be evaluated by conventional lat-
tice dynamics; it is of no importance for the occurence of
structural phase transitions.

The remaining problem consists in the evaluation of the
orientational free energy FR(B) and in the determination
of the Lagrange multipliers. This will be done within
molecular-field approximation. %"e separate the site-
adapted rotator function into two parts

b(k) =b'(k) —h(k),
where b'(k) is the expectation value (6.3b), and where
h(k) accounts for fluctuations. The average value (6.3b)
of b(k) with the full density matrix (6.5a) is equal to
b'(k). Hence

In real space 8' is given by
e

W = —g QCL„L„[b (n, K)]
n J,a

(6.19)

(6.24)

However, if one calculates the average of b(k) in the
undistorted local-field potential (6.18) with the density
matrix

Here each term of the sum transforms as a unit represen-
tation of the corresponding site point group. It represents
the single-particle potential produced by the deformation
of the lattice. The deformation itself, in turn, is induced
by a specific orientation of the molecule under considera-
tion. By taking into account Eqs. (6.18), (6.19), and (6.13),
the potential (6.11) reads

r = V „+W "(B)——,
' yk, t(k)M '(k)A, (k)+ W

k

(6.20)

with

pR ——[exp( —PW )]/Trexp( —PW ),
one finds

( b(k) & ~ ——Tr[pRb(k)] =0,

(6.25a)

(6.25b)

provided the irreducible representation I of the relevant
components of the vector b(k) does not belong to the fully
symmetric representation of the site point group, i.e.,
L&LO We recal. l that the single-particle potential has
the full site symmetry L,o. Consequently, the average
fluctuation in the single-particle potential has to be equal
to the expectation value b'(k):

W (B)= —,
' g[b (k)L(k)b(k)+Bt(k)b(k)],

k

where the genuine interaction part is given by

L(k) =X(k)+C' .

(6.21a)

(6.21b)

( h(k) & gr =Tr[pR h(k)] =b'(k) . (6.26)

Introducing the rhs of Eq. (6.23) into the rotation-rotation
free energy FR(B) and neglecting second-order terms in
b, (k), we find within the mean-field approximation:

We now return to the auxiliary thermodynamic poten-
tial (6.7a), and by using Eq. (6.20), we obtain

F'=F „+F (B)——,
' /At(k)M '(k)A, (k), (6.22a)

k

with

FR "(8)=g ( —,[b'(k)]tL(k)b'(k) —Bt(k)b'(k) j
k

(6.27a)

Here FR is the single-particle free energy

F~q ———P 'ln Tr exp( —PVpg), (6.22b) FR —P ln Tr[exp( bW ——)], —
and FR is given by

(6.27b)

FR(B)=—P 'ln Trexp[ PW (B) PW ]—. —(6.22c)

Here we have taken advantage of the fact that the third
term in Eq. (6.20) is a c-number. The separation of terms
in Eq. (6.22) means that the subsystem of lattice distor-
tions [A,(k) j contributes exclusively to the internal energy

Fe = () ')» exp —))g—e (k)k()e) ) e
k

with

a(k)= —[b'(k)] L(k)+B (k) .

(6.27c)
I

(6.28)
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In Eq. (6.27c) the large angular brackets ( ) 14 denote
a thermal average, calculated with the density matrix pz.
The trace there stands for a multiple integration over the
orientational coordinates of the single-particle potential.

In order to evaluate the rhs of Eq. (6.27c), we make use
of a cumulant expansion. Retaining contributions up to
fourth order in b' and taking into account that a(k) is of
first order in b', we obtain

FR = gaA(k)bA(k) ——, Q aA, (k, )aA (k2)(bA (k1)bA (k2)) P2
k1, k~

2

& A1(kl )a A2(k2)u A3 (k3) ~ bA1(kl )bA2(k2)bA3(k3) ~ 1p

k), k2, k3

aA (k1)aA (k2)aA (k3)aA (k4)[ (bA, (k1)bA, (k2)bA, (k3)bA, (k4)) 14

k), k2, k3, k4

—3(bA, (k1)bA, (k2) ) (bA (k3)bA, (&4) ) g ] (6.29)

In ohtaining this result, we have taken into account the fact that aA(k) are c-numbers. The summation convention is
used for all repeated indices A, A1, . . . , A4. We recall that A refers to the triplet of indices (l,~ K). In order to simplify
the thermal averages in Eq. (6.29), one uses the translational invariance of the lattice and the single-pa~icle nature of the
potential p'R. Only products of bA(n) =b&'"(n), which belong to the same site, contribute to the thermal averages.

Finally, the free energy FR, Eq. (6.29), is rewritten as

FR y / +A(k)bA(k)
1
y y uA(k)+A(k) ((bA ) ~ 14'

k A ' k A

2

a A, (k)a A, (p)aA, (k+p) (bA, bA, bA, ) 11 5„,„,5„,„,
k, p A1, A2, A3

g pa*A( k)a*A(p)a A( q)a A(p +k+q)[((b A) )~—3((bA)2)~] .
,k, pq A

(6.30)

In order to determine the external fields I, and y which occur in Eq. (6.14), we use the conditions (6.8) with F and
FR (B) given by (6.22a) and (6.27a), respectively. One finds

A,(k) =Mu'(k) +u t(k)b'(k), (6.31)

aI:~ =0.
a7'(k) aa'(a)

Combining the two last equations, we obtain

p
—1 p2

aA(k) = bA(k) — g g g aA, (p)a A, ( —k —p)(bAbA, bA, ) 14 5„,„,5,„,(bA)' w p A& A3

3

,
pa* (pA)a* (qA)a (kA+p+q)[((b )A)~ —3((bA) ) ]

' .
30

pq

(6.32)

(6.33)

Making use of Eq. (6.31), solving Eq. (6.33) by iteration, and substituting into Eq. (6.29), we obtain by means of Eqs.
(6.27a), (6.22), (6.28), (6.14), and (6.9):

r

F=Fph+FR + —,
' g [u'(k)]tM(k)u'(k)+[b'(k)] u(k)u'(A:)+[u'(k)] ut(k)b'(k)

k

+ g [~A,A, «)+(P '&A", +CA, A, »A, A, ]fbA, «)]'bA, (k)
A(, A2

—1

&A",A,A, [b A, «)]*[bA, (p)]*bA, (k+p)
k, p A1, A2, A3

+ 4,~ g g ' '[b' (k)]'[b "(p)]*[b'(q)]*b'„(k+p+q) .
k, p, q A

(6.34)
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Here we have defined

(6.35a)

tortions. The latter are obtained by minimizing the qua-
dratic term of the free energy (6.34), for fixed constraints

I b~(k) I, with respect to uj(k). One obtains

(6.35b) u'(k) = —M '(k)u(k)b'(k) . (6.36)

Obviously the coefficients xz'. . . depend on temperature
and on the strength of the single-particle potential. In the
case of a very strong single-particle potential which leads
to two sterically different orientations, the orientational
variable bh is replaced by an Ising spin variable with
values +1. Then the single-particle expectation values
reduce to x' '=1, x' '=0, x' '=2. Our formula (6.34)
for the free energy then redu'ces to a simpler expression
which has been derived previously for the description of
NaNOp.

We remark that the occurence of the third-order terms
in the free-energy expansion (6.34) can lead to a phase
transition of first order. Actually the transition takes
place at the intersection of the free energies of the disor-
dered, b~(k)=0, and ordered, bA(k)&0, phases. That
intersection determines a transition temperature To.

Due to the bilinear interaction between translations and
rotations, a given instantaneous configuration I b~(k) I of
orientations entails a configuration t uj(k) I of lattice dis-

xb'„,(k)+O(b'(k)) . (6.37)

Here T=I3 ' and I is the interaction matrix, defined by
Eq. (6.21b). The last term on the rhs in Eq. (6.37) refers
to third- and higher-order terms. According to the I an-
dau theory of second-order phase transitions, the high-
temperature phase becomes unstable at a temperature T,
and wave vector k, where the rotational susceptibility ma-
trix with elements

Xp,A,(k) =

diverges.

5F
5[b'(k) j'5b'(k)

ACKNOWLEDGMENT

(6.38)

This work has been supported by the Neutron Scatter-
ing Project of-Interuniversitair Instituut voor Kernweten-
schappen (Belgium).

We use this result to eliminate u'(k) in the free energy
(6.34) and obtain

F=+„h+Irtt + 'g —g b~*,(k)[»~",&~p, +L~,A, «)j
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