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Cohesive properties of bcc and fcc rubidium from ab initio pseudopotentials
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Total-energy calculations have been performed for Rb at zero temperature using a self-consistent
ab initio pseudopotential approach within a local-density-functional scheme. The energy difference
between fcc and bcc Rb, and the energy barrier between these structures, are found to be extremely
small near the equilibrium volume. Agreement of the calculated cohesive properties of bcc Rb with
experimental values is good in view of the softness of the material. A transition from bcc to fcc has
been calculated to occur at a pressure of about 52 kbar for T=0 K, which compares favorably with
the observed value of 70 kbar for this transition at room temperature.

I. INTRODUCTION

Since the early days of solid-state physics, the alkali
metals have been popular materials for theoretical studies.
Their reputation, however, has changed remarkably from
being prototypes of simple metals (with the landmark cal-
culation of the cohesive properties of Na by Wigner and
Seitz in 1933, and many calculations involving nearly-
free-electron-gas models or empirical pseudopotentials) to
that of a group of elements with an unforeseen manifold
of structural transitions. At ambient conditions all alkali
metals are found in the bcc structure, but cooling to low
temperatures or the application of pressure reveals
numerous phase transitions with some structures still un-
determined. The most recent development in this field is
a suggestion for the structure of Li at low temperature
and zero pressure to be a relatively complicated one with
possible implications for superconductivity. The stable
phase at low temperature and zero pressure for Na is hcp,
whereas K and Cs appear to stay bcc. The case of Rb is
unclear in this regime since the de Haas —van Alphen ef-
fect measurements by Templeton indicated a shock-
induced (martensitic'?) transformation at 4.2 K and below.
At room temperature and lower pressures all alkali metals
except Na show a transition from bcc to fcc. Additional
transitions to more open and more complicated structures
have been observed for the heavy alkali metals K, Rb, and

5,6

Understanding the structural transitions of the alkali
metals is therefore a challenge for the theorist. Band-
structure calculations have shown that with decreasing
volume the originally unoccupied d bands come closer to
the occupied s band. Some transitions are expected to
take place at certain critical d-band occupation numbers
(correlated with the fraction of the atomic volume occu-
pied by the ion core), which should be similar for corre-
sponding transitions in the heavy alkali metals. ' At high
pressures the s-d transfer of the valence electrons is com-
plete and core-core interactions appear to play an impor-
tant role in the structural stability. Quantitative predic-
tions of the transitions, however, are still a difficult
matter.

The goal of this paper is a modest one in view of the
complexity of the situation: We confine ourselves to the
study of the cohesive properties of the heavy alkali metal
Rb and consider the bcc and fcc structures only. Rb is an
extreme case in some sense, because it has the smallest bcc
shear moduli among all alkali metals (Cs has the smallest
bulk modulus). It is also of particular interest because of
the low-temperature transition mentioned above.

In contrast to the majority of previous calculations,
which are based on empirical pseudopotentials and will
not be reviewed in detail here, we use a self-consistent
ab initio pseudopotential approach within a local-
density-functional scheme. This method has proven suc-
cessful, not only for a wide variety of semiconductors and
insulators, but also for a number of metals, such as Na, '

Be," and Al. ' The results for Rb reported below indicate
that this method is capable of reproducing the cohesive
properties with the expected accuracy and also the bcc-fcc
transition under pressure. The energy differences between
the two structures at zero pressure and zero temperature
are, however, extremely small, and the question of the
stable structure in this regime remains open.

II. METHOD

The pseudopotentials for Rb have been generated using
the scheme of Hamann, Schliiter, and Chiang' with cut-
off radii of 2.4, 2.8, and 1.5 a.u. for the s, p, and d com-
ponent of the potentials, respectively. In the calculation
for the crystal, we choose the s component for the local
potential and we refer to the differences between the p (d)
component and the local potential as the nonlocal p (d)
part of the potential. Because of the strong overlap of the
5s valence electron with the outer-core electrons, the par-
tial core correction introduced (e.g., for Na) by Louie,
Froyen, and Cohen' has been applied in order to improve
the transferability of the pseudopotential. The parameter
ro involved was chosen to be the radius where core and
valence charges are equal. To elucidate the role of the 4d
levels, two ionic pseudopotentials were generated: poten-
tial I, which has no nonlocal d part was generated from
the configuration 5s 5p ', and potential II (with nonlo-
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cal p and d parts) was generated from the configuration
Ss 5p '4d '. The transferability of the potentials was
tested with several other configurations, including Rb+
(excitation energy 0.3144 Ry), and we found that the exci-
tation energies of all-electron and pseudopotential calcula-
tions agree within 0.7 mRy or better.

Density-functional theory is used in the local approxi-
mation with the formula of Hedin and Lundqvist'" for ex-
change and correlation in the paramagnetic case and the
modified formula of von Barth and Hedin in the spin-
polarized case. ' ' This choice facilitates the compar-
ison with the calculations of Moruzzi, Janak, and %'illi-
ams, ' who used the same functionals. Thus, the spin-
polarization energy of a Rb atom is —16.9 mRy. '

Plane waves in reciprocal-lattice vectors are used for
the expansion of the one-electron wave function in the
crystal, and the total energy is calculated using a
momentum-space scheme. The main numerical effort of
this method consists of the diagonalization of the Hamil-
tonian matrix for a number of k points in the irreducible
Brillouin zone (IBZ). The k points are generated in a uni-
form grid by subdividing each edge of the unit cell in re-
ciprocal space n times, and each k point is associated
with a weighting factor according to its phase-space
volume. The number of plane waves which goes into the
calculation of matrix elements is controlled by the param-
eter 6 „, the maximum length of allowed reciprocal-
lattice vectors Cxz, and the size of the Hamiltonian matrix
is determined by the kinetic-energy cutoff E,„&(Cxj.

+k;) . (Rydberg units are used unless otherwise stated. )

G,„can be varied between the lower limit (E,„)'~
(from the kinetic-energy cutoff) and 2(E,„)'~ which is
needed to allow for all off-diagonal elements of the Ham-
iltonian matrix to be determined properly. Often,
G,„=1.5(E,„)' is sufficient for total-energy calcula-
tions with considerable savings in computing space and
time.

III. RESULTS

The structural properties of Rb, such as the cohesive
energy E, ~, equilibrium volume Vo, bulk modulus Bo,

and its pressure derivative Bo, can be obtained via the
ab initio pseudopotential approach with relatively little
numerical effort. Column I of Table I is calculated with
pseudopotential I (which contains no nonlocal d part), 27
k points in the IBZ, and cutoff parameters E,„=4.6 Ry
and 6 „=3.2 a.u., which yield matrix sizes around
100&& 100 and a Cy space of =300 plane waves near the
minimum of the total-energy curve E„,(V). With this
cutoff, the total energy was found to be converged to
about 1 mRy. Nine values of E„, for volumes between
470 and 710 a.u. have been used for a fit to Murnaghan's
equation of state. ' Column IIa shows the results of a
similar calculation with the same cutoff parameters, but
with potential II instead, which has an additional nonlocal
d part. Obviously, the added admixture of d components
to the electronic energy is able to increase the cohesive en-
ergy by about 7%. At the same time, the equilibrium
volume decreases by 7%, while Bo and Bo are less affect-
ed. The rest of Table I will be discussed later.

Breaking down the individual contributions to the
cohesive energy, as done before by Lam and Cohen' for
Al, we come to the same conclusion, namely that the gain
in Coulomb energy by forming the crystal is not sufficient
to overcome the kinetic-energy increase, and that the
exchange-correlation energy is the dominant cause of
cohesion. However, the ratios between the individual con-
tributions are different for Rb and Al. In percent of the
cohesive energy, we have, for Rb (Al), Coulomb energy
+ 24% ( + 125%), kinetic energy —41% ( —180%),

exchange-correlation energy + 143% ( + 160%), and
spin-polarization energy —26% ( —5%), resulting in
cohesive energies of 63 mRy (268 mRy). Whereas, in Al,
the first three terms are of comparable magnitude, the
exchange-correlation term is more than 3 times larger
than the other contributions in Rb. This difference is at-
tributable to the fact that Rb has only one valence elec-
tron per cell, leading to more dominant exchange-
correlation effects.

Structural energy differences and shear moduli for Rb
are much more difficult to assess with total-energy calcu-
lations than the properties discussed above. Considerable

TABLE I. Cohesive properties of Rb. Deviations from experimental values are shown in
parentheses.

E„g {Ry)

bcc

0.0577
( —8%)

, IIa
bcc

0.0623
( —0%)

bcc

0.0633
(+1%)

fcc

0.0633

Moruzzi
et al.

(Ref. 15)

0.047
( —25%)

Expt.

0.0626'

Vp (a.u. ) 580.9
( —1'Fo)

539.5
( —8%)

531.8
(—10%)

53S.5 540.7
( —8%)

589.4

Sp (Mbar) 0.034
(+16%)

0.035
(+20%%uo )

0.035
(+20% )

0.035 0.03
( (18%)

0.0292"

8p 4.1

(0%)
3.9

(—5%)
3.9

( —5% )

3.7 4.1b

'From Kittel (Ref. 25); T=5 K.
"From Anderson and Swenson (Ref. 26); T=4 K.
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numerical effort is required because the energy differences
involved are very small (less than 1 mRy). In order to im-
prove the convergence of the total-energy calculation, we
use E,„=7.3 Ry and 6,„=5.4 a.u. =2(E,„)' for all
quantities reported below, which reduces the uncertainty
in the tota1 energy to about 0.2 mRy at a volume V=590
a.u. At this volume the number of Ci vectors is about
1500 and the size of the Hamiltonian matrix is around
200&&200. For a given G~,„and E~,„, the number of G
vectors and the Hamiltonian-matrix sizes decrease with
decreasing volume, leading to relatively higher uncertain-
ties at smaller volumes because of the reduced number of
plane waves available for the expansion of the wave func-
tion. The main problem of convergence, however, is con-
nected with the k-point sampling of the Fermi surface.
Although the Fermi surface of Rb is known to be very
close to spherical, it turned out to be a very delicate
matter to pin down the extremely small energy differences
between different structures in terms of the number of k
points used in the calculation. In principle, one could
simply increase the number of k points until the desired
accuracy is reached for each structure, but this is too ex-
pensive. Alternatively, one can achieve high accuracy by
treating different structures as similarly as possible. We
therefore consider both fcc and bcc structures within a
more general tetragonal unit cell such that c/a= 1 corre-
sponds to fcc and e/a = 1/V 2 to bcc. 2 Then we treat fcc
structures as usual and make sure that the set of k points
used for bcc structures corresponds exactly to the fcc
set, related by the tetragonal distortion from c/a= 1 to
c/a =1/~2.

In this way we improve the convergence of energy
differences, with respect to the number of k points, to
about 0.05 mRy around the equilibrium volume, with
n = 10 or 12 (see Sec. II). The convergence of the total en-
ergies of each structure alone happens to be of the same
quality. At small volume, e.g., V=260 a.u. , the uncer-
tainty is roughly twice as large, but this causes na serious
problems because the energy differences to be calculated
are also larger.

Using potential II, the above-mentioned cutoff parame-
ters, and n = 12, which generates 273 (182) k points in the
IBZ of the bcc (fcc) lattice, we obtain the results of
column IIb in Table I. From the bcc columns IIa and
IIb it is obvious that the much larger numerical effort for
IIb is not a necessity for the cohesive properties listed in
this table, keeping in mind that another choice for the
exchange-correlation functional could easily change the
results more significantly than improved convergence (cf.
the case of Na in Ref. 10). From this point of view the re-
sults for bcc and fcc Rb in column IIb are identical.
Nevertheless, the energy difference between the two
phases as a function of volume should be significant be-
cause of our effort to calculate both phases in an exactly
ana1ogous scheme.

In Fig. 1, b,E(V)=E„,(fcc)—E„,(bcc) at T=O K is
shown for two sets of k points (n = 10 and 12) with a solid
line drawn as an averaging guide to the eye. This curve
suggests two phase transitions between bcc and fcc Rb,
one very clearly at small volume and another at the mar-
gin of convergence of the calculation around the equi1ibri-

fcc —bcc
x A =IO
o A=f2

500 400 500

Volume t'a, u.)

I

600 700

FICi. 1. Total-energy differences between fcc and bcc Rb vs
volume. As a guide to the eye, an averaging line is drawn be-
tween the two sets of results, with different numbers of k points
generated from n=10 and 12, respectively.

um volume. The calculated transition pressure at small
volume (determined in various ways from both data sets)
is (52+1) kbar; the bcc transition volume equals (301+1)
a.u. , with a volume decrease of 1% during the transition
from bcc to fcc. The other transition would occur at a
negative pressure of about —1 to —2 kbar starting at a
bcc volume = 533 a.u. , with a volume increase of less than

Comparing the individua1 contributions to the total-
energy differences at V=260 and 340 a.u. , the cause of
the transition from bcc to fcc structure can be traced to a
stronger gain in the nonlocal potential energy (associated
with the nonlocal parts of the pseudopotential) in the fcc
structure with decreasing volume, i.e., occupying p and d
states in the fcc structure becomes energetically more
favorable ( —16 mRy). This gain in energy is accom-
panied by an increase in kinetic energy (+ 13 mRy) and a
smaller increase in the (local) potential energy of the
charge density (+2 mRy). The other energy terms are
far less important, especially the exchange-correlation
term, which contributes only —0.07 mRy to the total
difference of = —1 mRy. Therefore, the transition
volume V, =300 a.u. should be fairly independent of the
choice for the exchange-correlation functional. The
total-energy curves for both phases do not exhibit any spe-
cial features in the transition region; they simply cross
each other with increasing d character of the valence elec-
trons. For the possible transition at smaH negative pres-
sure, however, the differences in exchange-correlation en-
ergy are no longer negligible and the transition pressure
and volumes —if not the mere existence of this
transition —could we11 depend on the approximation used
for the functional for exchange and correlation.

Given the very small energy difference (=0.02 mRy)
between the two phases at their equilibrium volumes, one
would like to know what kind of energy barrier might ex-
ist between these two structures. Of course, there are
many ways to deform bcc and fcc structures into each
other, and, in general, it is difficult to find the path with
the lowest barrier. A reasonable path is certainly a defor-
mation within the tetragonal unit cell mentioned above,
with a continuous variation of c/a from 1 (fcc) to I/V2
(bcc) with the volume kept constant. Near equilibrium,
the barrier appears to be very small and near the limit of
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IV. DISCUSSION

Some of our results can be compared with the all-
electron calculation of Moruzzi, Janak, and Williams, '

which is also ab initio, employing the same exchange-
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FICx.. 2. Energy vs c/a distortion of the tetragonal unit cell
below ( V=340 a.u. ) and above ( V=260 a.u.) the bcc-fcc transi-
tion calculated with 468 k points in the IBZ (n=12). The zero
of energy is set at the minimum of each curve. The solid lines
are guides to the eye; the dashed lines indicate the c/a values
for bcc and fcc structures.

the accuracy of the calculation. Our results for the energy
along this deformation are strongly fluctuating even with
n= 12 (468 k points in the IBZ of the tetragonal lattice),
indicating that still more k points would be necessary for
an accurate determination of the barrier. The numerical
data suggest that the barrier height might be of the order
of 0.05 mRy for V=539.5 a.u. At the small volume of
V=260 a.u., however, the behavior of E„, versus c/a
could be determined unambiguously: We found a
minimum for the fcc structure and a maximum for the
bcc structure without a barrier between them. Hence, bcc
Rb is unstable rather than metastable in this regime. Just
below the transition (V=340 a.u. ) there is a very small
barrier (=80 pRy) separating fcc from bcc (see Fig. 2).

In principle, the shear modulus p'= I/2(c~l —clq) can
also be obtained from the total energy at c/a ratios close
to the cubic structures. However, again because of the
unusually small value for this material, a converged result
has not been achieved. The other shear modulus p=c44
has been successfully determined to be (0.023+0.004)
Mbar, with the quoted uncertainties derived from the cal-
culations with n= 10 and 12. In the calculation an
orthorhombic unit cell (rather than a triclinic one with
lower symmetry) has been used, in which the usual bcc
cube is tilted by 45; n=10 (12) generates 500 (864) k
points in the IBZ.

correlation functional (see Table I). Their equilibrium
volume Vo and bulk modulus Bo basically agree with our
calculations that included the nonlocal d part in the po-
tential (column II). The agreement for the cohesive ener-

gy E„z is still good in an absolute sense (within 15
mRy=0. 2 eV), but not on a relative scale (25%). This
discrepancy may be related either to the muffin-tin ap-
proximation, ' or to the fact that the all-electron calcula-
tion has to deal with much larger energies than the pseu-
dopotential calculation, e.g., the total energy of the Rb
atom is almost 6000 Ry, whereas that of the pseudoatom
is 10000 times smaller. Other quantities, such as Bo,
shear moduli, and structural energy differences, have not
yet been calculated by other ab initio methods.

The agreement of our results with experiment is on the
same level as the corresponding Na calculation by Louie,
Froyen, and Cohen, ' with the same Hedin-Lundqvist
exchange-correlation formula. As in the case of Na, '

another functional for correlation (e.g., Wigner's ) would
probably improve the agreement with experiment for Rb
too. A correction due to the zero-point motion derived
from a Debye model by Froyen and Cohen with a Debye
temperature of 56 K (Ref. 29) would slightly shift (in the
bcc column II b) E„q by E„„=0.4 mRy, Vo by 3.3 a.u. ,
and Bo by 0.8 kbar closer to the experimental values. Our
result for the shear modulus @=0.023 Mbar compares
well with the experimental value 0.0222 Mbar. . The oth-
er shear modulus, p'=0.0027 Mbar, is almost 10 times
less than p, and therefore would require increased numeri-
cal effort to calculate. We expect no principal difficulty
in this respect because the shear moduli of Rb have been
calculated with local empirical pseudopotentials (see, e.g.,
Refs. 31 and 32). The results which depend on the screen-
ing functions used range from 0.0193 to 0.0213 Mbar for
p and from 0.0012 to 0.0038 Mbar for p'.

The calculation of the energy difference between bcc
and fcc Rb near equilibrium yields very small values
much less than 1 mRy (Fig. 1). This is in general agree-
ment with several calculations for the heavy alkali metals
using empirical pseudopotentials, although some of
them favor the hcp (Refs. 33 and 35) rather than the bcc
structure (Refs. 36—38). (Compared to K and Cs, Rb
tends to give the smallest fcc—bcc energy difference. )

Upadhyaya, Wang, and Moore claim that van der Waals
and perhaps Born-Mayer interactions between the cores
should be taken into account. Including van der Waals
interactions changes their lowest-energy structure from
hcp (Ref. 35) to bcc (Ref. 36). van der Waals interactions
between the cores are beyond both the local-density ap-
proximation for exchange and correlation and the frozen-
core approximation which is implied by the pseudopoten-
tial. Therefore they are not included in the present calcu-
lation. Rather than discussing this question in detail, we
remind ourselves that the problem of structural stability
not only involves energy differences between different
structures, but also requires positive total-energy deriva-
tives with respect to arbitrary distortions. In addition, for
a structure to be in thermodynamical equilibrium at zero
temperature, its (absolute) minimum of the total energy in
configurational space should be separated from other local
minima by barriers higher than the zero-point energy.
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Considering a zero-point energy of about 400 pRy and a
barrier of only =50 p, Ry (Ref. 39) between structures
which perhaps differ by =20 pRy, the observed structure
is most likely determined by external factors such as
stress, or by grain-boundary energies and the history of
the sample, or even by impurities, unless the difference in
zero-point energy is unusually high or one of the struc-
tures considered is unstable. (The effects of entropy arid
temperature on the free-energy difference are negligible
below 5 K, probably less than 1 p, Ry.) The experimental
situation for zero-pressure and zero-temperature Rb is
still unclear, but the observation of a shock-induced (mar-
tensitic?) transition by Templeton at 4.2 K and below
seems to indicate that bcc is not necessarily the most
stable structure.

The transition from bcc to fcc structure at 70 kbar and
room temperature is experimentally well established.
The transition volume V, is 0.478 times the equilibrium
volume at room temperature, i.e., 299 a.u. , with a relative
volume change b, V, of (1.5+0.8)%. The first attempt to
predict this transition quantitatively was made by
Eremenko and Zarochentsev in 1979 using a local two-
parameter pseudopotential of the Animalu-Heine type fit-
ted to equilibrium volume and shear modulus p, and in-
cluding short-range core-core repulsion in Born-Mayer
form. Their T=O K results (p, =37 kbar, V, =365 a.u. ,
and hV, =0.2%) depend strongly on the parameters for
the Born-Mayer repulsion. However, the main defi-
ciency of their method is the lack of a nonlocal d part in
the pseudopotential, which has proved essential to this
transition in our analysis in Sec. III. It i.s interesting to
note that Eremenko and Zarochentsev report a behavior
similar to Fig. 1 for their difference in Gibbs free energy,
except that they do not consider negative pressures. Ac-
cording to Takemura and Syassen, the bcc-fcc phase

boundary of Rb is fairly independent of temperature, and
they suggested that a more rigorous ab initio calculation
has to be done to achieve a better agreement with experi-
ment. Our results for T=O K (p, =52 kbar, V, =301 a.u. ,
and EVY ——1%) are inuch closer to the experimental
values. Hence, it appears that repulsive core-core interac-
tions do not play a dominant role for this transition.
Nevertheless, a low-temperature measurement of the tran-
sition is desirable for a more detailed comparison with the
present calculation.

In summary, we conclude that the ab initio pseudopo-
tential approach within the local-density approximation is
able to reproduce cohesive properties of Rb and the transi-
tion from bcc to fcc under pressure with reasonable accu-
racy. The energy differences between different structures
at zero pressure and zero temperature appear to be ex-
tremely small, and further investigations, both experimen-
tal and theoretical, are required.
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