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Vortex-pair state in rotating superfluid He-A at low temperatures
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An earlier analysis of the vortex-pair state is extended to lower temperatures. It is shown that the
circular-hyperbolic pair describes both the observed transverse satellite frequency and intensity quite
well. However, it appears rather difficult to distinguish the radial-hyperbolic pair from the
circular-hyperbolic pair. We also predict that the distance between vortices in a pair increases rapid-
ly as the temperature decreases, which can be tested by ultrasonic attenuation.

I. INTRODUCTION

It is now well established' that the vortex-pair state of
the type first proposed by Seppala and Volovik is the
only viable candidate for the observed vortex state in ro-
tating superfluid He-A. Not only the vortex-pair state
has much lower free energy' than the lattice formed by
isolated analytic vortices first proposed by Fujita et al.
but also the observed transverse satellite frequency is in-
consistent with that expected from isolated vortices. '

However, a puzzle remained in our analysis the vortex-
pair state with uniform d, which has obviously higher free
energy than that with nonuniform d, appeared to describe
better the observed transverse satellite frequency.

The object of this work is to extend the earlier analysis
to lower temperatures. For this purpose we shall make
use of the texture free energy obtained by Cross (we shall
refer to it as Cross's free energy, hereafter). The coeffi-
cients in Cross's free energy are evaluated within the
weak-coupling theory and with Landau s Fermi liquid
coefficients as obtained by Grey wall. Although the
weak-coupling theory is inadequate to describe the
phase characterized by the Anderson-Brinkman-Morel
condensate, the strong-coupling theory which attempts to
describe the A phase is still at a very primitive stage.
Furthermore, we do not believe that the coefficients in
Cross's free energy can be off more than 10% when these

coefficients are determined within the weak-coupling
theory. Therefore we adopt here the simplest strategy as
stated and we believe that our predictions are quantita-
tively reliable (say, within 10% error).

To our surprise the introduction of the temperature-
dependent coefficients clarifies the puzzle which we be-
lieve now originated from our unjustified linear extrapola-
tion of the experimental results below T =0.85T, to T, .
In the temperature region where the experimental results
are available, the calculated transverse satellite frequency
and intensity associated with the circular-hyperbolic pair
with nonuniform d agrees well with the observed results
(see Fig. 3). Furthermore, we see that the predicted satel-
lite frequency for the vortex pair with uniforin d is incon-
sistent with experiment. On the otQer hand, our calcula-
tion indicates that it is difficult to distinguish the
circular-hyperbolic (CH) pair from the radial-hyperbolic
(RH) pair by NMR experiment alone. Therefore, our
identification of the observed vortex state with the CH
pair relies rather on the fact that the free energy of the
CH pair is lower than that of the RH pair at all tempera-
tures except possibly at extremely low temperatures (say,
T ~0.05T, ). We find also that the distance between the
two vortices in a vortex pair increases rapidly as the tem-
perature is decreased. This increase in the distance should
be readily observable by the ultrasonic attenuation experi-
ment.

II. FREE ENERGY

Following Cross we shall start with the free energy given by
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where the k; coefficients given in the Appendix are tem-
perature dependent and are expressed in terms of the
number p, i, p, ~~, and spin p,'~i, p',~~~' superfiuid densities.

Ci(T)IQ„(T) is the dipo——le-coherence length and

pe ——(AX/X~ )
' Ci ( T)I(yK) =(Hp IH) gi

is the magnetic coherence length. Here, dLX is the aniso-
tropic part of the spin susceptibility. The dipole-
coherence length gz defined here differs somewhat from
the conventional one, as we introduce the length scale
through Cq the spin-wave velocity in the transverse direc-
tion to the / vector. However, we find that the present
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definition is not only convenient for the analysis of the
nuclear magnetic resonance satellite frequency but also
that g'r thus defined is almost temperature independent;
within the whole temperature range (0, T, ) it changes only
less than a few percent. Therefore we shall take gr
(=10pm) a constant independent of T. The free energies
of the vortex-pair states will be determined variationally.
We shall consider in the following the circular-hyperbolic
pair and the radial-hyperbolic pair separately. For the
CH vortex pair we choose as a variational solution'
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and u, v are defined by

x =c coshu cosu,

(2)
FIG. 1. Free energy hf and intervortex distance in a pair c

as a function of reduced temperature T/T, for a circular-
hyperbolic and radial-hyperbolic pair. c is practically coincident
for the CH and RH pair.

y =c sinhu sinu .
(3)

In Eq. (1) I, d, and V4& are expressed in terms. of the
Euler angles a, P, y, X, g as follows:

V@=Va+cosp V'y,

l = ( sin p c—osy )x + (sinp siny )y +cospz,

d =(—cosf sinX)x+(sing sinX)y+ cosX z .

(4)

In Eqs. (2) and (3) the variational parameters are a, b, and

c; a describes how fast the I vector approaches the hor-
izontal plane from the vertical direction at the center of
the 2n. vortices, b describes the deviation from the uni-
form d texture, and 2c is the distance between vortices in
the pair.

As in Ref. 1 we cut off the integral at r =re, the dis-
tance between two vortex pairs. The free energy is mini-
mized at different temperatures. For F~ and F~ we have
used F& =13.2 and F& ———0.98 values appropriate for
liquid He at P =29 bar taken from Greywall (although
we find that the results are practically identical for 21 bar
and melting pressure). The free energy for the vortex pair
per unit length is given by

circulation of 4m. Here, ro is the intervortex pair distance
(m.n„) '~ and Eq. (5) is valid for ro & 10$&. bf in Eq. (5)
is shown in Fig. 1 along with the pair distance c. bf de-
creases monotonically as the temperature decreases. We
have repeated a similar calculation for the RH pair where
the expression for y and sing are replaced by

y = P&+ P2, co—sf= 1 —2 sin u (sin v +8 )

The results of the minimization are shown again in Fig. l.
%'e note that in all the temperature region we have stud-
ied ( T)0.1T, ), the CH pair is more stable than the RH
pair although the difference in the free energies is not so
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where the first term describes the free energy due to the
FIG. 2. Variational coefficients a and b as function of re-

duced temperature T/T, .
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large. We show the corresponding variation parameters a
and b as functions of t =T/T, the reduced temperature
in Fig. 2. In the vicinity of T„a and c increase initially
while b decreases which is due to the fact that p, ~~, p, i,
etc., related to the mass superflow, increase much faster
than p,'I'I", etc. related to the spin flow. In particular, the
monotonic increase of c =c/g'i with decreasing tempera-
ture is due to the fact that p, ~~/p,'I'I" increases also mono-
tonically for example; the reduction of the elastic energy
associated with the spatial derivatives of a and y are
achieved by increasing c. Since c changes by a factor of 5

or 6 as temperature changes from T, to 0.1T„this large
temperature dependence should be readily accessible by
ultrasonic attenuation (see Sec. IV). Finally, a shows a
small curious peak around T =0.35T, for the CH pair,
while no such peak appeared for the RH pair. This small
peak is due to the fact that k6 (which controls the bend-
ing energy) still keeps increasing around T=0.3T„while
most other coefficients have saturated in this temperature
region. Therefore for the RH pair whose vortex free ener-

gy is mostly controlled by k5 (the splay energy), a contin-
ues to increase monotonically.

III. MAGNETIC RESONANCES

The nuclear magnetic resonance satellite frequencies are determined by solving the eigenvalue equations. ' s These
equations are cast in the variational form which is more convenient for our purpose:
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where gi and g2 are the variational wave functions
describing the transverse and longitudinal spin oscilla-
tions, respectively.

The transverse and longitudinal satellite frequencies are
given in terms of A, , and A,t as

~t
co' =[(yH )+A,,Qg]''~ -=yH+ Qg(yH) ', (9)

2

malized satellite intensity I, =n„I, /QIO ——0.0015I,/Io
with n„ the vortex-pair density and 0 the rotation speed
is shown as a function of t. The shaded area is construct-
ed from the experitnental data by Hakonen et al. We see
immediately that the CH pair describes quite well both
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Furthermore, the intensity of the satellite for a single vor-
tex pair of unit length is given by

2

I, = f dxdygi cosP
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respectively. We have determined A,, and A,I variationally
by using a couple of different variational functions. We
find near T =T, where the binding energy of the bound
spin-wave state is small that

—p, (chu —1)
SZ, 2 0'e (13) 0

I.O 0.5
is an excellent variation function. While in the case of the
transverse resonance, we find

—(p/2)(chu —cosu) + —(p/2)(chu +cosu)
g) ocp (14)

gives a lower A,, value at low temperatures. The results
for the transverse and longitudinal satellites are summa-
rized in Figs. 3 and 4. In Fig. 3 we show A,, for both the
CH and RH pair as a function of t. In the inset, the nor-.

FICi. 3. Eigenvalues A., of transverse spin oscillations as a
function of T/T„ full lines for circular-hyperbolic and radial-

hyperbolic pair with nonuniform d; in the insert the correspond-
ing intensities. The broken line represents the CH pair with uni-

form 2; shaded area represents the experimental results.
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I.O 0.5 FIG. 5. (1„)p, (1„)0as a function of reduced temperature

T/T, for qli, Q.
FIG. 4. Eigenvalues A, ~ of longitudinal spin oscillations as a

function of T/T, for a CH and RH pair with nonuniform d;
the inset represents the corresponding intensities.

the observed transverse satellite frequency and intensity.
In particular, below T =0.8T, the agreement between the
theory and the experiment is excellent. It becomes clear
that the satellite frequency associated with the CH pair
with uniform d as indicated by a dotted line is far off the
experimental value. Therefore the puzzle was nothing but
an artifact of wrong extrapolation of the experimental
data to T =T, . On the other hand, we also see that the
RH pair describes almost as well the observed satellite fre-
quency and the satellite intensity. In particular, at low
temperatures, these two vortex pairs produce a satellite
frequency and intensity almost identical to each other.
Therefore the NMR experiment is not suitable to discrim-
inate these two vortex-pair configurations.

We note that A, , decreases almost linearly with t and
crosses A,, =O around t =0.35. This implies that in a
weak magnetic field (H=Ho), the d configuration be-
comes unstable in buckling in the plane perpendicular to
the x-y plane below T&0.35T, . In other words, the
vortex-pair texture changes gradually as the external mag-
netic field is lowered even when H is still larger than Hc.

rotation axis (in the z direction) slightly towards the x
direction. In the presence of vortex pairs then the 1 con-
figuration is disturbed; the vortex pairs orient 1 in their vi-
cinity both in the x and the z direction. Then when the
sound wave propagates along the x direction for example,
the attenuation coefficient within the local approxima-
tion is given by

+al~(l „)+aq((1—1„) )+2a, ((l —1 „)1„),
(16)

w4 w4
where (1„)is the space average of 1„with 1„represent-
ing the x component of 1. Since the deviation of the 1

vector from the uniform y direction is proportional to the
vortex-pair density, we can express (1„)and (1„)by

(1„)=n„g', (1„)o
and

IV. SOUND ATTENUATION

Since ultrasonic attenuation depends sensitively on the
relative orientation of 1 to the propagation direction of the
sound wave, it provides another useful probe for the study
of the underlying 1 texture. When 1 makes an angle 8
from q, the propagation vector of the longitudinal sound
wave, the attenuation coefficient is given by' '"
a(8)=ac+a~~ cos 8+a& sin 8+2a, sin 8cos 8,

500- C I- ly&o

where ao is the 8 independent part and ao, a~~, az, and a,
depend on both temperature and sound frequency. For
example az has a sharp peak associated with the clapping
mode, while a, has a broad peak due to the normal flap-
ping mode. " In the absence of vortices l is assumed to be
uniform and lie in the y direction. This situation is
prepared by tilting the external magnetic field from the

0
I.O 0.5

FIG. 6. (I 1~)o, (I—/~)0 a—s a function of reduced tem-
perature T/T, for q~ ~1.
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where the subscript 0 means that the integral is made for
a single vortex pair, for example, 50-

( l„)p——f du f dv c (ch u —cos v)cos ysin2P .

Then Eq. (16) is rewritten as

a„=ap+ai+n„pi[, (a~~+ai —2a, )(l „)p
—2(ai —a.)(l.')p] .

(18)

The coefficients (l „)p and (l „)p are evaluated numeri-
cally and shown as a function of reduced temperature in
.Fig. 5 for both the CH and RH pair for rp ——20/i. Simi-
larly, the attenuation coefficients for q parallel to the ro-
tation axis (z axis) and q parallel to the y axis (parallel to
the asymptotic l direction) are expressed in terms of
(l, )p, (l, )p and (1—l»)p» (1—l»)p, respectively. In
the last two coefficients we subtracted 1 in order to elim-

inate the contribution associated with the uniform l tex-
ture and thus obtain the local vortex contribution. These
are plotted in Figs. 6 and 7 as functions of reduced tem-
perature. We note that both (l „)p, (l „)p and (1—l » )p,

w4(1—l„)p increase rapidly as the temperature decreases,
while the temperature dependence of (l )p (l )p is rath-
er moderate. In particular, at low temperatures (l, )p and

(l, )p are roughly by a factor of 10 ' smaller than (l „)p
and (l„)p. These behaviors reflect the fact that the
(l „" )p and (l » )p coefficients increase with c, the distance
between the vortices in a pair, while (l,")p is a measure
only of the size of individual vortices and thus propor-
tional to a '. Therefore we conclude that the most
favorable configuration to send the sound wave is the x
direction perpendicular to the asymptotic I direction. Al-
though the temperature dependences of these coefficients
for the CH and the RH pair are rather similar, the RH
pair gives rise to the attenuation coefficient 10 to 20%
smaller than that of the CH pair. Therefore the sound at-
tenuation technique could be used to discriminate these
two different configurations.

0
I.O 0.5

FIG. 7. (l, )0, (I, )0 as a function of reduced temperature
T/T, for q~~Q.

V. CONCLUDING REMARKS

We have extended our earlier analysis at low tempera-
tures. We find that (1) the CH pair has always lower free
energy than the RH pair. (2) The CH pair produces both
the transverse satellite frequency and the satellite intensity
consistent with observation. (3) However, since the RH
pair described almost as well the NMR experiment, we
need another probe (say, ultrasonic attenuation) in order
to discriminate these two configurations. (4) We find that
c, the distance between vortices in the pair, increases rap-
idly as the temperature decreases. (5) We calculate the
change in the sound attenuation coefficient in the pres-
ence of the vortex pair. We find that this change in-
creases rapidly at lower temperatures in the appropriate
geometry, which reflects the temperature dependence of c.
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APPENDIX

The k; coefficients in the Cross free-energy expression are given by

spin spin 0 0 $ —& 0 spinki Ps)[/PsJ»k2 Psl/Psl ». k3 =k2(ps((/Psl)» k4 =kl» k5 =
4 ( + 3 +1) Psi/Psl

FS
k6 3 (1+ 3+1) 4P 1. +P [[+ 4 1, 11 P [[ P [I/P)4 1+—,Ei(p„ti/p)

A, =p,'tI"/p, '~i'", X1vCi = (&/2m)'ps~i'"

wher'e

1 0
p$i, ~I

=, , psj. , )(1+—,+1(p„1,
(
)/p)

is the superfluid inass density including Fermi liquid
corrections, and .

1+—'F~
spm

+ 3 1 0
Psi

I I

=
~ g $ ~$~ II1+ 3+1(pei, [[/P) 1+ 3+1

is the superfluid spin density including Fermi liquid
correlations. The temperature dependence of the super-
Auid densities p,z,p, ~~

are calculated from the temperature
dependence of the gap. '
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