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Cyclic-matrix functions {CMF) are shown to offer a convenient treatment of lattice periodicity,
which appears to be somehow more powerful than conventional methods based on Bloch's theorem.
To illustrate the ability of the method, a CMF formulation of the linear combination of atomic orbi-
tals method, taking overlap into account, is proposed for solids of arbitrary shapes {clusters, slabs,
infinite crystals, . . .). Analytic expressions are obtained for the Green s-function elements, local and
total density of states, thermodynamical functions, one-electron total energy, and specific heat.

I. INTRODUCTION

The most natural mathematical embodiment of lattice
periodicity is offered by cyclic-matrix functions (CMF's), '

which can deal in an exact and straightforward manner
with the global properties of systems perfectly periodic in
space (ranging from an homoatomic cyclic molecule to a
three-dimensional finite or infinite perfect crystal). More-
over, preliminary work' shows the use of the CMF yield-
ing some exact results mhen the lattice is undergoing some
translational symmetry loss due to the presence of a de-
fect.

The traditional treatment of problems involving a lat-
tice consists of reducing them, by Fourier transformation,
to an eigenvalue problem, whose solution, in the form of a
dispersion function, allows to express the spectral func-
tions by numerically sampling or integrating over the re-
ciprocal space. Because CMF theory allows nonlinear
Fourier analysis, it appears to be a generalization of the
conventional treatment based on Bloch's theorem; more-
over, as it does not deal with individual eigenstates, it is
not practically limited, as is the former theory, to perfect-
ly periodic infinitely extended lattices. More specifically,
it will be proved and illustrated in this paper that CMF
theory offers at least three distinct advantages. Firstly,
the theory deals directly with functions of a matrix, not
merely the matrix itself. Secondly, it is applicable to
functions of several cyclic matrices, not only a single one,
say the Hamiltonian. Thirdly, the lattice size in the three
space directions can be either small, large, or infinite; al-
lowing a uniform treatment of lattices of various
geometries: chains, strips, rods, slabs, and. clusters.

The following section of this paper is devoted to a pure-
ly mathematical derivation of the CMF properties; it is
self-contained without reference to crystal properties, so
that other potential applications in which the lattice could
be, for example, considered as an approximation to the
continuum are not precluded. The derived results pro-
vide, among others, a completely unambiguous treatment
of the cluster's size effect which is applied in Sec. III to
linear combination of atomic orbitals (LCAO) problems,

but could as well find useful applications in the numerous
schemes where clusters are used as models of extended lat-
tices; namely, the cluster method, molecular dynamics,
real-space rescaling, and moment and recursion methods.

As an illustrative example, Sec. III proposes a CMF
formulation of the LCAO method in solids. The LCAP
method, a one-electron theory of solids, is based on the
solution of the Schrodinger equation for a particle in a
periodic field by using a set of localized orbitals; it pro-
vides a quite accurate description of the properties of a
large class of solids, including covalent semiconductors
and transition metals; also it constitutes a prerequisite for
some more elaborate formalisms, as self-consistent
schemes and density-functional theory. One of the prob-
lems that has hampered development of the formalism in
solids is the difficulty associated with the nonorthogonali-
ty of the localized orbitals; Lowdin ' has described the
problem in detail, and shows its solution to be closely
linked to the evaluation of the inverse and the inverse
square root of the so-called overlap matrix, but the avail-
able numerical procedures have shown to be inadequate in
most cases. More recently a renaissance of the LCAO
method has taken place, not only as an interpolation
scheme (proposed by Koster and Slater ) to describe the
energy bands, but also as a primary method of calculation,
where the recursion techniques play a prominent role in
approaching a large class of systems; an excellent review
is available which discusses, in particular, the modern
methods taking into account the overlap of the basis orbi-
tals. The formulation in terms of CMF, rather than
Bloch's waves, substantially simplifies the problem; by
considering functions of a pseudo Hamiltonian which ac-
count for arbitrary hopping and overlap range, analytic
expressions are derived for any element of the matrix
Green's function, the local and total density of states, the
one-electron energy and specific heat. That is a renewed
treatment of the nonorthogonality problem in the case of
perfect crystals which allows a rigorous solution.

Electronic structure of finite crystals are acknowledged
to be much more complicated than that of the infinite
one, nevertheless, the CMF treatment of nonsimplified
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LCAO models applies fully to finite crystals, without be-
ing restricted to an s-band, first-neighbor model. where the
Schrodinger equation is solvable, as in previous stud-
ies. " '" Here, the difficulties associated with finite size
are successfully dealt with in two different ways, the most
striking result being the general statement that a physical
property of a cluster can be exactly expressed in terms of
this property for "translated" crystals of infinite size.

II. GENERALIZED CYCLIC MATRICES

A cyclic matrix is the name for a square matrix whose
rows (columns) can be generated from the preceding one
by cyclic permutation of its elements. Consequently, the
elements of an NXN cyclic matrix can be labeled with
the use of a single index l, l =0,1, . . . , N —1, which
refers to its column for an element belonging to the first
row. Of particular interest are the N topological NXN
matrices' ' of order q, mq, q =0, 1, . . . , N —1, defined

[mq]r ——5q r for q &N .

Those matrices constitute a natural basis for the represen-
tation of the set of N &&N cyclic matrices; they are com-
mutative and satisfy the following relations:

N —1

gp —1 ~ 2mi (,q —l)~/N (7)

[m ]r=(2n. ) 'g f e"q ' j 'd8,
j=0

(8)

[m "]r=(2m. )
' f e'q ' d8, (10)

and an alternative form of Eq. (8),

[mq]r = g [mq" ]r+jjv
j=0

follows for the elements of the N &N matrix mq.
Now, let us consider a simple cubic lattice of

NI &&N2 XN3 sites, with periodic boundary conditions; we
are interested in generalized cyclic matrices of the form

where Eq. (7) [respectively, Eq. (8)] happens to be the
most useful when N is small (respectively, large) com-
pared to q —l. Notice that actually in Eq. (8) a single
term of the sum is nonvanishing, it satisfies the relation

j=(q l)/N—

so that j~0 when N~oo.
The limit N~oo of the N&N matrix mq will be

denoted by mq . Obviously, m q satisfies Eq. (1), so that

NzP =P1zN =~I (2) A= y mi, Smr, SmI, ag,
km'

(12)

where IN is the N)&N unit matrix,

m mp ——mpma=ma+p ~

(m )r=m~.
According to Eq. (2), we have

m =m~, a=/3 (modN)

(4)

taking into account this property, we can extend the defi-
nition (1), to topological N&&N matrices of order q &N,
that have elements in the form

where ak is a matrix describing some interaction existing
between the sites 0 and k=(ki, k2, k3). The summation
extends over a set g of sites surrounding the origin (or
any site); for a limited range of interaction, we have
E =(k

~

k; (K;), otherwise K coincide with the sc lattice;
by turning off some interactions, i.e., setting some ak s
equal to zero, one obtains a fcc or bcc lattice.

Using the rules (2)—(4), with the caution that the ma-
trices aq may be noncommutative, differ'ent powers of the
matrix 3 are easily obtained in the form

1, q I =O,N, 2N, .—. .
0, —l&O, N, 2N, . . . (5)

m~ q Isimg q mg „II (aI)",
kCK

[mq]l g ~q IjN—
j=p

(6)

Two equivalent analytical expressions follow from Eqs.
(5) and (6):

where, by convention, the overlined factor represents the
sum of products in all possible order. The elements of
this generalized cyclic matrix are matrices having the
same dimension as ak,' they can be conveniently labeled by
using the vector l = (l ~, l2, l3 ), so that

(14)

Now, the elements of any CMF, expressible as a power series in the variable A, can be readily derived from the lat««e-
lation. Substitution of Eq. (7) in Eq. (14), yields
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N) —1N2 1N3 —1

[& ](=(N&N2N3) ' g g g g exp ~ 2mi.
g~& —p ~& ——0 ~&——0 r3 ——0
k

71 , . 72
gpI k, —l& + +pl kz —l2

3
gpkk3 —l3

k 3 keK

j . 171 272 373
N~ —1 N2 —1N3 —1

(N]N2N3 ) g g g exp 2r—ri + +
——0 %2=0 %3=0 1 2 3

k 171 k272 k 373
X g Q a},exp 2ni + +

Ni 'N2
kGK'" '

N) —1 N2 —1 N3 —1

=(N, N, N, )-' g g g e-"[a(v)]~,
0 w2 —0 r3 —0

(15)

where CMF corresponds obviously to j=0 in Eq. (20) so that

a(r)= Q age'"',
kGK

with

71 72

(16)

(17)

[f(&")](=(8~') ' f d8 f(a(8))e

Comparison of Eqs. (20) and (24) leads to the relation

[f(8)]I=+[f(8")]I+j

(24)

(25)

denotes a discrete reciprocal-lattice vector, Then, the
CMF elements take the following form:

[f(A)]r =(N~NzN3) 'gf(a(r))e (18)

An alternative formulation can be obtained, following
the same line of argument, by using Eq. (8) instead of Eq.
(7), which is equivalent to making the transformation:

N~ —]
(2~)-' g f de, ,

~;=0 j =0

2'7T7g
(19)

I;~l;+j;N;,
for every space direction in Eq. (18), giving

[f(A)]~=(8n. ) 'g f def(a(e))e ' +~' (20)

where

a(8) = g aqe'"
keK

and

(21)

8=(8),82, 83),
3=(J' Nl, J'2N2, J'3N3), Jt integer, i =1,2,3,

(22)

(23)

are, respectively, a continuous reciprocal-space vector and
a discrete real-space vector. The simple case of an infinite

which is a generalization of Eq. (11).
Although, the discrete formulation of Eq. (18) and the

continuous one offered by Eqs. (20) and (25) are both
valid VN;, from a practical point of view, Eq. (18) turns
out to be obviously most convenient for N; small, whereas
for N; large, Eqs. (20) and (25) should preferably be used,
because the summation over j which theoretically extends
to infinity is in fact limited to a few terms, for the follow-
ing reason. We assume that in the definition of A in (12),
k; has the maximum value L;; then in A& the maximum
topological matrix order will be pE; which implies that
j; & (pE; —l;)/N~, according to Eq. (9); it follows that de-
pending on the convergence of the power-series expansion,
which defines the CMF f( A ), it is possible to find a prac-
tical restricted range of summation over j. Consequently,
the number of infinite matrix elements needed in (25) for,
a fair representation of one finite matrix element is just
inversely proportional to %1%2%3, but depends quite sig-
nificantly on the CMF which is. being considered.

The former formulations proposed for the CMF ele-
ments are either fully discrete or fully continuous, so that
they are adequate when the three %; values are either
small or large. But intermediate situations exist, where
the lattice could extend widely in only one or two space
directions, to which the transformation (19) in Eq. (18)
should preferably be restricted, in order to obtain the ap-
propriate formulation. An interesting example is offered
by the slab: a three-dimensional lattice infinitely extended
in two directions of space. A CMF defined on a thin slab
could be written as
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[f(A, )]t=(4~ N) ' y . '"'""f f d8 d8 f(a(8, ,8„2m'/N))e
T=O

where
i (8)k j +82k2+2mvk3/N)

a 1 2 'Ir+ akkke
km'

(26)

(27)

so that it appears as a sum of N two-dimensional CMF elements. For a thick slab, the following expression seems more
appropriate:

[f(A, )]t=(8n') ' g f f f d8~d8, d8+(a(8))e
j=0

(28)

gives the result in terms of only a few (cf. the above dis-
cussion) infinite matrix elements, which are available in
analytic form from Eq. (24).

The CMF trace is another very useful quantity which is
straightforward to obtain from the fortner relations by
setting 1=0; so that the discrete formulation is

Trf(A ) =QTrf(a(r)), (29)

whereas the continuous one reads

Tr[f (A )]=N&N2N3 Q TrI [f(A )]jI . (30)

Finally, using the transformation (19) properly, the previ-
ous results can be extended in a straightforward way to
other three-dimensional lattice geometries: rods, for ex-
ample, or to lower dimensions: strips and chains.

III. CYCLIC-MATRIX FORMULATION
OF THE LCAO METHOD

In the investigation of crystal electronic properties, the
major role played by the LCAO method is to emphasize
the part of the binding energy of the crystal originating
from the broadening of atomic levels into bands. The
power of the method itself is largely determined by the
achievement reached in its analytic formulation. But in
the traditional approach, where the electronic properties
of the infinite perfect crystal result from the spectrum,
few analytical results have been obtained so far, and even
fewer analytical expressions of the density of states (DOS)
for nondegenerate s bands only some approximate for-
mulations are available. ' Moreover, the nonorthogonali-
ty problem never received a full analytical treatment, and
in the numerical procedures of orthonormalization, near-
linear dependencies, which may appear in the set of Bloch
functions used as basis functions cause problems.

The situation appears even less satisfactory in the case
of clusters; although some interesting results' '" have
been obtained in closed form for some simple one atomic
orbital per site models, and to say nothing of analytic
solutions, the full treatment of clusters of more than -50
atoms, by solving the secular equation, becomes too great
a computational chore. ' Incidentally, for the solvable
cases, the DOS was simply generated from an energy-level

/

diagram by centering a Gaussian of finite width at the po-
sition of each energy level. '

The model subsequently discussed, is designed to
enhance physical understanding of the effect of nonortho-
gonality and size. So, the atoms retain their bulk position
and satisfy periodic-boundary conditions, the translational
symmetry is fully exploited, all possible neighbor hop-
pings and the most distant overlaps can be taken into ac-
count. Note that similar analysis can describe phonons
and magnons.

In the LCAO method, by considering a finite set of
atomic orbitals (or possibly other appropriate localized
functions) of type a centered on each site I of the lattice,
which is denoted by the column matrix P, the Schrodinger
equation can be approximated by

[H E(IiS)]$=0—. (31)

As the p normalized orbitals of type a are generally not
mutually orthogonal on different sites I, one defines an
overlap matrix I+S, whose elements are the overlap in-
tegrals (a, l

~
P, n).

An interesting reformulation of Eq. (31) is as follows:

[(IiS) 'H EI]$=0, — (32)

where we are led to define a new effective Hamiltonian:

H'=(I iS) 'H, (33)

H= g mk, mk Smk hk .
keK

(34)

Likewise, denoting by sk the matrix whose entries are the
overlap integrals between basis functions, which belongs
to two sites separated by k, the overlap matrix can be
written as

which is generally non-Hermitian, although it has real
eigenvalues. We can now apply to this matrix the results
obtained in Sec. II. If we regard the entries of the matrix
hk as representing hopping from one orbital a in site 0 to
another orbital p in site k, whereas the diagonal elements
of ho represents orbital energies and off-diagonal elements
are hopping between orbitals belonging to atoms in the
same site, we have
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S= g'mk, mk, csmk, cssk, (35)
km'

where the prime on the summation denotes restriction to
k&0. The size of the hk and sk matrices is equal to the
product of the number of atoms per primitive cell by the

number of basis functions per atom. The summations in
Eqs. (34) and (35) are taken over the same set for simplici-
ty.

From the power-series expansion of (I+S) ' and Eqs.
(34) and (35), we then have

H = gmk, mk Smk Ishk —g g mk k, mk ki Qm„„, skhk

~~ ~ ~—I +I +a- —I, +I +I,- —I, +I, +I, --'k-'k'"-k" +
k k' k"

(36)

h'(t) =[I+s (t)]—'h(t),

where

(37)

where M' appears clearly in the form of a generalized
cyclic matrix. The elements of some function f (H') can
be obtained, from the results of Sec. II, through the ma-
trix

Here, it could be desirable to find the new basis set

g=(I+S)'~'P, (41)

that is easily achieved by calculating the elements of the
CMF, (I+S)'~, through the matrix

[I+s(t)]'"=I+—,
' s(t) ——,

' [s(t)]'+ —,', [s(t)]'—

h(t)= g e' 'h k,
km'

(38) (42)

s(t) = g'e'k'sk,
km'

(39)

and t stands for 0 the continuous reciprocal vector in Eq.
(22), or the discrete vector r in Eq. (17), or the
"discrete/continuous" vector in Eq. (27).

Sometimes, one could find it more convenient' to deal
with a Hermitian matrix and to transform Eq. (31) in the
orm

[(I+S) ' H(I+S) ' EI](I+S)'—I)=0 . (40)

As for the effective Hamiltonian

H"=(I+S ) '~'H(I+S )

it is also a CMF and we need to calculate

h "(t)=(I+s )-' 'h (I+s )

(43)

(44)

(I+s) ' =I —,'s+ —', s ———„s + (45)

and obtaining

That is easily achieved by developing the reciprocal of the
square root of the matrix s as

h "(t)= ghke'"' ——'g g'(sk hk+hksk )e' +""
k k k'

+ y y y [ (sk'sk" hk+sk"sk'hk+hk sk'sk" +hk sk"sk')+sk'hk sk" ]e
k k' k"

(46)

Now, many functions of the effective Hamiltonians H'
or H" can actually be obtained by introducing the matrix
h'(t) or h "(t), respectively, given by Eq. (37) and Eqs.
(44) and (46), in the different expressions of the CMF ele-
rnents which have been derived in Sec. II for the various
possible crystal shapes. Therefore, at our disposal we
have, respectively, Eq. (24) for infinite crystals, Eqs. (20)
and (25) for large sized clusters, Eq. (18) for small clus-
ters; completed also by Eq. (26) for thin slabs and Eq. (28)
for thick slabs, and others that could be derived straight-
forwardly when dealing with special crystal shapes. In
what follows, it will be sufficient to derive the CMF ex-
pressions for the effective Hamiltonian H, in the case of
a crystal infinite in the three directions of space, as indeed
the functions of H" proceed readily by replacing h'(t)
with h "(t); whereas a shrinkage of the crystal from an in-
finite to a large extension in the i direction is taken into

account by the following transformation of the CMF ele-
ments given by expression (24):

l; —+l;+j;X;,
(47)

or if the crystal reduces itself to only a few sites in the
direction i, then we use

2&Kg

Nr
(48)



1720 PHILIPPE AUDIT 31

For example, to obtain the exact Green's function

G(E)=[(E+iF.)I H—' ] ', @=0+ (49)
[ReG(E)]g =(2m ) f [EI h—' (8)) 'e ' 'ed 8 .

Turning now to the imaginary part, we write

(51)

g (E,8 ) =[(E+ie)I h' (—8)] (SO)

for a Hamiltonian which is approximate, due to the finite-
ness of the basis set, is of much interest. ' This CMF can
be readily derived by using Eqs. (24) and (37), with g(E)=

adj(EI —h' )+is adj(EI —h' )
BE

det(EI —h '
) +i e det(EI —h '

)
B

BE

(52)

The real part is of the form where adj(A ) denotes the adjoint of the matrix A; also

Img(E)=e
det(EI —h' ) adj(EI —h' ) — det(EI —h' )adj(EI —h' )

B . , B

BE BE
2

[det(EI —h' )] +e det(EI —h' )

adj(EI —h '
) det(EI h' )—B, B

5
det(EI —h '

) det(EI —h '
)

BE

(53)

where we have used the representation

15(x)=-
E' +X

and the property

f(x)5(f(x) ) =0

adj(EI —h') «
n (E)=(2m. ) 'g f . 5(E E„)d8.——~ Tr[adj(E„I h' )]—

(57)

A summation over the diagonal elements also yields the
total electronic DOS in the form

of the Dirac 5 function. Another property

5(fif2)=fr '5(fi)
n( E)=(2m) g f 5(E E„(8))d8.— (58)

is used now to rewrite Eq. (53) in the form

Im g (E)= ~adj(EI h' )5(d—et(EI h' —) ) . —

Making use of the relation'

B det[A(E)]=Tr adj[A(E)] A(E)B

BE

and

5(E E„)—
5(f(E))=g

(54)

However, a main interest of the CMF scheme is to al-
low direct calculations of a range of properties without
appealing to the DOS for evaluating integrals over the
Brillouin zone; this causes a great simplification and al-
lows a direct comparison with experimental data, avoiding
intermediate calculations. This point will now be illus-
trated by derivations of the one-electron energy and
specific heat. The one-electron energy is formally defined
by integration over the occupied part of the spectrum as

U=QE„f(E„)= f En (E)f(E)dE, (59)

we then have

where f is the Fermi-occupation factor

f (E)= I 1+exp[P(E —p)] I (60)

p being the chemical potential and /3=(k&T) ' the re-
ciprocal temperature. In matrix notation, Eq. (59) can be
rewritten in the form

where E„ is an eigenvalue of h', that is a solution of the
secular equation U=Tr[H' f(H' )], (61)

adj(EI —h '
)

Im g(E) = —m.g 5(E E„), (55)—
„Tr[adj(E„I—h' )]

det(EI —h '
) =0 .

The local density of states at an orbital consists of one
diagonal element of the matrix (49):

which yields the one-electron energy per site

u =(2~) f Tr(h' II+exp[P(h' pI)]J ')d8, —(62)

n~(E) = —n. '[ImG(E)]0 ~

which can be rewritten on account of Eq. (55) as

(56)
and by differentiating we obtain the electronic specific
heat at low temperature:
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C /kz ——P (2m) f Tr((h' —pI)II+exp[P(h' pI—)]I exp[P(h' p—I)])dO . (63)

The free energy and other thermodynamical functions are attainable in the same manner.
Remember that the above results can be readily extended to crystals of other shapes by using transformations (47) and

(48}. As an illustrative example of the interesting results to be expected in such cases, we consider the DOS for the s
band of a thin slab (N &2) and assume isotropic, first-neighbor interactions. For an orthogonal basis, with a proper
choice of the energy's origin, Eq. (27) can be written as

h (t)=2E
~ [cosO~+ cos82+ cos(2nr/N)],

and from Eqs. (26) and (58), the DOS per site of the slab is
X —1

n, (E)=(4n N) ' g f f 5(E —2E~cos(2m~/N) —2E~(cosO~+cosOq)}dO~d82 .
v=0

On the other hand, the DOS of an infinite square lattice is

n2(E)=(4m )
' f f 5(E—2E((cosO)+cos82))dO)d82,

(64)

(65)

(66)

hence, Eq. (65) can be rewritten as
X—1

n, (E)=N ' g n2[E —2E~cos(2m'/N)], (67)
r=o

which is a self-explanatory result.
Finally, from those examples, the CMF method has

proven its ability to treat rigorously the influence of size

and geometry on the electronic properties of finite crys-
tals. In the case of semi-infinite crystals, the CMF's have
also been useful to derive exact DOS, ' whereas other
analytical expressions will be reported in the near future.
Subsequently, we plan to extend those result to the most
realistic case of finite-size crystals with nonperiodic
boundary conditions.
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