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A model for tunneling in the presence of a localized, harmonic time-dependent potential is
presented. The effect of dynamic oscillations on the static resonances is determined in two impor-
tant cases: (1) two consecutive high barriers where resonances arise from potential energy traps, and
(2) a sequence of random barriers where resonances arise from disorder-localized states. In both
cases strong resonances survive even when the potentia1 varies rapidly compared to the particle s in-
trinsic lifetime. Analysis of the two-barrier case reveals an interesting connection to a solvable
model of the incommensurate potential prob1em.

I. INTRODUCTION

Resonant tunneling is a characteristic and fundamental
quantum-mechanical phenomenon. A quantum-mechan-
ical free particle of energy E incident upon a region I. of
average potential energy V»E can of course tunnel
through that region; however, the probability of transmis-
sion will be exponentially small with I., unless the energy
E is very close to a resonant energy of the potential V(x).
These special energies correspond to the energies of the
solutions of the Schrodinger equation for the region I.,
which are localized in the middle and have roughly equal
wave-function amplitudes at both ends. At such energies
the transmission coefficient may be of order unity in-
dependent of the height of the barriers (although the reso-
nance widths will be very small if the barriers are high).
The particle transmission therefore exhibits dramatically
sharp resonances at energies determined by the potential
V(x); this phenomenon is known as resonant tunneling.

It has recently been argued' that conduction in disor-
dered solids, particularly quasi-one-dimensional systems,
should exhibit interesting resonant tunneling effects be-
cause of the localization of states due to the random po-
tential. The strongest, sharpest resonances would corre-
spond to states peaked within a localization length L, o of
the center of the solid, and the nonresonant background to
states localized at one end. The energies of the resonances
depend on the particular impurity configuration of the
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sample. Moreover, there is a great deal of recent experi-
mental work which shows dramatic nonmonotonic
variations in the conductance of quasi-one-dimensional
metal-oxide-semiconductor field-effect transistor (MOS-
FET) devices as a function of Fermi energy. The observa-
tion th.at these oscillations are reproducible within a given
sampl» upon voltage and temperature cycling but differ
from sample to sample is suggestive of resonant tunnel-
ing.

However, resonant transmission is associated with tun-
nehng through exponentially narrow quasibound states
which thus have very long intrinsic lifetimes. The physi-
cal picture is of a wave packet of extremely well-defined
energy (hence of great spatial extent) incident upon the
scatterer and slowly leaking into its interior. Away from
resonance the multiple internal reflections destructively
interfere and rapidly an exponentially small "steady-state"
density is established in the interior, from which a small
additional flux leaks out the other side. Just at resonance,
however, the internal reflections constructively interfere
and a large "steady-state" density builds up inside the
scatterer over a time on the order of the inverse resonance
width (which typically scales exponentially with the
length of the scatterer); and finally the particle, which is
now mostly localized within the scatterer, leaks out the
other side with high probability. This picture is entirely
consistent for an electron in a static potential at zero tem-
perature or, more generally, whenever the intrinsic reso-
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nance widths are greater than the frequencies of any
dynamic fluctuations in the potential barrier; however, it
is problematic when applied to systems where dynamic
potential fluctuations typically occur on a much shorter
time scale than the inverse resonance width. The con-
structive interference leading to resonant transmission
ought to be disrupted by inelastic scattering. The crucial
question is whether resonant transmission is destroyed by
dynamic fluctuations on the very-low-energy scale set by
the resonance width, or only by fluctuations on a larger
scale such as the resonance spacing or particle energy.
Therefore we are motivated to ask a very basic physical
question: What is the effect of introducing a time-
dependent potential on the resonance transmission? In
this paper we answer this question for the case of a local-
ized harmonically time-dependent potential in one dimen-
sion (1D). We solve this problem exactly numerically for
a particle tunneling through a random potential, and by a
variety of analytic and numerical techniques for the sim-

ple case of tunneling through two high barriers. Physical-
ly this model represents the effect of a harmonic external
driving force interacting with the tunneling particle. It
may also be cautiously interpreted as a semiclassical
model of the effect of inelastic scattering from a localized
phonon mode, but it does not adequately simulate physi-
cal effects arising from the distribution of phonon ener-
gies and dissipative effects present in thermal equilibrium.

P(x, t)= g Pn(x)e " +""".

Substituting this into Eq. (1) gives

a'y„
(E+nco)Pn = —

z +(u~+u2)P„

+y&(»(0. i+An+i) . (2)

fntn+yhn(gn+ltn+1+gn —ltn —1) sno ~

where f„,g„,h„are energy-dependent coefficients deter-
mined by M„'" and M„' ':

Integrating Eq. (2) over an infinitesimal region around the
origin yields a linear relation- between Pn (0+ ) and
Pn(0 ),Pn &(0 ),Pn+~(0 ). At + oo, each Pn consists of
a sum of two plane waves with wave vectors
+k„=+(En)'~z, En=E+nco Fo.r a given E„, there al-
ways exists a linear relation between the plane-wave am-
plitudes at + co and at 0+—

, expressible in terms of 2&(2
transfer matrices M „'",M „' '. Combining these two rela-
tions and assuming there is a monochromatic incoming
wave of energy E at + ao and only outgoing waves at
—oo gives us a linear relation determining t (E +neo): t„, —
the transmission amplitude at outgoing energy E„,

II. GENERAL MODEL

The model' we study is described by a time-dependent
one-dimensional Schrodinger equation of the form

g„=(M„'")»+(M„"')»,
h„= (i/2k—„)[(M'„')2)—(M „' ')»j .

. ay(x, t) a'
i ' = — +u&(x)+uq(x)

ax

Although we wish to solve for t„, it is convenient to iso-
late the energy dependence in Eq (3) b. y defining
&n =tn8n~ giving

+ 25(x)y cos(cot) f(x, t), Q„c„+r(c„„+c„,) =(1/h, k, )S„, ,

where %=2m =1, u~(x) is an arbitrary static potential
which is 0 for x ~0 and goes to 0 as x —+ —ao, and u2(x)
is an arbitrary static potential which is 0 for x&0 and
goes to 0 as x —++ oo. We wish to calculate the transmis-
sion amplitude for a particle incident from + op to tunnel
to —ao, and to stud'y its energy dependence as we vary the
two parameters y and co, which characterize the dynamic
potential. to is of course the quantum of phonon energy,
and, since we assume no particles are trapped in true
bound states of the barrier, we must always assume
co «E. The dimensionless parameter I =y/VE is essen-
tially the probability of emission or absorption of one
phonon while tunneling (when this ratio is small), and we
will be mainly interested in the case when I co, the typical
energy transfer in tunneling, is greater than the intrinsic
resonance width but much less than the particle energy.
Another important energy scale is the resonance spacing,
which is basically the energy-level spacing of the scatterer,
Ae, and this will enter our model in a natural way below.

Since the only time dependence is harmonic, we can al-
ways write a solution as

where Q„=f„/(h„g„ko), and r =y/v E =y/ko.
Equation (4) is the basic equation of this model. It says

that for a monochromatic incident wave of energy E,
there will be transmitted waves at all energies 8+neo
whose amplitudes are determined by the nearest-neighbor
finite-difference equation in frequency space (4). All in-
formation about the static potential u~+u2 is contained
in the function Q„which depends on the elements of the
transfer matrices M „"',M „'

' at energies E„. The parame-
ter I measures the coupling to the time-dependent poten-
tial and the static limit is obtained by letting I"~0. It is
worth noting the formal analogy between Eq. (4) (for
n&0) and the Schrodinger equation for the real-space
wave-function amplitudes (at E=O) of a nearest-neighbor
coupled tight-binding model. To obtain a useful represen-
tation of the diagonal element Q„, we now introduce a
completely general parametrization of M „"',M „' ':

ia- . iP-
cosh(si )e ' sinh(sj )e

M (j)
sinh(sJ)e ' cosh(sj)e
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By definition, [M (E„)]~I is the inverse of the static transmission amplitude across the potential uj(x) at energy E„;
therefore e measures. the static tunneling probability and sj will typically be much greater than 1, while aj and PJ.
determine the phase shifts across uj(x). With this parametrization,

f„=e cosh(s, +sz)cos
i (p& —p2 —a& —a2) a(+a2+ f3I p2—

2
i—cosh(s I

—s2)sin
a I +a2+ Pl P2

2

—iI(aI —pI)/2] $&

g =8 8 cos
aI+pI

2

—2$ i—l8 Sln
a I

—I3I

2
(5b)

h„=(1/2k„)e ' ' e ' sin

T

a~ —A —2$2+ l8 COS (Sc)

and, if s1,s2))1,
2k„aI+a2+ pI —p2

0

r

a I +Pl . a2 f32
COS S1n

We see that Q„can vary between + co, " if we ignore the
intrinsic resonance widths, and typically is order unity.
Thus we might guess that Q„may take arbitrary values at
integer n and simulates to some extent a random 10 po-
tential. In the static limit (I ~0), from (4) we see

t. =b.p(Qohogoko) '-5.o(e " "/Qp), (7)

which tells us that static resonances, with t0-1, corre-
spond to incident energies where Qp =Q (E) is 0 to accu-—SI —, $2
racy e ' '. Moreover, we see that the energy scale over
which Q„varies appreciably is at most the energy-level
spacing of the scatterer, he, therefore we must always
consider Eq. (4) over an energy range neo &&b,e to obtain a
meaningful solution independent of boundary conditions.

Because of the generality of our formulation of Eq. (4),
we are able to make some useful observations about the
solutions for the transmission amplitudes independent of
the form of the potential which gives rise to the static res-
onances. If we think of Eq. (4) as an infinite dimensional
matrix equation of the form Qc=Vp, we can immediately
write down its solution in terms of a spectral representa-
tion of the operator Q

~08nk0 m =0

X (0)X (n)

~m

where jA,~ },jg } are the eigenvalues and eigenvectors of
Q, satisfying the equation

Q„X (n)+ I [X (n +1)+X (n —1)]=AX(n) . , (9)

Based upon the form of Eqs. (8) and (9), we can make
several general comments about the nature of the solu-
tions t„. First, the factor 1/(hog„kp) in (8) sets the scale
for the nonresonant transmission; typically,
1/(hog„ko)-e ' '. If there are incident energies for
which some A, -e ' ', then there will be resonances at
these energies, assuming X (0) is not too small. Since for
each choice of incident energy one gets a continuously
varying set of j Q„}and thus j A,~ },it would seem that by
varying E one could always get an eigenvalue to cross
zero. This suggests that the resonances will remain for

finite I, but at shifted incident energies. However, the
strength of the resonances will depend on the amplitude
the eigenvector with smallest eigenvalue has at the in-
cident energy (site 0 in the lattice language). This depends
crucially on whether the solutions to Eq. (9) are localized
in energy, or extended. If they are localized, then we can
predict the new resonant spectrum in the presence of in-
elastic scattering quite generally from a perturbative solu-
tion of Eqs. (8) and (9).

III. GENERAI PERTURSATIVE ARGUMENT

In this section we assume that the solutions of Eq. (9)
are localized, and that therefore perturbation theory con-
verges. Below we will present both numerical and ana-
lytic arguments that this assumption is justified in all
relevant cases except one.

When I =0 the eigenvalues of Eq. (9) are just j Q„}
with associated eigenstates that are completely localized
(i.e., unit vectors on site n). Denote the unperturbed
eigenstates at incident energy E by j ~

n, E) } with eigen-
values j Q„(E)},and the perturbed states by j ~

X„,E) }
with eigenvalues jA.„(E)}.Assume for the moment that
I & 1. Suppose a static resonance occurs at E„so
Qo(E„)=0. For I &0, the new eigenvalue Ap(E„)-I
however, if the eigenvalues A,„are a continuous function
of E, then for some nearby energy E„', with Qp(E„' )-I
the shifted eigenvalue Ap(E„' )=0. E„' is fully determined
by the usual perturbation series for A.p(E„' ), i.e.,

A,p(E„' ) =Qp(E„' )+ g A,p '(E„' )I =0,
m=1

where, e.g.,

(10)

~o"=[Qo«') —QI«')] '+[Qo«') —Q-I«')1
Note, however, A,p(E„' ) must be zero with accuracy
e ' to give a resonance of order unity, so many terms
in the power series in Eq. (10) must be kept to determine
E, precisely and in practice it is easiest just to search nu=

merically for E„' near E,. To leading order in 1 the new
eigenvector

~
gp, E„' ) has matrix elements
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(n, E„' iXp, E„' ) =5„p+I "A„p,
where

j=n

For n=O the matrix element is approximately unity and
there is indeed a strong resonance (which we will call a
fundamental resonance) at shifted incident energy E„'
with tp —1 (assuming A,p-e ' ').

Furthermore, if E,' gives Ap(E„' )=0, it is clear that in-
cident energy E„'+neo will give A, „(E„'+neo)=0, since
shifting incident energy by neo generates exactly the same
set I Q„ I, just relabeled. The only difference is that the
overlap (X „,E,'+neo

~
O, E,'+neo) —I ". Therefore the

maximum transmission amplitude is now at energy neo

below the incident energy, at E,', with a maximum ampli-
tude t „(E„+neo) I".-Therefore the time-dependent
potential creates a set of weaker subsidiary resonances as-
sociated with each fundamental resonance.

As for the widths of the new resonances, we can make
the following argument: The form of the eigenvectors in
Eqs. (8) and (9) does not affect the width of the reso-
nances, only their strength. It is the dependence of the
smallest eigenvalue on incident energy which determines
the width. The static resonance width is obtained by ex-
panding Qp(E„) and is essentially [(BQp/BE)(E, )]
)&e ' '. From Eq. (10) we see that (BA,p/BE)(E„' )

(BQp/BE)(E„' ) (BQp/BE)(E„) to order I . Therefore,
the fundamental resonances are not broadened at all in the
strict sense and are still exponentially narrow; however, it
is possible to regard the appearance of subsidiary reso-
nances as a type of thermal broadening, as will be dis-
cussed in our conclusions.

When I ) 1 our perturbative argument is still valid as
long as the solutions of Eq. (4) are localized as n~+ oo

and there will still be exponentially small eigenvalues
determined by Eq. (10). However, their eigenvectors will
be extended over many "lattice sites" and there will no
longer be a clear set of fundamental resonances; instead
there will be an oscillatory structure to the transmission
coefficient as a function of incident energy, showing
sharp, relatively weak resonances with spacing co.

To summarize, our perturbative argument implies that
for I & 1 the static resonance of order unity survives at a
shifted. energy E„'. In addition the system develops weak-
er "satellite" resonances at incident energies E,'+neo, in
which the particle scatters inelastically, absorbing or emit-
ting n quanta, and emerges with the resonant energy E,'.
Neither the fundamental or satellite resonances are
broadened. When I ~ 1 there are still zero eigenvalues
which give rise to a rapidly oscillating transmission spec-
trum with many weak resonances but no fundamental res-
onances of order unity. The validity of these arguments
(except in one special case) for the two physical situations
we consider is confirmed by numerical calculations, some.
of which will be presented below.

IV. THE T%0-BARRIER CASE

First we consider Eq. (4) for the case where we choose
the static potentials u& and u2 to be two consecutive

(2k„/kp )sin(k„L )
~ ~

sin(k„xp)sin[k„(L —xp)]
(12)

to zeroth order in k/Vp. As noted above, this result has a
simple physical interpretation. The zeros of Q„occur at
the static resonance energies, which in this case corre-
spond to the quantum states of a particle in an infinite
well and of course occur at energies where k„L, =ma.
The zeros of the denominator represent resonances be-
tween the static delta functions and the oscillatory delta
function, at xp. Equation (12) holds for any choice of two
high, sharp scattering barriers u&(x), u2(x), although the
first correction in k/Vp will vary. To get a better feeling
for the eigenvalues and eigenvectors of Q given this form
of Q„we expand k„=kp+nco/2kp and define
kE'= 417k p/L 6E~ =477k p lxp EE2 =477k p l(L —xp ) giv-
ing

2k„ 27Tn co
sin kpL +

0

27Tn co 27Tn cosin kpxp+ sin kp(L —xp)+
A@2

(13)

Ignoring the relatively slow variation of k„. Q„ is the ra-
tio of three periodic functions of n co with different
periods, and except for special choices of xp the position
of the oscillatory 5 function, the periods are not com-

strong-scattering barriers with a classimlly allowed region
between them. By strong scattering we mean each barrier
has a transmission coefficient much less than 1 in isola-
tion and for further simplicity we will assume that the
average of the barrier potential over the forbidden region
is much greater than the particle energy. This latter con-
dition ensures that the static resonance energies are shift-
ed very-little from the value they would have if the forbid-
den region were infinite and the resonances were true
bound states. Then there are two possible situations. Ei-
ther the barrier is sharp on the scale of the particle wave-
length or it is smooth. In the former case the resonance
energies will be well approximated by the energy levels of
a particle in a box which is the length of the classically al-
lowed region; in the latter mse they will be well approxi-
mated by the energy levels determined by applying the
WKB approximation to the allowed region (i.e., the Bohr
quantization condition). We will treat the former case
here, but extension of the analysis to the latter is straight-
forward.

For definiteness we consider a model consisting of two
static delta-function barriers separated by a distance L,
with the time-dependent delta function at an arbitrary lo-
cation xp between them:

u ) (x)= Vp5(x +xp) u2(x) =Up5(x L+xp —)
with Vpg&E,

and 0 & xp &L. A simple calculation of the static transfer
matrices yields u& ——a2 ——arctan( —Vp/2k) =—n /2, and
P&

—— rr/2+ kL, —132—— vr/2 kL.—Thus—
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mensurate. In this case Q„ is aperiodic and we would cer-
tainly expect the eigenvectors of Eq. (9) to be localized.
Even if the periods are commensurate, Q„will not be
periodic at integer n unless the driving frequency co is
commensurate with the energy-level spacing Ae. In this
special case Q„ is approximately periodic and this has in-
teresting physical implications which we will discuss in
detail below. However, for the moment we wish to argue
that the solutions to Eqs. (8) and (9) are localized in all
other cases.

A nonperturbative argument leading to this conclusion
comes from making the choice xp L/2——, that gives the
simplest rational relation between Ae i, A@2 and
ae:ae, =ae, =ae/2, giving

40

20

~g~ &W&w ~(~~~V ~ag ~/IV+r
l

koL en~Q„=2cot + (14)
40

Now Q„ is a simple periodic function of nrp, but unless
co/Ac is a rational number, Q„will not repeat at integer
n,. This reveals an exact formal analogy between the
eigenvalue problem of Eqs. (9) and (14), and the problem
of the nature of the eigenvalues of an electron in an in-
commensurate spatial potential which has been of great
recent interest to theoretical physicists. Moreover, for Q„
of the above form, the exact eigenvalues and eigenvectors
of Q are known for co/b, F. irrational 'A.s conjectured,
the exact analytic solution shows that Q„mimics a ran-
dom potential: (i) All eigenvectors are localized. The lo-
calization length is determined by I just as it is in a
tight-binding model with a Cauchy distribution of ran-
dom site energies (of unit variance) and constant nearest-
neighbor hopping matrix elements I . (ii) In general the
equation which relates the eigenvalues to the values of the
initial phase of the cotangent is complicated (this phase
kpL is of course determined by the incident energy in our
model, and thus is the parameter we want to vary). How-
ever, fortunately, for zero eigenvalues it simplifies greatly,
and implies that there are zero eigenvalues whenever

k OL =2&Vi +2&V2 (15)he '

where vi, v2 are integers. Clearly, a choice of vi deter-
mines the energy of the fundamental resonance, whereas a
choice of v2 determines the energy of the subsidiary reso-
nances spaced co apart. (iii) The dependence of the eigen-
values A,„on incident energy near A,„=O is linear and res-
onances are not broadened. (iv) Expansion of the solution
for the eigenvectors with zero eigenvalue for I (1 agrees
with our perturbation theory for the resonance strengths.
Thus all these results are consistent with perturbation
theory, and since the choice xp L /2 gives the m—o—st sim-

ple periodic form for Q„, this strongly suggests that the
general features of the new resonance spectrum are
correctly described by the perturbative analysis given
above. Note that this conclusion has the sensible implica-
tion that the qualitative behavior of our model does not
depend at all on the position of the oscillatory delta func-
tion xo. These conclusions are confirmed by numerical
solution of Eq. (4) in the two-barrier case; see, e.g., Fig. 1

in which we have plotted the total transmission coefficient
T = g i t„~ versus incident energy E.

20

-Ko2 -0.01
I

0.01 0.02

E

FIG. 1. Plot of —lnT versus incident energy E' for two
rectangular barriers. The dashed line is the static result with
static resonance energy Eo ——1.0, the solid line is for I =0.1.
The energy range shown is two level spacings (measured from
Eo) and the small energy shift of the static resonance is not
shown. co=0.001, which is the spacing between resonances.

The only situation in which one would expect some-
thing new to happen on physical grounds is when co, the
driving frequency, is commensurate with he, the energy-
level spacing of the barriers. Then the time-dependent po-
tential can cause real energy-conserving transitions be-
tween the resonant levels with the emission or absorption
of an integral number of quanta and this should have im-
portant physical consequences. This is the case we con-
sider now.

If co/b. e is rational, then Q„ is periodic and commensu-
rate with the lattice [in the approximation of Eq. (14)].
%"ithin this approximation we ignore all energy depen-
dence of Q„except for the linear expansion of k„L, and
we may write Eq. (9) in the form

2 cot
koL

2
+r np/m t„+1(r +r+r &)=f5„p . (16)

where t is the nonresonant transmission amplitude, and p
and m are integers (p/m =co/he). Our spectral represen-
tation of the solution for t„[Eq. (8)] is no longer mean-
ingful, since it implicitly assumed the existence of an
orthonormal set of eigenvectors. Such a set does not in
general exist when Q„ is periodic. However we can still
solve Eq. (4) directly by finding solutions of the equation
for n&0 and then connecting two such solutions at the
origin in a manner consistent with the inhomogeneous



1712 A. DOUGLAS STONE, M. YA. AZBEL, AND P. A. LEE 31

term. The solutions away from the origin must reflect the
translational symmetry of the "lattice, " i.e., the solution
in one unit cell must be a constant times the solution in an
adjacent cell (it may be worth reminding the reader that
we are always referring to positions in energy when we use
the terms "site" and "lattice" ). If the constant has
modulus unity the solution lies in a band of the lattice and
must be of the Bloch form; if it has a modulus not equal
to unity the solution lies in a gap and must be exponen-
tially growing to the right or left. In a perfect lattice such
gap solutions are not allowed; however, because the equa-
tion we are solving is inhomogeneous it is possible to con-
nect a solution which decays exponentially to the left of
the origin with one that decays exponentially to the right
of the origin and get a full solution which does not blow
up at + ao. An examination of Eq. (16) for various values
of I, p, and I' reveals that both types of solutions can
occur. For gap solutions we impose the boundary condi-
tions that t„~O as n~+op. Then the three joining
equations for t„at n =0,+1 fully specify the solution for
t„The d. etails of such a solution are worked out in the
Appendix; however, the results are not too interesting, be-
cause it results that there is in general no broadening or
damping of the static resonances. The case where the
solution lies in the band is physically much more interest-
ing because it corresponds to the situation where the parti-
cle makes real transitions to other energy levels of the bar-
rier while it is being transmitted, which is what we usually
mean by inelastic scattering. Unfortunately, with the ap-
proximation of Eq. (16), we cannot obtain a meaningful
solution for t„. This is because when the solutions are in
the band we cannot impose the boundary condition that
t„~0 as n —++ Do, and therefore in order to fully specify
a solution we need to impose a further arbitrary boundary
condition at some finite N. But then our solution will de-
pend on what boundary condition we choose and will not
be physically meaningful.

To get around this difficulty we must abandon the ap-
proximation of Eq. (16), and insert the next energy-
dependent terms in Q„, which destroys its perfect periodi-
city. Now the solutions will be localized in energy as in
the incommensurate case, but on a much broader energy
scale. We can estimate very crudely the new energy local-
ization- length by looking at the most rapidly varying
energy-dependent correction to Q„, which is the next term
in the expansion of the argument k„L in the cotangent,
and arguing that when this is of order m the approximate
periodicity of Q„ is lost. This predicts an energy localiza-
tion length No-(Eke/co )'~ . If we now return to our
spectral representation of the solution, it is clear that we
can still get zero eigenvalues by searching in incident ener-
gy. The spacing between eigenvalues whose eigenvectors
have significant overlap with site 0 will now be on the or-
der of 1/2Vp and since this is typically much greater than
the resonance width there will still be only one zero eigen-
value for each strong resonance. However, now for a
monochromatic incident wave at the resonant energy
there will be outgoing waves of equal strength at all ener-
gies E„within Xpco of the incident energy. If we again
look at the spectral representation for t„ in Eq. (8), assum-—s1 —s2
ing one smallest eigenvalue A.,=e dominates and es-

V. THE RANDOM SYSTEM

Now we turn to the case where the static potentials u ~

and u2 are sequences of Ni and X2 random barriers
which represent a disordered solid. Informed by our work
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FIG. 2. Plot of —lnT vs E for two sequences of 1000 random
barriers with w=1.0 and E0-2.19. The dashed line is the static
result and the solid line the result for I =0.1. The average level
spacing is about 0.002, co=0.001, which is the spacing between
resonances, and the actual width of all resonances shown is of
order 10

timating the total transmission, we find that
~

g„" 0 „~
is now reduced by a factor 1/No, assuming the normal-
ized eigenvector g, ('n)-No . A similar crude estimate
suggests that ~A, /~E is increased bya facto~ No, whic
causes a broadening of the resonance. Although this re-
sult makes some sense qualitatively, it should not be taken
too seriously, since it only applies to the case where there
are many levels with spacing exactly equal to co, whereas
one might suppose that the possibility of inelastic scatter-
ing to even one other level would disrupt the phase coher-
ence needed for resonant tunneling. However, we note
that if the time-dependent potential is due to an external
field, our model makes the physically sensible prediction
that in this case the transmitted electron emerges with
much greater mean squared energy than the incident one,
and this means the external field heats the electron distri-
bution much more efficiently. This kind of resonant ef-
fect is often observed in atomic or molecular physics
where the external field is provided by a laser; it would be
interesting to observe such an effect in a semiconductor
heterojunction at low temperature.
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on the previous model we can immediately see the only
essential difference between localized states arising from
the strong scattering barriers and those arising from a
random potential. In the latter case, the energy levels are
not equally spaced; rather they are randomly distributed
over some energy interval. Therefore, there should be no
analog of the case where co is commensurate with Ae, and
a pure harmonic driving force can never broaden the reso-
nances of a disordered scatterer. However, we do expect
satellite resonances to appear here in essentially the same
way as in the previous model when ~ is incommensurate
with he.

N,To confirm this we choose ul(x) = g, , V, 5(x +a),
N2

u2(x) = gb ', V&5(x b), w—, here I V, q I are random vari-
ables uniformly distributed with —8'& V, b & O'. We nu-
merically generated the transfer matrices M „"' and M „'

'

for a particular impurity configuration and generated the

I Q„I needed for Eq. (4). As long as the solutions of (4)
are localized, they may be found with exponential accura-
cy by truncating the finite difference equation at E+Nco
(for some large X) and inverting the resulting matrix
equation. In order to consider fairly large N we used the
iterative inversion algorithm for tridiagonal matrices first
employed by Thouless and Kirkpatrick. ' Not surprising-
ly, we find the solutions of (4) are localized and typical re-
sults for the new transmission spectrum are shown in Fig.
2. The numerical results also show that there is no reso-
nance broadening, only a shifted resonance with satellites.
This is fully consistent with our earlier perturbative argu-
ments.

VI. CONCLUSIONS

The physical interpretation of our results is thus
straightforward. For I &1, the harmonic driving field
does not significantly alter the intrinsic level structure of
the system, even though the potential varies significantly
during a particle lifetime, unless co is commensurate with
the intrinsic level spacing b,e. This cannot occur for a
random system, since Ae is not constant. The only altera-
tion in the resonant spectrum arises from a small shift in
the resonance energies due to the presence of the time-
dependent potential, and the fact that now a particle in-
cident at a gap energy exactly neo from a level can make a
transition there and be resonantly transmitted. This phe-
nomena is analogous to thermal broadening in that it al-
lows an electron with the "wrong" initial energy to still fit
into the resonance. It seems clear that a time-dependent
potential with a continuous distribution of frequencies
will lead to a continuous broadening of this type, and not
just discrete sidebands. However, the more interesting ef-
fect physically is not the smearing of the incident electron
energy, but the effect of inelastic scattering on the quasi-
bound state itself. This effect is only seen when co is com-
mensurate with Ae so that the particle can make real tran-
sitions from one level to another; this phenomenon may
lead to a true increase in the intrinsic resonance width.
Our model does not allow a detailed, physically meaning-
ful calculation of this broadening.

Finally, we emphasize that a thermal equilibrium distri-
bution of oscillating potentials may have a very different

effect on the resonances of a random system in part be-
caus'e such a potential can cause real transitions to any
level within kR T of the incident energy. However, it is by
no means clear that even an arbitrary time-dependent po-
tential (with a cutoff frequency which plays the role of
the temperature) is a fully adequate model for inelastic
scattering in a solid. This is because such a model still
may not simulate the effect of the exchange of energy
with a thermal reservoir; which introduces irreversibility
and therefore true dissipation into the system. The ques-
tion of how inelastic processes affect resonant tunneling
appears to be closely related to the general question of
how interaction with a macroscopic system can destroy
quantum-mechanical interference phenomena. A first-
principles theoretical answer to this question is a goal we
have not yet attained. '

ACKNOWLEDGr MENTS

We would like to acknowledge the patient assistance of
K. Rabe in computational aspects of this work, as well as
a useful discussion with D. Grempel. Part of this work
was supported by National Science foundation MRL
Grant No. DMR81-19295, and by Office of Naval
Research Grant No. N00014-77-C-0132. One of us (M.
Ya. A.) is very grateful to M. H. Cohen for his hospitality
at Exxon Research Corporation.

t„=HI @t (n)+AR@R(n), (A 1)

where +I and 4~ are the solutions of the homogeneous
equation which decay exponentially to the left and right,
respectively, and AI, Az are constants. Write n =qm +p,
where q and p are integers ( m is the number of sites in the
unit cell). Then by translational symmetry

pl. (n)=(&l. )'U (p),

QR(n)=(AR)~U (p),
(A2)

where A,t R are eigenvalues of the translation operator,
and U ' (p) are periodic functions satisfying U(p + m)
= U(p). By definition

~
At

~
&1, AR

~

&1. We shall see
below that A,I A,z ——1.

We can determine A,t R as follows: Inserting the form
(A2) into the homogeneous equation yields m equations
for U(p) (we will now suppres's the indices L,R). Howev-
er, only the two equations at the boundaries of the unit
cell involve A,. If we define

e&
——2 cot

kQI.
+

2 qm
p=0, 1, . . . , m —1,

then these equations are

APPENDIX: SOLUTION OF EQUATION (16) IN CHEAP

In this Appendix we outline the solution of Eq. (16)
when the solutions of the homogeneous (t =0) equation lie
in a gap. For n&0 any solution must be a sum of the two
linearly independent solutions:



1714 A. DOUGLAS STONE, M. YA. AZBEL, AND P. A. LEE 31

AeoU(0)+ I [A,U(1)+ U(m —1)]=0,

t U(m —1)+I [A,U(0)+ U(m —2)]=0 .
(A3)

Thus t„~0 as n ~+ ao, as it must. We choose the nor-
malization $1 ( —1)=1, Pz(1)=1. With this choice the
equations for tp, t&, t ] are

U(m —1) ~ —2 U(1) U(1)
T(P)

U(m —2) & + — U(0) —m U(0) (A4)

where the T'p' are 2 &(2 matrices given by

To eliminate two unknowns from this equation we note
that the other m —2 equations can be rewritten in the
form

—I (AL +Ag )
to —— +

E'p &o

—I
t) ——A~ —— (to+rttt),

—I
(ro+r2r —1) i

(A7)

T(P)=
0

—e~ /I —1

1

with rt ——U (2)/U (1),
Solving these gives

r2 ——U (rn —2)/U (m —1).

For simplicity of notation we define ( T ) t ~
——T&,

(T )t2 ——T2, (T )2) ——T3, (Tm)22 ——T4. Then using (A4)
to eliminate U(1), U(m —2) in (A3), we write (A3) as a
matrix equation and set the determinant equal to 0. This
gives a quadratic equation for A, , with solutions

with

t /ep

1+(r/e, )P
(AS)

(A9)

k= —b+ (b 1)'~—

1 &oT& —T2
2 I

(A5)

Al $1 (n), n & —1

Agog(n), n ) 1 . (A6)

Note, the product of the roots is unity, as claimed.
Knowing A, , one can now plug back into the m equations
for I U(p) I and solve for them up to a normalization fac-
tor. Now we return to solve the inhomogeneous equation.
We assume

Static resonances of order unity occur when koL is near
enough to an odd multiple of m that ep-t. We assume
eo« I «1. If P were of order unity we would then
predict a weakened, broadened resonance. In fact, since
the cotangent is antisymmetric around its zero,

I
eo

I
. and P-I /eo Thus to-t/eo, and

we find no damping or broadening of the static resonance
for this case. Numerical solutions for t„ in Eq. (16) by
direct diagonalization (not using this approach), for vari-
ous values of m, show that these gap solutions do exist
and do not give damped or broadened resonances, in
agreement with the above argument.
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