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Dynamical behavior of fractal structures
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We present a scaling theory for the vibrational properties of tenuous fractal objects and a numerical cal-

culation of the density of states for percolation clusters and diffusion-limited aggregates. A microscopic
elastic Hamiltonian is used, which contains bending energy terms and properly describes the elasticity of
such structures. We find that the density of states is weakly divergent at low frequencies implying that
fractal aggregates relax to a new configuration beyond a critical size.

Many physical systems have been made which have a
fractal structure. The vibrational properties and mechani-
cal behavior of these systems are very different from those
of ordinary compact objects. Here we present new predic-
tions for the dynamical behavior and mechanical stability of
such structures. Two examples of physical systems for
which this discussion is of interest are as follows. (a) Ran-
dom composite materials made out of rigid particles in a
soft matrix such as polymer carbon-black composites. In
this case the rigid component forms very large fractal clus-
ters often near the percolation threshold. 3 (b) Colloidal ag-
gregates such as gold and silica aggregates which are fractal
over a wide range of lengths. These structures are made
up of units that are considerably larger than atomic size and
remain stable in the configurations in which they are
prepared. Other materials to which this theory could be
relevant are microscopically disordered network materials
such as gels and glasses.

Most disordered fractal structures are characterized by a
preponderance of long wispy chainlike structural elements.
Kantor and Webman7 have suggested that the elasticity of
such fractal structures is related to the elastic properties of
thin rods and thin rigid plates. They show that the scaling
of the elastic moduli of a fractal cluster differs markedly
from that of the electrical conductivity or the dielectric con-
stant. In this work we present a scaling theory which relates
the static elastic behavior to the vibrational properties of
such clusters. %e then calculate the density of vibrational
states. From our numerical results for the density of states
at low frequencies we extract the values of the static scaling
exponents, and compare it to the analytical values. We also
present a calculation of the density of states obtained by the
Born model which has been used to describe the vibrational
properties of fractal systems ' and show that the two
models give very different results. The meaning of this
difference and conditions for the correct choice of model are
then discussed. The two systems studied are percolation
fractals" and diffusion-limited aggregates (DLA). '2

In the lattice model for fractal structures, a cluster is gen-
erated on a lattice which has a stochastic geometry analo-
gous to that of the corresponding physical structure. For
percolation clusters the lattice sites are randomly chosen
with probability p. For p~p„a cluster which spans the
sample can be separated from isolated clusters. This cluster
is fractal up to a size scale $ which diverges at p, . Fractal
aggregates can be created by diffusion-limited aggregation or
by alternative stochastic growth methods. ' The macroscop-
ic rigidity of the material is determined by the elasticity of

long, tortuous thin channels of rigid material which are con-
tained in the cluster backbone. The elastic behavior of a
tortuous thin rigid chain depends on the chain configura-
tion. 7 The elasticity of a corresponding lattice chain within
the scalar Born model depends only on the length of the
chain, suggesting that this model may not be adequate. The
model presented here leads to a. correct representation of
such continuous chains and can be expected to properly
describe a continuous percolating system in the critical re-
gion, as well as more general fractal structures in which the
elastic behavior is dominated by a stringy, tortuous back-
bone.

The elastic lattice Hamiltonian in two dimensions'4 has
the form

G X Sgjik+ 2 g (Ui uj) II

J,k a
(J,kNNof i) (NN)

(la)

where (u& —uj) q is the relative displacement of the site j in
the direction parallel to the bond (ij), and e@jIk is the
change in the angle between the bonds (i,j) and (i,k) con-
nected to site i The .summation g' is over nearest-
neighbor lattice sites of i which belong to the cluster. G and
Q are local elastic constants and a is the lattice constant. A
second model which has been recently used to describe the
vibrational properties of disordered fractals is the Born
Hamiltonians '0

Applying the elastic Hamiltonian of Eq. (la) to a tortuous
chain of N elastic bonds, it is found that the elastic energy E
and the displacement of the end to end vector SR (Ref. 7)
are related by

E = ~5RKSR

GZS-'

Here S is the tensor of gyration of the chain, Z represents a
90' rotation operator, and K is an elastic tensor. In con-
trast, KccI/N for Born model and the elastic properties do
not depend on the chain configuration.

Generally, the elastic constants of a region of size L of
the fractal depends on the structure of the backbone in that
region. The backbone consists of both singly connected and
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multiply connected bonds. 7'5 Assuming that the softness
of a region is determined by the singly connected bonds
gives

K L
N, (L)L2 (3)

co(ZL) =Z E cu(L) (4)

The density of vibrational states is approximately given by
p(co, L) —1/LDhcu, where b, cu is the spacing between the
frequencies of the low vibrational eigenmodes of a structure
of size L The spacing hco is of the order of the frequency
of the lowest eigenstate, and it scales in the same manner as
cu(L) in Eq. (4). These scaling relations can be combined
to yield the exponent dE which describes the low-frequency
behavior of the density of states N(cu),

—I
N (Cd ) Cd

(5)
2D

dE
gE+D

For percolating clusters the expression for K in Eq. (3) to-
gether with the relation'5 N, (L) —L'~" gives (E=2+1/v. 7

Using D = d —P/v we find

where N, (L) is the number of singly connected bonds in a
region of size L. This is also an exact upper bound for K.

The low-frequency vibrational modes of a fractal object in
a finite region are determined by the structure of both the
backbone and the dangling ends in the region. The back-
bone determines the elastic constant while the mass distri-
bution is determined by both. Consider a region of size L
of fractal structure of Hausdorff dimension D. A dilation of
the length by a factor X gives X(XL)=X IC(L), where
gE depends on certain geometrical features of the backbone
of the specific fractal structure. The mass in a region of
size L scales with L as M(XL) =XDM(L). From these re-
lations we obtain the scaling property for the vibrational fre-
quencies

above scaling theory. To obtain the spectrum of vibrational
states we (a) express the Hamiltonian 8 in Eq. (la) in
terms of the variables (ul), the small displacements from
the original lattice position, (b) set up 2N, dynamical equa-
tions, where X, is the number of sites on the cluster, and
(c) Fourier transform these equations and write them in
matrix notation: AU= cu IU. Here A is a 2N, &2N, matrix
and U is a vector describing the vibration amplitudes. The
eigenvalues of A can then be obtained numerically. A simi-
lar but somewhat simpler procedure is carried out for the
Born model ~here A is an N, x N, matrix.

Our results for the density of states N(co) for percolating
clusters for d=2 at p=@, are shown in Fig. 1(a). The
results are an average over three clusters of approximately
1000 sites each. The values of 6= 1 and 0=100 were
chosen for the elastic constants since this choice assures
that the lowest vibrational band consists of purely flexural
modes. The density of states at low frequencies follows a
power law N(cu)a: cu ', where a =1—dE=0.12+0.05 down
to a lowest frequency co;„determined by the finite size of
the cluster. Figure l(b) shows the integrated density of

dEstates'7 I(co) —co
E from which one can determine ds more

accurately. %'e obtain a value of flexural spectral dimen-
sionality' dE= 0.82 +0.05. This value leads to the ex-
ponents gE=2.85+0.3 and r=fEv=3. 5+0.4. Here ~ is
the exponent for the static elastic, moduli K near p, :
K~ (p —p, ) . This is the first numerical confirmation of the
prediction of Ref. 7, (~ = 3.67).'9 For comparison we also
plot the density of states of the scalar Born model averaged
over- three clusters of N, —2100. The difference in the
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Thus, the elastic spectral dimension depends only on static
exponents and not the conductivity exponent. The mean-
field value of dE = 1. For d = 2 and 3 the static results lead
to dE-0.8 and 0.9, respectively. Thus, N(co) for a per-
colating cluster at p=p, is slightly divergent as cu 0. In
contrast, N(cu) =—co

' with d =—T for the Born model.

The backbone of branched fractals such as DLA (Ref. 12)
and cluster-cluster aggregates' contain no loops. The elas-
tic properties can be thus obtained from Eq. (2),
E(L) —1/(L2LD ). The fractal dimension of the backbone
D' is larger than unity and smaller than the fractal dimen-
sionality of the object. These bounds together with the rela-
tion (E=2+ D' give
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Using the value of D= 1.7 for DLA in d=2 (Ref. 12) we
find 0.62& dE& 0.71 in d=2. Analogous arguments for
the Born model give 1 & d & 2D/(D+ 1).'6

%e now describe our numerical technique to test the

FIG. 1. (a) Density of states N(~) vs frequency ~ for the per-
colating clusters at p =p, . The results are averaged over three clus-
ters of average size 1018 for the bending case on a 442 square lattice
and 2110 for the Born model on a 64~ square lattice. (b) Integrated
density of states I(co) vs ~ for the same clusters. Circles are for
the bending model and triangles for the Born model.
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density of states of the two models is clear. The scalar spec-
tral dimensionality of d obtained from the curves in Figs.
1(a) and 1(b) is 1.25+0.10, consistent with the expected
value of 1.32.

The results for the density of states for DLA clusters are
shown in, Fig. 2. The value of dE is 0.60 0.05, which is
consistent with the theoretical bounds given by Eq. (7). We
also find d= 1.10+0.05 compared to a value of 1.35+0.10
calculated from diffusion studies and the theoretical upper
bound of 1.26.

The most interesting aspect of these results is that a flex-
ural spectral dimensionality that is smaller than unity dom-
inates the low-frequency dynamical behavior of fractal struc-
tures. The results for the density of states of the two types
of fractals analyzed here, though quite different from each
other, are qualitatively quite similar, suggesting that this
phenomena is rather general for fractal system. The diver-
gence of the density of states leads to questions about the
mechanical stability of fractal objects. Indeed our results
imply that if the size of the object is sufficiently large so
that the energy of the lowest mode falls below kT, the ob-
ject will not retain its original shape and will become un-
stable with respect to thermal fluctuations. This condition
sets an upper limit on the size of nonequilibrium fractal ag-
gregates. Larger than this critical size, the aggregate config-
uration will be determined by relaxation to thermal equili-
brium, much like in a large branched polymer, resulting in a
crossover to a different fractal dimension.

Whether our theory applies to macromolecular systems
such as gels and cross-linked rubber networks is still largely
unanswered. The large-scale structure of these materials is
determined by the balance of entropy and excluded volume
interactions. It has been recently suggested ' that in this
case the presence of external forces such as the stress due
to osmotic pressure, leads to a scalar type of elastic
behavior. We may conjecture, ho~ever, that since macro-
molecules usually possess some rigidity over length scales
smaller than the Kuhn persistence length the flexural elas-
ticity and dynamics should still play an important role. This
observation is consistent with measurement of the elastic
properties of polycondensed gels near the gel point, 2' which
give ~=3.0 —4.0 in agreement with the prediction of the
flexural elastic model.

It would be very interesting to observe the dynamic
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behavior described above experimentally, in systems such as
colloidal aggregates. This could be probably achieved by
techniques such as forced Raleigh scattering or ultrasound
absorption.

We are grateful to Y. Kantor for generating the DLA
clusters and to S. Alexander and Y. Kantor for helpful dis-
cussions.

FIG. 2. (a) Density of states N(to) vs frequency co for the DLA
clusters. The results are averaged over three clusters of size
N, =1000 on a square lattice for bending and N, =2400 for Born
model. (b) Integrated density of states J(t») vs tu for the same
clusters. Circles are for a bending model and triangles for the Born
model.
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