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Irreversibility in random-field ferromagnets and diluted antiferromagnets
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Using the behavior of the free-energy surface, we compute the irreversibility phase diagram, history-
dependent magnetizations, and specific heat for three-dimensional diluted antiferromagnets (AF), and
random-field Ising ferromagnets (RFIM). Domain-wall hysteresis is studied and found to be qualitatively
different for the AF and RFIM. This suggests that impurity pinning plays a significant role in the dynamics
of the former system. The onset of time-dependent long-range order and magnetization "anomalies" are
predicted for certain regions of the phase diagram.

In this paper we explore the differences and similarities of
random-field ferromagnets, diluted antiferromagnets, and
spin glasses in three dimensions (3D) by studying the evo-
lution of the free-energy surface I', as the temperature T
and the random or uniform external magnetic field are
changed. The evolution of I' forms the basis for a calcula-
tion of a number of irreversibility properties. For the
random-field (Ising) ferromagnets' called RFIM and diluted
Ising antiferromagnets called AF we determine the irreversi-
bility phase diagram, the temperature and field dependence
of the various history-dependent rnagnetizations and specific
heats, and the magnetic field hysteresis of the domain-wall
size. These are also compared with our earlier results2 on
spin-glass systems.

The approach we use is identical to that we used previous-
ly to calculate irreversibility properties in spin glasses. This
same numerical procedure has also been recently applied to
diluted antiferromagnets by Yoshizawa and Belanger whose
work focused on establishing the relationship between the
zero-field-cooled (zfc) process with long-range antifer-
romagnetic order (in 3D) and the field-cooled (fc) process
with the formation of a multidomain state. 4 The essential
physical assumption of our procedure is that on the time
scale of a laboratory dc measurement the various random
systems are trapped in a local minimum of the free-energy
surface. Irreversibility on these laboratory time scales does
not arise primarily from tunneling or thermal activation
processes but rather from the disappearance of a given
minimum as the field or temperature are changed. This
disappearance in turn causes the system to reequilibrate
(i.e., find the nearest minimum) and leads to irreversible
behavior. Support for such a picture comes from the exper-
imental observation that in these glassy magnets, cooling
followed by heating procedures leads to reversibility whereas
measurements made in the reverse order will in general
show irreversible behavior. 2 The essential feature here is
that both classes of experiments take place over the same
time scale, so that the observed thermal hysteresis cannot
derive primarily from time-dependent relaxation effects.

To understand this hysteresis we propose a highly non-

equilibrium approach in which the evolution of a given
minimum of F (prepared according to the appropriate exper-
imental prescription) is followed. Because of numerical dif-
ficulties deriving from the correction terms to the mean-
field theoretic approximation to F, we will only consider the
free-energy functional of mean-field theory. It should be
stressed that this approximation is not basic to our physical
picture. Moreover, it is equivalent to the Monte Carlo
prescription for metastability both at low and high T where
the Onsager corrections to mean-field theory are insignifi-
cant. ,

For all three random Ising spin-~ systems, we numerical-
ly solved the self-consistent equations t)F/t)m&=0. This im-
plies

i

mi = ~ tanh P/2 H+ Hi+ X Jgmg
J

where mI is the thermally average spin at site i, HI a site
random field with probability distribution P(H, ) (which is
zero except for the case of the RFIM). H is the applied
field and J~ the exchange interaction which is randomly dis-
tributed for spin glasses; for random-field ferromagnets
J&&

——J for all i, j and for diluted antiferromagnets J~ = —Je&.
Here, e~ = 1 if the jth site has a spin and 0 otherwise. Equa-
tion (1) is solved iteratively following Ref. 2. We chose our
systems to consist of up to iV =2X (30)3 sites on a bcc lat-
tice for the AF case and up to N = (30)' spins on a sc lat-
tice for the RFIM. A number of different random config-
urations were studied. In what follows temperature and
field are measured in units of J ) 0.

%'e first compute the irreversibility phase diagram for the
diluted antiferromagnets which phase diagram has been a
focal point for theoretical and experimental studies in spin
glasses. We compared the fc states obtained upon cooling at
constant H with the zfc states obtained by first cooling at
H=O, then applying H and reheating. 5 These states were
distinct at the irreversibility phase boundary denoted by the
solid line in Fig. 1(a). The concentration of magnetic sites
is c =0.7. Below the dashed line the zfc state [which also
has long-range order4 (LRO)] has the lower free energy. In
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FIG. 1. Irreversibility phase diagrams for the (a) diluted antiferromagnet and (b) random field ferromagnet. Long-range order (LRO) is

only metastable in the shaded region. The inset in (a) plots the T=0 intercept of the dashed line vs concentration.

the shaded region the fc state is more stable. The existence
of this shaded region in the phase diagram corresponding to
the lack of stability of LRO could be inferred from experi-
mental considerations, provided one assumes that the free-
energy surface evolves continuously with temperature. The
inaccessibility of the LRO state upon cooling implies that it
does not evolve directly out of the paramagnetic state free
energy "well" as does the fc state. It is, therefore, quite
natural that for some range of temperature the fc minimum
will be deeper than that corresponding to LRO. If the sys-
tem could access the stable LRO state upon cooling, it
would follow that the multidomain state to LRO transition
involves a finite jump in phase space. It is possible
although it cannot be proved numerically that in thermo-
dynamic equilibrium this ~ould correspond to a first-order
transition. Our numerical results support this schematic
free-energy picture which has also been conjectured by Vil-
lain. 6 Furthermore, the existence of this "intermediate
domain state7" [shaded region in Fig. 1(a)] should have a
number of experimental signatures in the dc magnetization
(discussed below) and leads to the onset of time depen-
dence of the LRO state close to the Weel temperature or at
sufficiently high fields.

In the inset of Fig. 1(a) is plotted the characteristic mag-
netic field 0„;t above which the fc state is the more stable
at T = 0, as a function of c. Close to the percolation thresh-
old this zero temperature critical field may be experimental-
ly accessible. It should be noted that the dashed line in Fig.
1(a) is sensitive to finite-size corrections and that the rela-
tive size of the shaded region increases with the system size.
By contrast, the irreversibility (solid) line in Fig. 1(a) is
found to be relatively insensitive to system size. within our
numerical accuracy we could find no significant difference
between the field-dependent Neel temperature Tg(H) (ob-
tained by extrapolating the finite field staggered magnetiza-
tion to N ~) and the irreversibility line. Note that
T~(H) corresponds to the maximum temperature at which,
metastable LRO can exist and is distinct from the equilibrium
phase boundary, which is the dashed line in Fig. 1(a) [and
its counterpart in Fig. 1(b)].

In Fig. 1(b) is plotted the irreversibility phase diagram for
the RFIM for a field distribution P(H&) given by two delta
functions at HI= kh. To obtain this irreversibility line we

compared the two states prepared by cooling at constant 5
and by cooling to T —0 at 5 = 0 and then applying 5 and
heating. The latter corresponds to long-range ferromagnet-
ic order and the former yields a multidomain state. The re-
gion of stability of the domain state (shaded region) is less
apparent at low 5 than for the AF state at low H. Using a
Gaussian distribution for P (H; ) = 1/(42rr 6 ) exp( —H, "/
252) we found led to a more pronounced intermediate
domain state at small h. Furthermore, in this Gaussian
case the irreversibility line appears to have a nearly vertical
s'lope at low T. This reflects the fact that there are many
distinct low-temperature domain states even for large 4 as a
result of the weak field (IH& I & J) sites in the alloy. Above
the solid line the free energy has a single minimum as in
the AF system. Metastable ferromagnetism persists up to
temperatures T, which are well inside the shaded region. At
this T, (A) line there appears to be a rather abrupt drop to
zero magnetization particularly at T = 0 (where our mean-
field approach will coincide with Monte Carlo simulation
results). As a consequence, the (meta)stable ferromagnetic
state is reversible upon temperature cycling only up to
T, (A). Finally we note that for spin-glass2 systems the
field-dependent irreversibility line we compute using the
same procedure coincides with the Almeida-Thouless predic-
tion. ~

In Fig. 2(a) are plotted the temperature-dependent fc
(solid symbols) and zfc (open symbols) magnetizations for
various H in the same AF system as in Fig. 1(a). The onset
of irreversibility corresponds rather closely to the maximum
in both magnetizations. This behavior is qualitatively simi-
lar to that measured by Ikeda and Kikuta" in Mn, Zni, F2,
although the experiments were done on a considerably less
anisotropic system. Two important features of the dc mag-
netization should be noted. Firstly, above the crossover
field H„;, the low-temperature fc and zfc magnetizations in-
vert so that M" & M', the opposite inequality holds below
0„;,. This may be a useful experimental signature of the
onset of metastability of LRO at low T. Secondly, we have
found that M ' is reversible at all T whereas M'' is reversi-
ble upon temperature cycling only up to roughly T~. This
reversibility in Mf' will be observable experimentally for
sufficiently short times such that there are no appreciable
relaxation effects. Close to T~ but inside the intermediate
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FIG. 2. Temperature dependence of the {a) magnetization and {b) specific heat for various fields in fc {solid symbols) and zfc {open
symbols) processes.

domain state irreversibility in M'f' sets in corresponding to
the disappearance of this free-energy minimum, with in-
creasing T. As a consequence, thermodynamic relations 1ike
the Maxwell equations should hold for all temperatures ex-
cept close to T~ for the zfc state. Note that this reversibility
will not be found upon heating an arbitrarily prepared low-
temperature state. In fact, in spin glasses M'f' is irreversi-
ble for all low T.

We have calculated the temperature dependence of the
specific heat CH for various H for the same AF system in
the fc (solid symbols) and zfc (open symbols) states. Be-
cause of the Maxwell relations the field derivative of CH is
related to the temperature derivative of M(T).2 Thus,
based on Fig. 2(a) some history dependence in CH is ex-
pected; as shown in Fig. 2(b), the zfc specific heat is higher
and has a slightly sharper peak than for the fc case. Both
measurements are - reversible upon temperature cycling
below TN. The peak in CH seems to be somewhat below T~
for all but high fields. That we do not observe any sharpen-
ing of C~ upon increasing H, as is sometimes observed ex-
perimentally, 4 may be in part a consequence of our mean-
field approximation. It should be noted that all the
behavior shown in Fig. 2 has a counterpart in the RFIM
system although there is no physically natural way of vary-
ing the 6 parameter. Our specific-heat curves are similar to
experimental results obtained by Shapira and Oliveria. 4

In Figs. 3(a)—3(c) we illustrate the "field hysteresis" of
domain walls by studying (for the purpose of illustration) a
two-dimensional RFIM with a Gaussian distribution for
P(H, ). Figure 3(a) shows the domains of up spin at T= 0
after cooling at 6 =1.0. If the "field" is then decreased to
6=0.1 the domains grow in size as shown in Fig. 3(b).
When 5 is then increased back up to the initial value of 1.0
the domains shrink somewhat but are clearly larger than in
the initial configuration at b, =1.0, as shown in Fig. 3(c).
For the RFIM these same effects have been discussed us-
ing domain-wall energy arguments. This magnetic fieM cy-
cling is studied for the AF in Fig. 4. In this case we found
magnetic field hysteresis was nearly unobservable'o for a
wide range of the fields studied in 3D as well as 2D. It can
be seen from the figure that there is virtually no difference
between the initial and final states [(a) and (c), respective-
lyl. Furthermore, the differences between the first and
second panels are relatively subtle in contrast to Fig. 3.
This difference arises because in the AF case, domains still
persist after field cooling when the applied field is subse-
quently reduced, even to 0=0. Thus, these domains,
which are closely tied to the impurity sites, are not able to
significantly rearrange themselves at low fields. Therefore,
the state returns to its starting configuration when the field
is then increased to the initial value. This suggests that,
due to impurity pinning, there may be a significant differ-

(a) (c)

FKJ. 3. T = 0 domain configurations for a 100X100 RFIM system when (a) the system is cooled at 5 =1.0, when (b) 5 is then lowered
to 0.1, and when (c) 4 is then raised to the initial value 1.0.
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FIG. 4. T =0 domain configurations for an AF system with c =0.75 when (a) the system is fc at H =1.0, when {b) H is then lowered to
0.1, and when (c) His then raised to the initial value.

ence between the dynamics of the two systems. To probe
this we performed Monte Carlo simulations for both cases
during a field cycling. At low T the results essentially repro-
duced the mean field theoretic calculations shown in Figs. 3
and 4. After a very small number of MCS ( —10) the sys-
tems rapidly converged to metastable states and thereafter
the time dependence was negligble. At higher T the RFIM
exhibited the expected" relaxation effects, whereas at the
concentrations studied (c —0.7) the AF showed no signifi-
cant time dependence.

In summary, the simultaneous presence of a magnetic
field and intrinsic disorder leads to a higher degree of rigidi-
ty associated with domain motion in the AF case as com-
pared to the RFIM. This reflects itself in the lack of field
hysteresis and a delayed onset of temperature hysteresis in

the AF state. Temperature hysteresis of the LRO state ap-
pears considerably closer to the irreversibility boundary in
the AF case than in the RFIM. A crucial test of our ap-
proach will be the observation of time-dependent LRO
somewhat below the irreversibility boundary but still within

the shaded region of Figs. 1(a) and 1(b). Possible time
dependence of the fc state within the shaded region cannot
be ruled out since we could not ascertain whether the fc
state is the equilibrium domain state.
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