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Position-space renormalization for elastic percolation networks with bond-bending forces
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We develop a three-parameter position-space renormalization-group method and study the percolation
properties of a two-dimensional elastic network in which both central and rotationally invariant borid-

bending forces are present. The critical exponent f, which describes the power-law behavior of the elastic
moduli near the percolation threshold, is estimated for a square network and is found to be consistent with

recent estimates obtained by other methods.

There has recently been considerable interest in the prob-
lem of elastic properties of random networks near the per-
colation threshold. Until recently this problem was mostly
vie~ed as analogous to the problem of electrical conductivi-
ty of percolating networks. de Gennes' discussed the rela-
tionship between the conductance, conductivity, and bulk
modulus of a percolating network which is a simple model
for gelation without solvent. He set out the explicit equa-
tions governing the behavior of the last two properties and
pointed out that the bulk elastic modulus of a gel, modeled
by a nonrotationally invariant isotropic force constant, is analo-
gous to the electrical conductivity of the system. His intui-
tive argument resulted in some controversy, but the con-
troversy seems to have been settled by the scaling argu-
ments of Yu, Chaikin, and Orbach which is supportive of
de Gennes's argument.

Feng and Sen4 recently considered a different model,
namely, the central force elastic percolating network model,
and provided numerical evidence that the critical properties
of this model belong to a new universality class than that of
percolation conductivity problem. This model, which is ba-
sically a network of springs, is rotationally invariant, but
suffers from a few peculiarities, as was pointed out by Feng,
Sen, Halperin, and Lobb. 5 For simple cubic lattices at all
dimensions the elastic threshold is p, = l. Thus a meaning-
ful study of this problem is limited to certain lattices, e.g. ,
triangular and fcc lattices. Another shortcoming of this
model is that the significance of the straight-bond chains in
transmitting elastic forces is ambiguous, because in a non-
linear model, the straight bonds could "buckle" under
compression, but not under extension. An effective medi-
um approximation has also been developed for this model
which correctly predicts that p, = 1 for d-dimensional simple
cubic networks of randomly occupied springs and provides
very reasonable estimates of p, for many other lattices.

In this Rapid Communication we study another rotation-
ally invariant model for the elastic moduli of percolating
networks. We study a model in which both central and
bond-bending forces are included and develop a three-
parameter position-space renormalization-group7 (PSRG)
method to estimate the critical exponent f which describes
the power-law behavior of the elastic moduli of the system
near the elastic threshold p, . If E and W are the bulk and
shear modulus of the network, respectively, we may write

(as p p, )

EC,N —(p —p, )~ .

The potential energy E of the network is given by

E= TA X [ (U/ ui) ' rttl gtt + Qp X (50JIJt) gttgtk
&Ok&

(2)

where uI and u& are displacements of sites i and j and r& a
unit vector from site i to site j. g~ is a random variable
which takes the values 1 and G with probabilities p and
q=1 —p, for bonds that are occupied and empty, respec-
tively. The bond-bending forces between two occupied
bonds ij and ik having site i in common are given in terms
of the change in angle 88jq, at site i, which is expressed in
turn as a linear function of u&, u&, and uk. The sums are,
respectively, over all bonds, and over all pairs of bonds with
a site in common. This model is essentially the same as
that of Kirkwood who studied vibrational properties of rod-
like molecules. Keating9 studied the elastic properties of co-
valent crystals with essentially the same model. The only,
difference here is that we have included the bending of 180'
bonds. Kantor and Webman'0 have recently studied the
critical properties of this model by using "the nodes and
links" model of percolation networks together with scaling
arguments and have proposed that f~ 3.6 at d = 2, while
Feng et al. and Bergman have employed numerical simula-
tions and finite-size scaling technique. An experimental
study of hole-punched sheets by Benguigui5 also gave
f= 3.5 at d=2. The elastic threshold of this system can be
easily shown to be the same as that of the ordinary bond
percolation. '

Our PSRG method is similar to that developed for per-
colation conductivity" but with a few differences which we
note. We use a standard 0 shape RG cell that has been
used extensively in the past. 7 The basic idea is to develop
three RG transformations to relate n, p, and p to their re-
scaled values a', p', and p'. Since the RG cell used here is
self-dual, the recursion relation, ' p'= p + 5p q+ Sp q
+2p q, for the rescaled probability of occupied bonds
reproduces the exact result, p, -Y. For the RG cell used
here the displacements u& - (0, 6 ), u2 = (0,5), us = (0, 0),.
and us = (0, 0) of the exterior sites of the cell are held fixed
(similar to the PSRG treatment of percolation conductivity

31 1671 1985 The American Physical Society



1672 SHECHAO FENG AND MUHAMMAD SAHIMI . 31

in which the voltages of the exterior sites of the RG cell are
held fixed), where 5 is a constant. (We employ a RG cell
of linear dimension b=2. ) We replace the RG cell with
one bond in each direction, so that the random variable g&
takes the value of unity for the occupied bonds in the re-
scaled network with probability p'. For each direction one
has to find all configurations that transmit elastic forces
across the cell which in the present case is the same as that
of simple geometric connection. To do this one has to solve
the equations BE/Buq=BE/Bu4=0, for the displacements
D3 and u4 of the internal sites of the RG cell.

The recursion relation for o. ' can be approximated by
n

p'inn'= X a, (p) lnh, (n, P) (3)

where a&(p) is the probability of the spanning configuration
i, h&(n, p) its equivalent bond stretching, and n the total
number of spanning configurations; g a, (p) =p'. This
equation is written in analogy with that of Bernasconi" for
percolation conductivity. One may also use another approx-
imation due to Stinchcombe and Watson"

p'n'= X a, (p)h, (n, P) (4)

Similar equations can be written for P'. For example, for
the b = 2 cell we obtain

n+ 6pp'inn'= p51na+ 4p4q 1na 2n+ 9p
+ p4q lno,

+ (6p~q2+ 2p2q~) ln(n/2) + 2p~q2 ln
4np

2n+ 9P
(5)

if we use Eq. (3). Calculation of the recursion relation for
p' is somewhat more complicated. The exterior sites of the
RG cell are displaced as much as 5/2 in each direction.
Thus, one has to have symmetric cell configurations in
which both of rescaled bonds are present. Hence we find,
by solving the associated equations which are similar to
those for the calculations of a', that

p'lnP'= p5lnP+ p~q ln(5P/9) + 2p~q2ln(P/3)

+ (4p4q+ 6p'q'+ 2p2q') ln (p/9) (6)

We now let r =p/n and r'=p'/n' to obtain a single recur-
sion relation of the form, r'=F{p,r, p). This relation, at
the fixed point p„has two stable fixed points at p =p, = &,
namely, r =0 and ~ and one stable one at ro= 66843 which

is the relevant fixed point. At this point the eigenvalue of
the linearized RG transformation is, A. ,= Br'/B r = 0.875
(evaluated at p, =~), which means that after many itera-

tions of the RG transformation the ratio r flows stably into
the point ro. In' analogy with percolation conductivity, "we
may- write

ln)
lnb

(7)

where h. = Bn'/Bn. Here v is the exponent of the correla-
tion length of percolation which is predicted by the RG
transformation to be v = lnb/ink~, where Av = Bp'/Bp,
evaluated at the fixed point p, and b is the linear dimension
of the RG cell. To obtain A. one has to iterate the recur-

sion relations for n' and p' (or equivalently for r') many
times to reach the true fixed points of n and p (i.e., to ob-
tain recursion relations for n' and p' whose shape would not
change under further rescaling). In the present problem
after many iterations we obtain A. =0.1617, which means
that

f=3.75

where we used u ——1.43, the prediction of the PSRG
transformation. ' If we use the presumably exact value
v= T, we obtain f= 3.5. Both of these estimates are con-

sistant with the recent estimate from simulations by Feng
et al. , 5 f= 3.3 + 0.5, and by Bergman, 5 f= 3.5 + 0.2, and
the experimental result of Benguigui5 mentioned above.

We remark that the small value of the relevant fixed
point ro is not a result of our PSRG method and has physi-
cal significance. Near p, strongly bonded regions (the so-
called blobs in the language of percolation) are connected by
tenuous weak regions. The strong regions can be regarded
as perfectly rigid, so the elastic properties near p, are deter-
mined by the weak regions which are quasi one dimensional
and thus can be modeled as tortuous chains. If p)) n
(i.e., if rp)) I) and for any fixed chain length, it will cost
less energy to accomplish a displacement of the chain ends
by adjusting the length of bonds parallel to the stress, rather
than bending bond angles, so that the Young modulus Y of
the system scales as Y —(p —p, )'. However, if the value of
bond-bending force constant p is much smaller than that of
the stretching-force constant a, the opposite is true and the
behavior of the system crosses over to Y —(p —p, )~, i.e.,
the new universality class describing our model. Therefore,
a reasonable RG procedure should yield ro(& 1, as is the
case here.

If we use the same procedure for the percolation conduc-
tivity exponent t and use the same RG ce11, we obtain,
t=1.32. This was first obtained by Bernasconi" and is
only 1.5% larger than the most recent estimate, '3 t=1.3.
We find it very satisfying that the present PSRG method
predicts the elastic percolation exponent f to be much larger
than the conductivity exponent t, consistent with other re-
cent results. ' For the central force elastic triangular net-
work (i.e., a triangular network of springs), Feng and Sen~
estimated that f=2.4 %0.4. At this point, however, we
cannot rule out the possibility that the central force problem
and the bond-bending one belong to the same universality
class or otherwise. We are currently carrying out extensive
Monte Carlo simulations to estimate f more accurately for
the simple spring model. The results will be reported else-
where. ' The universality class of these models can also be
established by using the RG flow diagrams. Work in this
direction will be reported elsewhere. '5 If we use Eq. (4) to-
gether with v = 1.43, we obtain f= 3.5. This is only about
6.?/0 less than our estimate using Eq. (3), which indicates
that our PSRG is not very sensitive to the details of either
method. With the presumably exact value v= T, Eq. (4)
predicts that f= 3.26, again consistent with numerical esti-
mates mentioned above.
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