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Krypton on graphite and the striped helical Potts model
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A generalization of the helical Potts model, with two species of domain wall due to explicit triaxial helical

symmetry breaking, is studied via position-space renormalization-group methods and is discovered to exhi-
bit striped, as well as hexagonal, phases. The disordering transition of the commensurate ferromagnetic
phase belongs to the symmetric Potts universality class. No evidence is found for a chiral melting transi-

tion. Commensurate-incommensurate phase diagrams for oversaturated krypton on graphite are construct-
ed.

There are many two-dimensional systems in which ad-
sorbed atoms form a solid in registry with the underlying
substrate. The melting of this commensurate solid, via a
change in temperature or ambient vapor pressure, has been
extensively studied. Of immediate concern here is the com-
mensurate melting transition of physisorbed krypton on gra-
phite. At densities less than a monolayer, the krypton
atoms select one of the three equivalent triangular sublat-
tices of adsorption sites to form an ordered solid. The per-
mutation symmetry of the three sublattices leads to a disor-
dering transition in the three-state Potts universality class,
as pointed out by Alexander' and others, and confirmed
by experiments. At densities exceeding a monolayer, extra
atoms can be accommodated into the first layer via dense
domain walls separating the commensurate regions. Ka-
dar and Berker pointed out that there are two types of
domain walls (heavy and superheavy) with different ener-
gies and hence at these densities the system must be
described by a "helical" Potts model. ' An explicit calcula-
tion' revealed a transition to a dense domain-wall liquid ''
that was still in the three-state Potts universality class.

Motivated by the experiments of Moncton et al. , Huse
and Fisher" suggested that although helicity is irrelevant at
the Potts transition in triaxial systems, sufficiently strong
triaxial symmetry breaking terms could incur a crossover to
"triaxial chiral" melting. This new transition would be
governed by an entirely different fixed point and belong to
an altogether new universality class of asymmetric chiral
transitions. Huse and Fisher' suggest that this transition
was not observed in the calculation of Kadar and Berker
because in the latter treatment all helicity, which results
from the difference between heavy and superheavy mall en-
ergies, ends up directly associated with the wall crossings.
In this Rapid Communication, we present and analyze the
striped helical Potts model on the triangular lattice, which
overcomes this problem and incorporates all the basic phy-
sics of two species of domain walls. Hence, within the limi-
tations of a lattice approximation, the energetics of different
microdomain walls, their crossings and dislocations' are
faithfully represented. The Hamiltonian allows for both
hexagonal and striped phases. Our position-space
renormalization-group calculation, in addition to recovering
the fixed points that govern the disordering transitions of
the hexagonal phases, also uncovers for the first time fixed
points that control the disordering transitions of striped
phases. We find no evidence of the speculated new mul-
ticritical point of Huse and Fisher" (separating Potts and
chiral melting transitions). At the Potts fixed point, triaxial
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helicity is irrelevant as expected, and the disordering of the
commensurate phase, despite the presence of triaxial sym-
metry breaking, is ahvays characterized by three-state Potts
exponents. Phase diagrams for krypton on graphite in the
temperature-chemical potential plane are obtained using a
suitably modified version of previous parametrizations.
Connection with the recent work of Caflisch, Berker, and
Kardar" permits conversion to temperature-pressure space
and a more direct comparison with experimental results.

As in a previous calculation we subdivide the graphite
adsorption sites into hexagonal patches of size i (in units of
commensurate adatom separation). Each patch represents a
microdomain of krypton atoms adsorbed in one of the three
possible sublattices a, b, or c. Neighboring patches either
occupy the same sublattice (thus forming part of a larger
domain), or different sublattices in which case they are
separated by heavy or superheavy domain walls. A vertical
heavy domain wall, for example, separates a and b domains
and contains an extra one-third adsorbate column, whereas
a superheavy domain wall, while separating a and c
domains, accommodates twice as many adsorbate atoms
(see Fig. l of Ref. 7). We assign an energy per unit length
of (p/3 —J) for a heavy wall, and 2(p/3 —J) for a su-
perheavy wall, where p, is the adsorbate chemical potential
and J & 0 is an effective nearest-neighbor repulsion. The
centers of the hexagonal patches form a triangular lattice,
subdivided into three sublattices 3, 8, and C. The Hamil-
tonian of the striped helical Potts model is given by

p~ g (gA gs gC)

~here the summation runs over all triplets t of the triangu-
lar lattice, and S,'=a, b, or c (depending on the patch occu-
pation) is the triplet spin on sublattice i The possib. le triplet
energies are'

e(a, a, a ) = 0—= F
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A repulsive energy of —(~)J is included for both heavy

and superheavy wall crossings, and a patch size i = 5 (relat-
ed to wall width') is selected. Note that the above triplet
energies are for up-pointing triplets —the last two expres-
sions being interchanged for down-pointing triplets. By as-
sociating different triplet energies with the microdomain
walls in the (a,a,b) and (b, b, a) configurations, we have
remedied the objection of Huse and Fisher' to the earlier
triplet helical Potts model and thereby permitted the possi-
bility of striped commensurate phases.

To determine the general topology of the phase diagram
and calculate critical exponents for the above striped helical
Potts model, we employ position-space renormalization-
group methods in the finite cluster approximation. The
three-cell cluster originally employed by Schick, Walker, and
Wortis' is used. However, the simple majority rule projec-
tion operator' is no longer sufficient and a more complex
projection operator is used. Our projection scheme maps a
configuration of nine spins to a triplet representing the
ground state requiring the least number of spin flips, and in
case of a tie, gives equal weight to the equidistant states. In
the four-dimensional parameter space we discovered 19
fixed points (sinks included), 15 of which were already dis-
cussed in the U=D subspace, and the new fixed points
governing the heavy and superheavy wall striped phases for
U~D. Each striped phase is ninefold degenerate: there is a
trivial three-state Potts degeneracy, and a threefold degen-
eracy of the three equivalent directions (at 120' to each oth-
er) for the stripes. In our renormalization-group approxi-
mation the disordering of the striped phase is continuous
with a thermal exponent y, =0.864 (the true transition could
well be first order). We found no evidence for a new fixed
point governing a chiral melting transition as speculated by

Huse and Fisher. "' The ferromagnetic Potts fixed point
appears in the P =N, U=D subspace. Breaking the P —W
and U —D equalities corresponds to introducing irrelevant
triaxial symmetry-breaking terms with crossover exponents
@pyeN —1.07 and &USED = —3.50, respectively. The form-
er agrees well with the estimate —~ obtained by scaling ar-

guments.
Translation of our results into the variables p, and J of the

microscopic model yields the phase diagrams given in Fig. 1.
The energetics of microdomain walls manifests itself most
distinctly in the region p, =3J where both heavy and su-
perheavy wall energies vanish. As before, the commensu-
rate phase appears as the ferromagnetic phase of the striped
helical Potts model, while the incommensurate phase at
large chemical potentials (p, » 3J) corresponds to the
Potts negative helicity phase (a hexagonal net of superheavy
walls). The phase diagram with both heavy and superheavy
wall crossings repulsive is indicated in Fig. 1(a). There is a
small region of the phase diagram occupied by a striped
phase of superbeavy domain walls (possibly representing a
different incommensurate phase of the krypton on graphite
system). The phase diagram with only the superheavy wall
crossing made attractive is given in Fig. 1(b). There is now
a direct first-order transition between the commensurate
and incommensurate phases, and this situation, as discussed
in Ref. 7, is relevant to coadsorption of krypton and deu-
terium on graphite. '~ We have also included phase diagrams
with only the heavy wall crossing attractive [Fig. 1(c)J, and
with both heavy and superheavy wa11 crossings attractive
[Fig. 1(d)]. There can now be an additional phase com-
posed of a hexagonal net of heavy domain walls. The
striped phase of su per heavy domain walls appears only
when both types of wali crossing are repulsive. Figures 1(a)
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FIG. 1. Overlayer phase diagrams with (a) repulsive heavy and superheavy wall crossings, (b) repulsive heavy and attractive superheavy
wall crossings, (c) attractive heavy and repulsive superheavy wall crossings, (d) attractive heavy and superheavy wall crossings.
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and 1(b) are in agreement with predictions by Bak, Mu-
kamel, Villain, and Wentowska concerning the nature of
phases and order of phase diagrams when only one type of
domain wall is included. Our results, therefore, generalize
their conclusions to two species of domain wall. It would be
most interesting for experiments to overcome the challenge
of probing the low-pressure-temperature regions where the
new phases may appear.

To make better contact with experiment we must relate
the lattice-gas chemical potential p, of the microscopic model
to the actual ambient pressure p of the krypton on graphite
system. The recent work of Caflisch et al. ' indicates that p,
can be related to pressure p and temperature T through
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where A. =h/42mmkT is th.e thermal wavelength, cu are
characteristic frequencies [(leo„) /k = (&~~)/k = 19.8 K,
(tee, )/k = 65.1 K], and E/k = 1461 K is the energy gain by
krypton atoms upon adsorption on graphite. Also, the cou-
pling J is estimated' to be 83 KIT. Using these results the
phase diagrams of Figs. 1(a) and 1(b) are translated into the
pressure-temperature diagrams given in Figs. 2(a) and 2(b),
respectively. As is apparent from the former figure, the

striped phase appears at very low pressures making it exper-
imentally inaccessible. At higher temperatures (T —130 K)
the commensurate phase melts into a dilute fluid. It has
been shown both experimentally' and theoretically" that
the dilute fluid phase and the dense domain-wall liquid
phase are continuously conoected.

To elucidate the chiral melting hypothesis, Huse and Fish-
er' have proposed a particularly simple model to study the
effects of triaxia1 helicity breaking on the three-state Potts
transition. With spins at each site j of a triangular lattice
taking on three possible complex values QJ ——1,
exp( + 2rri /3), their Hamiltonian is [Ref. 12, Eq. (2.3)]

pA =J /Re(p p~) — g [J3Re(Q;p, pk).
(IJ') (I.j.k)

+ Ae,~k Im($; Q~pk)1

where e~k= +1(—1) for up(down) pointing triplets, and
the sums run over all nearest-neighbor pairs and elementary
triplets, respectively. This model Hamiltonian can be
mapped onto the P = N subspace of our striped helical Potts
model. Without loss of generality we choose J3= —3J/4,
which corresponds to setting the zero of the energy scale for
P,N triplets. The phase diagram in the remaining parame-
ters J and 6 is exhibited in Fig. 3. For all values of 6, the
triaxial helicity term, the ferromagnetic disordering transi-
tion is in the Potts universality class and no chiral melting
transition is observed. This result, together with Baxter's
exact solution of the hard hexagon problem, ' provides fur-
ther evidence for the absence of a chiral melting transition
in triangular systems. Indeed, Huse' has made the obser-
vation that simple lattice-gas models may possess a
momentum-space symmetry not shared by the real krypton
on graphite system, and thus may not exhibit the chiral
melting transition. (A possibly asymmetic experimental
structure factor is so far the only evidence for such a transi-
tion. ) On the other hand, lattice-gas models have so far
proved most successful in describing adsorbed gas systems
such as krypton on graphite. '
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FIG. 2. Pressure-temperature overlayer phase diagrams with (a)
repulsive heavy and superheavy wall crossings —inset shows the
striped phase, (b) repulsive heavy and attractive superheavy wall
crossings.

FIG. 3. Phase diagram for the model proposed by Fisher and
Huse. The disordering transition of the ferromagnetic phase be-
longs to the symmetric Potts universality class.
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