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Damping of second sound in superfluid helium by order-parameter relaxation
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The local temperature oscillations that occur in both first and second sound require a corresponding vari-
ation in the local superfluid density, which takes place by order-parameter relaxation. Therefore, the corre-
sponding contribution to the damping rate of both first and second sound is proportional to the order-
parameter relaxation time. But in second sound, part of the required variation in superAuid density is pro-
duced instantaneously by convection, thereby greatly reducing the relaxational damping of second sound.
The full unmodified effect of order-parameter relaxation only sets in asymptotically very close to the ~
point.

It has been emphasized' that there are (at least) the fol-
lowing four sources of damping of second sound near the A,

point of superfluid "He: (I) entropy diffusion, (2)
transverse order-parameter relaxation, (3) longitudinal
order-parameter relaxation, and (4) normal fluid second
viscosity. The last effect has recently been discussed in de-
tail. The purpose of this Rapid Communication is to
present a simple and compelling treatment of the third ef-
fect. %e feel that this is especially desirable at the present
time because of (a) the recent precise measurements of the
damping of second sound3 and (b) the fact that the so-called
renormalization-group calculation omits' this contribution
to the damping.

Our approach, which we have previously only sketched,
is basically that of Pitaevskii and Khalatnikov, 9 which we,
however, cast into somewhat different form. To set the
stage it is necessary to review briefly the standard thermo-
dynamic theory of the second-sound velocity u by introduc-
ing the mass fractions X = p, /p and Y =p„/p for the super-
fluid and normal fluid, respectively. Because of the obvious
identity X+ Y =1, only one of these variables is free.
There is some conceptional advantage in working with Y
and its time derivative, (i Y/Bt = Y. In general, a fluid of lo-
cal density p and local hydrodynamic velocity v satisfies the
conservation law Bp/Bt = —divpv. For small velocities this
can be written to first order as

Y„„„=XY'vr~ (v, —v„) (3)

where the subscript signifies the convective change in Y. Be-
cause the entropy resides in the normal fluid and is carried

In other words, the fractional rate of increase of the density
is equal to the convergence of the velocity. For the two-
fluid situation it fo11ows that the fractional rate of change of
the normal-superfluid ratio is equal to the convergence of
the counterflow velocity, i.e.,

Bin( Y/X) ~ ( )
Bt

which can be written as

along with it, the entropy per 4He atom, s, varies in propor-
tion to the normal fraction according to sjs = Y„„„jI; or

s = SXV (vs —v„) (4)

Our quick review of the second-sound velocity is complet-
ed by recalling that the equation of motion for the counter-
flow is

m(v, —v„) = —AT

which, substituted into Eq. (4), gives

(6)

If the frequency co is sufficiently small a variation Ss pro-
duces the thermodynamic variation

(7)

with the normal second-sound velocity formula

Ts p
2

Q
mCapn

Clearly Eq. (9) has to be modified for toe0 because it is
known from the theory' of first sound damping that the
thermodynamic specific heat Cp has to be replaced by
Cp(to), with a definite frequency dependence, as confirmed
by the agreement of this theory with experiment. " At low
frequencies, eo && r ', where 7 is the mean relaxation time
for the superfluid order parameter, the hysteretic lagging
response of the order parameter is the dominant frequency-
dependent contribution to Cp(to). This can be decomposed
as

C,
Cp(to) = Cp, y+ = Cp, a+ thor C,

1. —/MT

= Cp g( 1 + t Ql'r )

where Cp is the constant-pressure specific heat per atom.
Substitution of Eq. (7) into Eq. (6) yields the wave equation

s = u2V2s
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where the renormalized mean time is ous equilibrium value S Yp is governed by the rate equation

and

C,
7'

Cs CP, h CP, Y (12)

8 Y= —y "(5Y—8 Yo)+5 Y„„„
where

CP, A

CP, Y

(19)

(20)

g'(o)w0) = (1 —ia)r') u'(o) =0) (13)

is the contribution of the order parameter to Cp q= Cp, the
co=0 thermodynamic specific heat. 5 is the difference in
chemical potential between the superfluid and normal fluid
and vanishes in the co 0 limit. By neglecting the weaker
frequency dependence coming from the fluctuations, we can
identify Cp Y as essentially the co ~ high-frequency limit
of. the specific heat, for clamped order parameter.

It.would be natural to treat second sound analogously to
first sound and, wherever Cp appears in the velocity formu-
la, to substitute in its place the frequency-dependent gen-
eralization CP(co) from Eq. (10). Equation (9) would then
yield

Substitution of Eq. (17) puts Eq. (19) into the form
T—+y 8Yi= —f81'p=i(uf8 Yp
Bt

(21)

and

5 Yi = io)v "f5Yp (22)

8Yi =iaor"f 8sBb, . B4 BY

, P,s , ps t, phS
(23)

For co/y"=cov" « 1 the time derivative on the left-hand
side of Eq. (21) can be dropped, giving

The small imaginary part of the complex second-sound
velocity would then correspond to a frequency breadth of
cu'r'/2 and to a contribution to the damping coefficient of b, = —icos f Bh Ss

A thermodynamic identity then yields

(24)

g~ asymp &2& (14)

Yp= BY s (1S)

with the entire change in Yp supplied by supernormal con-
version by the relaxation process. In the case of second
sound, however, convection, according to Eqs. (3) and (4),
already supplies the change

Y ~Y„„,=—s
s

(16)

Thus, the net amount of supernormal relaxation that is re-
quired corresponds to the difference

This, in fact, is the formula advanced by Khalatnikovs as a
result of an approximation that is asymptotically valid in the
immediate neighborhood of the A. point. Equation (14) is,
however, not valid in the temperature range in which the
experimental measurements have been carried out. ' As we
now demonstrate, Eq. (14) undergoes a substantial reduc-
tion by a factor f', where f is a kind of "coupling constant"
that is introduced below.

The error in simply substituting CP(cu) in place of CP in
Eq. (9) lies in the fact that CP(co) describes the oscillatory
response of the superfluid in the absence of any convective
"bunching" produced by the counterflow. In this case ther-
mal equilibrium requires

The small supernormal chemical potential difference ex-
pressed by Eq. (24) corresponds to the first-order tempera-
ture deviation

BTSTi =
, P,s

r

BT BA= —i CO1

Ps PY
(2S)

This can be simplified by the substitution of the thermo-
dynamic identity

BT Bh T T TC,
Bh p, Bs pY CPY CPa CP, YCP~

to yield

Cs TSs8Ti = iQ&1 f = —ECOt f5 TO

(26)

by virtue of Eqs. (20), (12), and (7). Equation (27) would
signify that the effective frequency-dependent specific heat
that regulates the second-sound oscillations is proportional
to 1 —icur'f, which, according to Eq. (13), would add one
factor of f to the right-hand side of Eq. (14). But this is
not the whole story. Because of the imbalance in the chem-
ical potential the equation of motion acquires the additional
force, —gradh, so that Eq. (S) becomes

1

m(v —v ) = O'T '76= —V 8T— —s Y
s n Y

Yp —Y„„,= 1—

reduced by the factor

COllV

Yp
(17) l

V' STp+ 1
YYsBTp,

But by means of the Maxwell relation

8T, . (28)

Y Bs (18)

For m~0 the equilibration is not complete, resulting in the
small out-of-equilibrium values 5, S Y~ = S Y —S Yp, and
S T~ = S T —S Tp. The relaxation of S Y toward its instantane-

BT
p,

BY (29)

we see that the quantity in square brackets in Eq. (28) is
nothing other than the "coupling constant" defined in Eq.
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Therefore, the frequency-dependent factor in Eq. (13)
should be 1 —iror'f', so that the final version of Eq. (14),
valid also in the nonasymptotic region, is

bD2= u'r'f' (31)

(18). Thus, the effective hysteretic temperature deviation
from STo is not STt but f5Tt. It follows by substitution of
Eq. (27) that the correct effective frequency-dependent
specific heat, for the second-sound dynamics, is not given
by Eq. (10), but rather (for ror' « 1) by

Cprr(ro) = (1+i«)r'f2) Cp (30)

Although f~~ I asymptotically as t 0, the approach is
very slow. Even at t =10 5, the closest approach that is ex-
perimentally feasible, 3 f'=0.7, representing a 30% reduc-
tion of IJ.Dq below its asymptotic expression in Eq. (14).
The reduction increases to approximately 50'/0 at t=10
and tends toward 100% further below the X point, as t) Y/Bs
tends toward Y/s, and as illustrated in Fig. 2 of Ref. 6.
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