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Distinct modes in the first zero-field current step of Josephson tunnel junctions

Jhy- Jiun Chang
Department ofPhysics and Astronomy, Wayne State University, Detroit, Michigan 48202

and Institute for Theoretical Physics, University of California,
Santa Barbara, California 93106

J. T. Chen and M. R. Scheuermann'
Department ofPhysics and Astronomy, Wayne State University,

Detroit, Michigan 48202

D. J. Scalapino
Instintte for Theoretica! Physics, University of California,

Santa Barbara, California 93106
(Received 3 August 1984)

Using numerical simulations of the sine-Gordon equation with boundary conditions appropriate to real
experimental configurations, we find a coupling between the vortex and Swihart-type modes which gives
rise to novel features in the junction dc current-voltage characteristics observed in experiment.

The relative local pair phase difference across a Josephson
tunnel junction obeys the sine-Gordon equation' and, in
principle, offers an excellent testing ground for a quantita-
tive study of the rich nonlinear dynamics of such systems.
A number of theoretical and experimental results have, in
fact, already been obtained. However, to make detailed
quantitative comparisons with experiment which will allow
us to develop and test in depth our physical understanding,
it is essential that the theoretical calculations use the boun-
dary conditions appropriate to the experimental situation.
Related to this, the external drive must also be coupled in a
realistic fashion and, in addition, appropriate damping terms
must be included. Here, we report results obtained from a
computer simulation of a model in which these features are
taken into account. In particular, we focus here on the ef-
fects of the mixing of vortex~ (2sr kink) and Swihart modes
(oscillation). We find that two distinct modes of excitation
can exist in a one-dimensional Josephson tunnel junction
biased on a zero-field current step.

In most theoretical investigations of the Josephson junc-
tion dynamics, it is assumed that the biased current is distri-
buted uniformly in space. Only recently has the fact that
current is fed into the junction from edges been considered
in describing long in-line junctions. ' Ho~ever, in overlap
junctions, the biased current may be concentrated within a
distance A. L, from the edges of the junction. This is seen ex-
perimentally in the observation9 that the low-temperature
zero-voltage critical current of a long overlap junction is
much smaller than the quasiparticle-current-step height at
the voltage equivalent to twice the energy gap. Further-
more, the recently developed scanning focused-laser-beam
technique' has convincingly demonstrated that the static
current distribution in an overlap junction biased at its
critical-current value agrees qualitatively with the calculated
results of Owen and Scalapino, " who have assumed a
biased current distribution concentrated on the junction
ends. Therefore, it is important to take this boundary con-
dition seriously and to study it in further detail.

Using this boundary condition, we have made a computer
simulation of one-dimensional junctions of length L = 5A.J
and L =10k.J. Here, A.J is the Josephson length. We find

B B B y(y, t—) = sing(y, t)
By2 B t2

Here, we measure distance y in units of A. q and time t in
units of the inverse of the plasma frequency toJ '=A.J/c
with c being the speed of the electromagnetic wave in the
junction. q is a damping factor which depends on the tem-
perature. The boundary conditions are the ones used in
Ref. 11:

(2a)

and

=H, —I, for y=0
By

(2b)

Here, H, is the applied magnetic field in units of
H, —=h c/(2edh. l), I the bias current in units of (c/
2sr)H, =2XqJ, and d twice the London penetration depth.

that because of the large biased current concentrated on the
ends, the spatial derivatives of the phase difference at the
ends are large. Therefore, when a vortex (antivortex) col-
lides with the junction ends and gets reflected, in addition to
having an antivortex (vortex) created, other excitations
such as Swihart modes are also excited. These excitations
then mix with the vortex (or antivortex) in the junction.
Depending upon the damping factor in the system, this mix-
ing can cause the junction to switch from a vortex-
propagation mode to a standing-wave mode and vice versa.
We believe that this has been observed experimentally as
the fine structures observed on the first zero-field current
steps. ' Although the latter was already proposed in Ref.
12, our simulation made it clear that the origin of the
Swihart-mode excitations is the collision of the vortex or
antivortex against the junction ends.

We consider a long narrow Josephson tunnel junction.
The width of the junction is assumed to be much smaller
than both the Josephson length A.J and the physical length
of the junction L Then the space and time dependence of
the relative pair phase P is governed by the well-known
Josephson equation'
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Equations (1) and (2) are integrated using a fourth-order
Runge-Kutta method. '

In Fig. 1 we demonstrate that for a fixed biased current
1=1.80, there are two distinct steady-state modes. The
three left-hand figures are for what we will call the vortex-
propagqtion mode. The function $ (y, r ) is not symmetric
with respect to the center of the junction, and the existence
of the 2m kink and its propagation is evident. Furthermore,
the period for V(0, t) is twice that of the space-averaged
voltage as expected for the vortex-propagated picture.
There are also structures in V(0, t) between the sharp
peaks. This is a manifestation of the Swihart modes. These
modes propagate at close to the speed of light as is evident
in the case of low biased current where the voltage peaks
associated with the vortex are well separated in time, and
this better time resolution separates the Swihart modes from
the vortex mode. The corresponding figures for the
standing-wave mode are shown on the right-hand side. The
function qb(y, r) is symmetric with respect to the center of
the junction (for the case of zero applied field); the periods
of V(0, t), V(L, t), and the space-averaged voltage
(V(y, r))„raethe same. All these characters are distinc-
tively different from those of the vortex-propagation model.

The switching between these two modes, as mentioned
before, can be either continuous or discontinuous. In Fig.
2, we show the calculated current-voltage (I V) characteris--
tics for voltages below the asymptotic voltage of the first
zero-field step for two different junctions. The circles
represent the vortex-propagation mode while the crosses
represent the standing-wave mode. The solid curves are
drawn as a guide to the eye, and the dashed curves
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FIG. 2. I-V characteristics of the first zero-field step for two
junctions obtained from simulation. The arrows indicate the way
the junctions switch.

represent the I-V characteristics due to just the quasiparticle
current. The transition in the short (L = 5A.J) lossy
(q = 0.5) junction is continuous'" and in the long
(L = 10K.J) junction with small loss (q =0.2) is discontinu-
ous.

Figure 3(a) shows the experimental I-Vcharacteristics of
an Sn-SnO-Sn junction of length L = 10K.J at various tem-
peratures. The discontinuous transition is evident. In Fig.
3(b) we compare the temperature dependences of the max-
imum first zero-field current step to those of two other
junctions. One is long with L = 5.7(2mhJ) and the other is
short with L =0.5(2n XJ). A transition has clearly occurred
in the L =10k.J junction as the ambient temperature is
varied.

We emphasize that our standing-wave mode is different
from the symmetric mode that occurs on the second zero-
field step. ' The symmetric mode is due to the propagation
of a vortex and an antivortex in opposite directions and
hence gives rise to an asymptotic voltage twice that of our
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FIG. 1. Simulated results for a junction with I.=10k.J, H~=0,
and q 0.2. (a} Spatial dependencies of the phase-difference func-
tion for consecutive time separated by ht=2ruJ t. (b) Time depen-

dencies of V(0, t). (c) Time dependencies of the space-averaged
junCtian VOltage in unitS Of Sru, /2e With ru, = C/2L
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FIG. 3. Experimental data: (a) I Vcharacteristics of the first-
zero-field step for various temperatures, and (b) the temperature
dependencies of the normalized maximum pair current for junctions
with L/2n A J= 5.7 (O), 1.6 (0), 0.5 (o).
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standing-wave mode. The standing-wave mode, on the oth-
er hand, is closely related to the Swihart modes. Clearly, a
detailed experimental study of these different modes is of
interest. This could be achieved by measuring the power
spectrum of the emitted electromagnetic waves' or by
studying the effect of a focused laser beam on the I-V curve
of the junction. '0
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