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We present a theory for the diamagnetic response of weakly linked superconducting clusters. In
the model, superconducting grains, each small compared to a penetration depth, are weakly coupled
into closed loops. These support screening supercurrents in response to an external magnetic field.
In a magnetic field, a large cluster can support many supercurrent-carrying states of nearly equal
energy, but energy barriers between these states tend to inhibit hops from one state to another at low
temperatures. The picture is similar to that often proposed for spin glasses. An important conse-
quence is predicted to be a large difference between the dc and ac susceptibilities -at low tempera-
tures. The former, an equilibrium property, will fall off much more rapidly with field than the
latter, which is generally a property of the metastable states. In addition, the magnetization of a
cluster varies discontinuously with field; for a sufficiently large cluster, the magnetization is every-
where discontinuous. To check these conjectures, two examples are studied. The first consists of
single loops of random areas and orientation, which can be solved analytically at zero temperature.
The second involves random two-dimensional clusters of many closed loops, and is studied via care-
ful Monte Carlo simulation at various temperatures and fields. Both examples display the expected
strong differences between ac and dc susceptibilities at low temperatures. Our predictions are found
to be quite similar to the experimental results of Bastuscheck et al. [Phys. Rev. B 24, 6707 (1981)]
for the fibrous superconductors NbSe; and TaSes.
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I. INTRODUCTION

Bulk superconductors respond characteristically to an
external magnetic field. Type-I superconductors totally
exclude magnetic flux (except for a surface layer of thick-
ness of order the penetration depth) below the transition
temperature and up to a critical field Hc. Type-II super-
conductors totally exclude flux up to a field H,, and par-
tially until the upper critical field H,.,. In contrast to
such bulk materials, the behavior of composite supercon-
ductors is much more complex. A variety of experiments
have indicated unusual behavior of the magnetic suscepti-
bility, the upper critical field, field-dependent magnetiza-
tion, and penetration depth in such materials.! 7

This paper proposes a theory of the diamagnetic
response of certain superconducting composites. The ma-
terials we consider consist of isolated clusters of supercon-
ducting grains, each smaller than the penetration depth,
embedded in a nonsuperconducting host, and weakly cou-
pled together by the proximity effect (if the host is a nor-
mal metal) or Josephson tunneling (for an insulating host).
‘Materials of this kind can readily be prepared in the form
of two-dimensional films by modern photomicrolitho-
graphic techniques. The geometry can be designed almost
to specification and the host can be either a normal metal
or an insulator.>~!' Qur model is probably also reason-
able for many three-dimensional composites. Often, of
course, the particles in a composite are actually coupled
into an infinite cluster rather than many finite clusters.
We have considered finite clusters in part for computa-
tional convenience. Many of the properties of these finite
clusters, however, should also be observable in infinite
clusters.
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The magnetic properties of random composite super-
conductors have already been the subject of several
theories.!?~1° Rammal et al., !31* Straley and Visscher,!”
de Gennes,'? Alexander,' and Stephen,'® among others,
consider the properties of a network of superconducting
wires, each thin compared to a penetration depth, in an
applied field. They typically use scaling arguments to
predict low-field susceptibilities near the percolation
threshold p.. This is the concentration at which an infi-
nite connected path of wires first forms. They define a
new critical exponent, for the divergence of the diamag-
netic susceptibility near p. and relate it to other ex-
ponents. This same exponent can also be calculated for
clusters of weakly connected grains.!* Shih et al.!¢ consid-
er the phase diagram of such random materials in a mag-
netic field, and find many analogies with a spin glass.
Here, we extend this paper to treat diamagnetic suscepti-
bility. Unlike most previous papers, we concentrate on
strong-field behavior where the spin-glass features are
most obvious.

The remainder of the paper is organized as follows.
Section II describes our model, and qualitatively analyzes
its diamagnetic properties. - Various spin-glass features are
predicted. These include differences between dc and ac
magnetic susceptibility, and between magnetic behavior
resulting from cooling in a field and cooling in zero field.
Section III applies the model to two types of clusters. The
first is a ring of weakly coupled grains (for which the sus-
ceptibility can be found analytically at temperature
T=0). The second type is a random two-dimensional
cluster. Its behavior is complicated and must be obtained
numerically, though it resembles that of a ring. Finally,
Sec. IV gives a discussion of the results and of their con-
nection to experiment.
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II. THE MODEL AND ITS QUALITATIVE
BEHAVIOR

The clusters of interest contain N superconducting

grains embedded in a nonsuperconducting host. The ith -

grain is centered at X; and has a complex energy gap
1; =A;exp(id;). The grains are weakly coupled via the

host according to the Hamiltonian?®—2216
H=— E J,'jCOS(¢,‘—¢j—A,'j) . (1)
<ij>

Here J;; is the coupling energy between grains i and j, and
the phase factor 4;; is given by
In Eq. (2), ®y=hc /2e is an elementary flux quantum, and
the line integral is taken along a line joining the centers of
grains i and j.
The coupling energy appearing in Eq. (1) is
h

Jij= Ee‘I ij s 3)
where I;; is the superconducting critical current between
grains i and j. For a Josephson junction between two
identical grains, this current is*3

[T AD A(T)
Y 2 Ry 2kpT

tanh R 4)

where R;; is the resistance between grains i and j in their
normal state and T is the absolute temperature. If the
coupling is induced by the proximity effect through a nor-
mal metal, Eq. (4) is replaced by!° ,

Ij=C(1—T /Ty ) expl —r;; /E4(T)] , 5)

where C is a constant, T, is the transition temperature of
the superconducting grains, r;; is the separation between
grain centers, and &,(7) is the coherence length of the
normal metal. In this paper, for clarity, we shall neglect
the temperature dependence of the coupling. Thus we
emphasize effects due to the weak coupling between the
grains.

The thermodynamic properties of this model are ob-
tained by treating the phases as classical variables within
the canonical ensemble. Hence the Helmholz free energy
is given by

z={ [Hdcpi ]exp(—%/kBT). (7)
i
In terms of F, the magnetic moment p is
oF
p=— |71 > (8)
=),

where H is the external magnetic field. Similarly the iso-
thermal differential susceptibility is

oM

= 9
Xac [aH Ty ()

where M is the magnetic moment per unit volume.

Both of the derivatives (8) and (9) can be computed nu-
merically from the free energy. It is easier, however, to
find the magnetic moment for each cluster directly from
the circulating supercurrents. Thus the moment p of a
cluster is

ﬁ’=_1“ 2 <iijxlij—iij> , (10)

2c <ij >

1..—3’1‘1sin(¢~ —¢;—A;)
STy i j ij

is the Josephson current from grain i to grain j,
iij =(X;+X;)/2 is the vector joining the origin to the po-
sition of the midpoint between grains i and j, and
X;j=%X;—X; is the vector distance from grain i to grain j.
The magnetic moment of a finite cluster, of course, does
not depend on the choice of origin in this expression, and
so Eq. (10) is completely unambiguous. The canonical
average of an operator 6(¢y, . .., ¢, ), denoted (0), such
as that given in Eq. (10), is computed from the relation

(9)=z—1f9(¢1, cedN) [Hd¢,~ ]exp(—%/kBT) .

(11

The key to this model is “frustration.”** By frustra-
tion, we mean the fact that at finite fields, any cluster
with closed loops cannot find a state which simultaneous-
ly minimizes all the bond energies. The frustration is pro-
duced by the phase factors A4;;, which make some of the
bonds ferromagnetic (i.e., favoring equal phases ¢; and
¢;), some antiferromagnetic, and most favoring an angle
between these extremes. As in more familiar frustrated
systems (e.g., magnetic models), a large frustrated cluster,
with many closed loops, can choose among numerous
competing ground states with nearly equal energy. In a
finite cluster, only one of these is the true ground state.
But others will lie only a small energy above it. As the
field is varied, the various levels will cross one another.
The cluster must hop from one configuration to another
in order to stay in the ground state. Each such hop will
be accompanied by an abrupt change in magnetization. In
a large cluster, these flux hops will be very closely spaced
in field. The curve of ground-state energy E (H) will con-
sist of many short arcs, with discontinuities of slope
where they join. :

This picture applies only to a cluster in equilibrium.
But at low temperatures, the cluster will probably be
trapped in a metastable configuration and the measured
properties will be metastable ones. In order to reach its
ground state, the cluster must-climb an energy barrier
which is too high to overcome at low temperatures. The
cluster can escape and equilibrate, however, if it is suffi-
ciently heated.

This picture leads to a difference between the dc and ac
diamagnetic susceptibilities. The former is defined by the
relation

Xge=+(M/H)r , (12)
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and is a true equilibrium property. X, defined in Eq. (9),
can be measured by superimposing on a fixed dc field a
small-amplitude parallel ac field. If the frequency is
larger than the relaxation rate of the cluster, X,. measures
a nonequilibrium property. It is also typically larger than
Xac- These differences are also characteristic of more usu-
al spin glasses.?> A real composite will have a broad dis-
tribution of relaxation rates. At high frequencies, more of
the clusters exhibit a nonequilibrium response to an exter-
nal field than at low frequencies. The ac susceptibility
should therefore increase (in absolute value) with increas-
ing frequency. At higher temperatures, trapping into
metastable states should be less important and this fre-
quency dependence should be weaker.

If the clusters are cooled slowly in a fixed field, the re-
sulting configuration should be in equilibrium, because
the slow cooling allows the cluster to be annealed at rela-
tively high temperatures. Cooling in zero field, and turn-
ing on the field at fixed low temperature, may result in a
metastable magnetization, since the cluster has no time to
equilibrate as the field is turned on. This distinction be-
tween field cooling and zero-field cooling has often been
noted in bulk spin glasses.?® Similarly, if the clusters are
field-cooled to a low temperature and the field is suddenly
turned off, there will remain trapped flux which slowly
decays away as the cluster equilibrates. This trapped flux
is the superconducting analog of remanence in magnetic
systems. Its decay should have an anomalous (i.e., nonex-
ponential) time dependence characteristic of a very broad
distribution of relaxation times, just as is seen in true spin
glasses.?”

III. NUMERICAL EXAMPLES

A. Single loops

All of these features are easily seen in a simple example
of a granular system which can be solved analytically—
randomly oriented loops of grains in a magnetic field.
Consider a loop of N identical superconducting grains,
with identical coupling J between nearest neighbors, and
assume initially that they are oriented perpendicular to
the applied magnetic field B. In the most convenient
gauge, the phase factors 4;; are given by

N @’
where @ is the flux through the loop. At T =0, current
conservation requires that all the phase differences
¢;1—¢; be equal. Continuity requires that they sum to
an integral multiple of 277. The loop must choose among

various metastable current-carrying states that satisfy

these two conditions. The stable one at any field is that
with the lowest energy. The ground-state energy E(H)
obtained in this way is plotted in Fig. 1(a). In making this
plot, we have assumed that the number of grains N in a
loop is large, so that the cosine factors in the energy can
be expanded as cos(¢;+4;)=1—5(¢;+4;)% The
curve of Fig. 1(a) thus consists of arcs of parabolas.

In Fig. 1(b) we show E (H) for a distribution of loops,
each of same area but oriented at random, so that the pro-

(c)
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FIG. 1. Internal energy E per loop at temperature T =0
versus external magnetic field H, for (a) an assembly of super-
conducting loops of projected area S perpendicular to the field;
(b) an assembly of loops of area S randomly oriented relative to
the field. In (c) the loops are randomly selected to have one of
20 different areas equally spaced from 0.1S to.2S. The energy
is given in units of 2J72/N where J is the coupling constant and
N is the number of grains in the loop. ®o=hc/2e is a flux
quantum. Note differences in vertical scales.

jected area perpendicular to the field varies. The discon-
tinuities observed for single loops are washed out, but the
energy still displays oscillations, the vestiges of the slope
discontinuities of Fig. 1(a). Figure 1(c) shows the effects
of averaging over loops of different areas as well as orien-
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FIG. 2. Direct-current and alternating-current susceptibilities
for the loops of Fig. 1(c). Susceptibilities are given in units of
2nJ7? /[N /(®,/S)*], where n is the number of loops per unit
volume and the other symbols are as in Fig. 1.
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FIG. 3. Random two-dimensional clusters containing 23, 89,
and 385 grains, used in the calculations shown in Figs. 4—6.
The length a is the grain diameter.

tations. Now the oscillations have disappeared and E (H)
rather smoothly approaches a limiting value at high field.

Figure 2 shows the dc and ac susceptibilities for the
loops of Fig. 1(c). The ac susceptibility is essentially an

average over area and orientation of the second derivative
of the curve in Fig. 1(a). Since this is a constant, the ac
susceptibility is strictly independent of field. In contrast,
the dc susceptibility [Eq. (12)] is strongly field-dependent
and falls rapidly to zero with increasing field. Thus this
simple analytic model already displays the most prom-
inent features of the more complex loops discussed below.

B. Random clusters

The same behavior is displayed by more complicated
finite clusters of superconducting grains typical of a real
composite. We have generated the clusters by a computer
algorithm which preserves the positional disorder of real
composites below percolation. The method is to add
points to a square “substrate” of edge L. Each successive
point is deposited at a random position, but is rejected if it
falls within a distance a of a previous point. This length
a is thus the grain diameter. The interactions are chosen
equal to J if the grain centers lie within 2a of each other,
zero otherwise. To prevent edge effects, periodic boun-
dary conditions are assumed. For most calculations,
points are added until a number of large but finite clusters
are generated. Since only closed loops of grains contribute
to the magnetic moment, dangling ends of each cluster are
stripped off before their properties are computed.

The actual evaluation of the canonical averages at finite
T is carried out using standard Monte Carlo techniques
within the Metropolis algorithm. The numerical effect of
frustration is that in the simulations (as in experiment) the
clusters tend to sit in metastable configurations. It is
therefore necessary to cycle the temperature up and down
in various ways, annealing at high temperatures and slow-
ly cooling, in order to be reasonably sure that the resulting
averages really refer to equilibrium states. Since the re-
sults we quote are reproducible, we have confidence that
they do indeed correspond to equilibrium.

Figure 3 shows several typical clusters generated by the
method just described, minus dead ends; the quoted “clus-
ter” number N includes only those grains in the looped
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FIG. 4. Internal energy per grain as a function of field for the clusters of Fig. 3, calculated by Monte Carlo methods at several dif-

ferent temperatures. The temperatures T are measured in units of J.
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FIG. 5. Upper half of figure: Energy E at T =0 (dashed
line) and magnetic moment (solid diagonal line segments) as a
function of magnetic field H for the 23-grain cluster. Lower
half of figure: ac susceptibility (horizontal line segments) and
dc susceptibility (diagonal solid segments) for the N =23 clus-
ter. The first horizontal segment represents both the ac and de
susceptibilities for those fields.

portion of a cluster. Each cluster typically has several
loops of different areas, most of order a? or larger.

The internal energy of the clusters of Fig. 3 is plottedi

versus field at several temperatures in Fig.-4. At T =0,
the energy is actually only a piecewise differentiable func-
tion of magnetic field. This is clearest for the smallest

cluster shown (N=23) but is true for the larger ones also.
The continuous regions extend over a larger range of
fields for smaller clusters, and their discontinuities in
slope are also larger. At T >0 the observed energy is sim-
ply a thermal average of all available energy states weight-
ed by the appropriate Boltzmann factor. The discontinui-
ties in slopes are hence washed out and the energy varies
smoothly with field.

The discontinuities in slope are made even more ap-
parent in Fig. 5, which displays the magnetization M (H)
for the N =23 cluster at T =0, along with X4 and X,.
M (H) resembles that of single loops of Fig. 1(c). X, is
nearly field independent for the fields considered, as in the
single-loop case, while X4, falls off very rapidly with field
(as well as exhibiting the same nonanalyticities as the
magnetization itself).

The magnetization M (H,T) is shown for all three clus-
ters in Fig. 6. The curves are the results of an explicit
Monte Carlo calculation of the magnetic moment [Eq.
(10)]. At T =0, but not at finite temperature, the magnet-
ization could also be obtained by numerical differentiation
of the energy.

At finite temperatures, all the energy curves, for all the
clusters we have examined, display very much the same
shape except at very low fields. They rise quadratically
with field, approach a maximum at a field of order 5 flux
quantum per a? of area, then fall off slightly and saturate.
The same is true of the randomly oriented loops of Sec.
IIT A. At low temperatures, there are also the discon-
tinuities of slope mentioned above. The quadratic depen-
dence of energy on field at low fields is just the result of a
constant diamagnetic susceptibility (dM /dH)r. At such
low fields the dc and ac susceptibilities of these clusters
become equal. The strong-field saturation of energy is
due to “saturation of frustration:” At high fields, the
phase factors A;; are randomly distributed over an inter-
val of width at least 27 and further increases in field do
not change this distribution substantially. The internal
energy therefore approaches a constant value. If the clus-
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FIG. 6. Magnetic moment per grain as a function of field for the clusters and temperatures shown in Fig. 4, as calculated by

Monte Carlo simulation.
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FIG. 7. Magnetic moment per grain for a two-dimensional
“amorphous” sample below percolation, as calculated by Monte
Carlo simulation at several temperatures. The areal fraction oc-
cupied by the grains is 0.171.

. ter consisted of a single loop, the internal energy would
vary periodically with field, with a period of one flux
quantum per area of the loop. Since the cluster actually
consists of several loops with mutually incommensurate
areas, the real behavior of the energy is a superposition of
this periodic behavior with a number of different periods.

The universal behavior of the energy is mirrored in the
magnetization which at any temperature rises initially
linearly with field to a maximum value which is about the
same for clusters of any size, then falls off towards zero at
higher fields. At the stronger fields, the magnetic mo-
ment usually exhibits damped oscillations. The initial
slope is larger, and the field for which the maximum in
the magnetization occurs is smaller, for the larger clus-
ters, because larger clusters have a larger low-field suscep-
tibility than do smaller ones.

A real two-dimensional sample below the percolatlon
threshold will, of course, consist of a variety of finite clus-
ters of various sizes. If the dipolar coupling between the
diamagnetic clusters can be neglected, the total magnetic
moment in this case will simply be a sum of the magnetic
moments of the various individual clusters. This averag-
ing over clusters will further wash out the discontinuities
in magnetization, even at low temperatures. The resulting
variation of magnetization with field is shown in Fig. 7
for several different temperatures in a typical two-

dimensional sample of disk-shaped grains computer gen- -

erated according to the prescription given earlier. The
particular sample shown corresponds to a filling fraction
(i.e., areal fraction occupied by the disks) of 0.171. The
universal behavior mentioned earlier is even more clearly
apparent than for the individual clusters shown in the ear-
lier figures.

IV. DISCUSSION

To compare the present results with experiment, we
must express them in experimental units. Consider first
the isolated loops discussed in Sec. III A. If there are n
such loops per unit volume, each of projected area S per-
pendicular to the field, then the low-field diamagnetic sus-
ceptibility in the absence of screening effects is

g
—Xpe= o ~—nS?, (14)

where @ is a flux quantum. The field at which the first
flux slip. occurs, that is, where the ac and dc susceptibili-
ties start to differ, is

H,  =®y/25 . (15)

For loops of area 100u%, H,;~0.1 g. If the coupling en-
ergy J~10 K, then the zero-field susceptibility will ap-
proach unity when n ~107. At such densities, local-field
corrections must be applied to the susceptibility.

The results for large clusters (Sec III B) are quite simi-
lar to those of single loops of increasing area. The zero-
field susceptibility is larger for the larger clusters (increas-
ing roughly as the radius of the clusters). This is con-
sistent with the result that the susceptibility of a two-
dimensional composite diverges as the percolation thresh-
old is approached from below (i.e., as the average cluster
size approaches infinity). Similar results are expected for
three-dimensional clusters, possibly corrected for screen-
ing of the applied magnetic field in sufficiently large clus-
ters (because of a finite penetration depth).

The experiments most relevant to the present results are
those reported by Buhrman and collaborators on the fi-
brous superconductors NbSe; and TaSe;. These materials
are bundles of superconducting fibers, each thin compared
to a penetration depth and embedded in a nonsupercon-
ducting (probably a dielectric) host. They remain resistive
even at very low temperatures, indicating that the super-
conducting elements are coupled only as finite clusters.
The dc susceptibility is generally much smaller than the
ac susceptibility and falls off much more rapidly with
field, as is predicted by the nonequilibrium “spin-glass”
model given here. The field characterizing the falloff ap-
pears to be about 0.1 g, corresponding to loops of area 100
1?2, a not unreasonable value for these samples. Flux trap-

_ ping upon turning off the field at low temperatures is also

observed, indicating remanence in a metastable state. The
way this trapped flux decays with time would give infor-
mation about the distribution of relaxation times in this
system. The magnitudes of the observed susceptibilities,
which vary from 0.001 to the theoretical maximum of
(1/41), seem consistent with the likely density of clusters
in the samples.

Although our results here are for finite clusters, they
are probably applicable to infinite clusters also, i.e., to
bulk systems. For very large clusters and for bulk sam-
ples, the discontinuities in magnetization become so close

‘as to form an apparently continuous curve, but still with a

large distinction between ac and dc properties. Thus we
expect the same kind of diamagnetic response in an infin-
ite composite (in which the resistivity approaches zero at
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low temperatures) as in one comprised of finite clusters.

It is of some interest to estimate the relaxation rates in-
volved in the decay of metastable states. A reasonable
guess would be

W=W0€Xp(—AE/kBT) ) (16)

where W, is an attempt frequency and AE is an energy
barrier. Typical energy barriers would be of the order of
the intergrain coupling energy J, but they would almost
certainly have an enormous variation, down to very
minute values. For tunnel junctions a reasonable guess for
' the attempt frequency is Wy~el R /# where I, is the
critical current of the tunnel junction and R is the
normal-state resistance. For typical composites Wy~ 10™
with m ~10—12. Thus we expect a broad spectrum of re-
laxation rates as high as 100 Ghz or so, but decreasing to
far below 1 Hz at low temperatures.

To summarize, we have reported in this paper a model
for the diamagnetic properties of a composite supercon-
ductor. The composite consists of isolated clusters of su-
perconducting grains coupled together by Josephson tun-

neling or the proximity effect. Calculations indicate that
such materials will have diamagnetic properties similar to
those observed in other glassy systems. These include
strong differences between dc and ac susceptibilities,
remanent magnetization in zero field with anomalous
time dependence, and a variation of energy with magnetic
field similar to a system undergoing a nearly continuous
series of weakly first-order phase transitions. The predic-
tions are consistent with the limited available experimen-
tal data, and are relevant to many other experiments that
could be readily carried out. '
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