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Equivalence of different definitions of the surface tension
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Recently Brezin and Feng and independently Pant reported renormalization-group calculations of a
universal amplitude ratio involving the surface tension, o-, defined as the free-energy difference produced

by appropriate boundary conditions. Here we comment on an equivalent result obtained, within the same
one-loop framework, using an alternative definition of cr involving the free-energy increment due to a
macroscopic distortion of a flat interface.

There has been considerable interest recently in evalua-
tions of universal ratios involving the surface tension near
the critical point. Reanalysis by Moldover' of the existing
experimental data suggests approximately a factor of 2
discrepancy with theoretical calculations of the ratio
U =apt~ ' /1k sT„where a is the surface tension and g
the (bulk) correlation length. Experimental approaches
have involved inelastic light scattering from the interface
and capillary rise techniques, while the theoretical investiga-
tions have included renormalization-group e expansions
and Monte Carlo simulations.

The theoretical calculations noted have focused directly
(or indirectly) on the difference between the free energies
of the system with an interface and in a homogeneous phase
at the same temperature. The experiments, on the other
hand, measure something more akin to the response of the
flat interface to perturbations which bend or distort it.
These two approaches to the surface tension are presumably
equivalent, 4 although it is difficu1t to demonstrate it explicit-
ly. The renormalization-group e-expansion approach
presents the opportunity to- demonstrate that results are
equivalent order by order, and, here, we briefly comment
on the lowest-order fluctuation calculation.

The standard surface tension definition arising from the
free-energy difference is, essentially, 5

where A is the area of the flat interface at rest and F+
F++ refers to the system's free energies with and without
boundary conditions inducing an interface between two
coexisting homogeneous phases. e-expansion calculations
noted in Ref. 2 have used this definition, as bave the
Monte Carlo simulations of Ref. 3.

A second definition imagines a system with an interface
and asks for the incremental free energy associated with a
distortion of the flat interface. This leads to
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which is the Triezenberg-Zwanzig formula. A recent deriva-
tion has been given by Weeks, Bedeaux, and Zielinska, and
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the interfacial profile is known to one-loop order. Using
minimal subtraction methods one has
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where Ms= J3(2r)~/u'i'+O(e2) is the full bulk order
parameter and where

ng = (2r)" 1+— —1 e+ O(e )1 mJ3 2
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with r = 1 —T/T, and with v = ~+ e/12+ O(e ) and

P = T —e/6+ O(e2) the standard correlation length and or-
der parameter exponents. As usual, u u' = 2e/3
+ 34e /81+ 0 (e ) is the renormalized coupling constant
fixed point. Furthermore, the bare inverse correlation func-
tion I" is given, to order one loop, by

further background can be found in the monograph by
Rowlinson and Widom. 4 In this formula, M(z) is the exact
equilibrium order parameter profile for the system with the
flat interface (centered nominally at z =0). I' 1 is (in the
language of fluids) the direct correlation function in the in
homogeneous system [not simply the homogeneous system's
direct correlation function with M(z) replacing )If~, the con-
stant value of the bulk order parameter] and is a functional
of M(z). More specifically, I' is the matrix inverse of the
exact two-point correlation function

G(p —p';zz') = (s(p, z)s(p', z')) —M(z)M(z'), (3)

where the position x is decomposed as x = (p, z); z is mea-
sured in the direction perpendicular to the plane of the in-
terface and there is assumed translational invariance in the
(d —1)-dimensional p space. In Eq. (2), r t21 has been
Fourier transformed with respect to p, so that q is the
(d —1)-dimensional wave vector in the plane of the inter-
face.

For the standard Ginzburg-Landau model defined by the
reduced Hamiltonian

r"'[q;zg, z2~M(z) ] = [q' —9,' + rp+ ~upM (zg) + ~u pGp(x x) ]5(z& —z2)

—-rupMp(zg)Mp(z2) J/d' "pGp(q —p;zg, z2)Gp(p;zp, zg) (7)
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where

'('"'(z )('"'(z )'
Gc(p;zg, z2) = X„ p2+ E(p, ) (8)

(neglecting fluctuations), Eqs. (1) and (2) give
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OO Q

is the propagator associated with the interface fluctuation
operator and related eigenvalue equations

t e2—+ r, + ~u, MJ (z)]g'~'(z) =E'~'g ~ (z), (9)

with Mo(z) the zero-order profile T. o zero-loop order
l

which yields the van der %sais surface tension exponent
p, =~. To order one loop, Eq. (2), together with Eqs.

(5),(6), and the renormalized version of (7), yield, after a
laborious but straightforward calculation,

o.2= oov&

with p, = (d —1)v = ~3 —e/4+ O (e'), and

oo 3+2 I+ q
l (8 2)+ 7mJ3

AT, 4m & 180
——7+ I' a+ 0(e )41 1 2m

1

in this result, y = 0.5772. . . is Euler's constant, and, defining
fa+ oo

1(p, p') =„dzMo(z)( (z)g'" (z)( ~ (z)",
p ~ p )I
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(13)

(14)

Such integrals, I(p„p, '), have. already been encountered in our previous evaluation of the interface dispersion relation. As
above, Mc(z) is the zero-order interfacial profile. Use of Eq. (12) and of the one-loop order bulk correlation length ampli-
tude'0

1
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(15)

yields the universal ratio,
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(16)

%e have evaluated I numerically and found consistency
with I" =9/(4n ) —3&3/10. This expression for I makes

Eq. (16) identical to the result quoted by Brezin and Feng
and by Pant in Ref. 2 using the definition of Eq. (1) for the
surface tension, as well as Eq. (15) for gc.

We have verified explicitly to O(e) in the fluctuations
within the renormalization-group framework that the two
different definitions of the surface tension, Eqs. (1) and

(2), lead to the same value of the universal ratio

I

U = o.g " l/AT, . This yields a further verification of the

equivalence of the two forms of the surface tension4 and

suggests that the discrepancy between theoretical and exper-

imental estimates of U (if it persists) has other origins.
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