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Time-dependent correlations for axially symmetric infinite-range spin Hamiltonians

G. F. Kventsel and J. Katriel
Department of Chemistry, Technion Isr—ael Institute of Technology, Haifa 32000, Israel

(Received 23 May 1984)

The time-correlation functions (s„(t)s„(0)) and (s„it)sr(0) ) are evaluated for an arbitrary
infinite-range axially symmetric Hamiltonian with an arbitrary elementary spin. The behavior
above the critica1 temperature as well as that for the three possible types of ordered phases (XF-like,
intermediate, and Ising-like) is presented. Some physical consequences are discussed.

I. INTRODUCTION

The anisotropic Heisenberg (AH) model was applied
both in the theory of magnetism' and as a lattice model of
a quantum fiuid. The need for higher-order terms in the
spin operators was discussed by Zilsel in an attempt to
account for the complete phase diagram of liquid He.

The dynamic properties of spin systems are described
by means of the time- and temperature-dependent spin
correlation functions which contain all the information
concerning the energies of the "elementary excitations"
and are closely related to the response functions of the
system.

The dynamic properties of the XY model, which is a
special case of the AH model, have been extensively stud-
ied. ' Exact results for the spin correlation functions in
the one-dimensional AH model were-derived by Schneider

, and Stoll.
The study of the dynamic properties of infinite-range

anisotropic spin models was pioneered by Lee and co-
workers ' who evaluated the transverse time correlation
function for the axially symmetric Heisenberg Hamiltoni-
an with an elementary spin o.= —,'.

In order to obtain a more comprehensive view of the
dynamical properties of infinite-range spin Hamiltonians,
we propose to generalize the work of Lee and co-workers
in three ways: (1) An arbitrary axially symmetric
infinite-range spin Hamiltonian is considered. (2) An ar-
bitrary elementary spin is allowed. (3) In addition to
(S„(t)S„(0)),we evaluate (S~(t)S~(0)). Qur study is
based on the results we have recently obtained concerning
the static properties of the generalized axially symmetric
infinite-range spin Hamiltonian. "

The time-dependent correlation functions evaluated for
infinite-range models have certain obvious limitations.
These models lack a natural length scale which makes it
impossible to account for spatial fluctuations. The spin-
correlation functions obtained in these models are in-
dependent of the space coordinates so that their Fourier
transforms (the form factors) are defined only for tI =0.
Consequently, the elementary excitations obtained are
dispersionless. At best, they represent the q —+0 limit of
the realistic excitation spectrum corresponding to finite-
range interactions. The fact that the form factors are
evaluated only at q =0 may give rise to difficulties in ob-
taining the static limit (tI ~0, co~0) of the response func-
tions. ' In view of the extreme simplicity of the exact

evaluation of the time-dependent spin correlation func-
tions for infinite-range Hamiltonians, we feel that despite
the above reservations it is worthwhile to examine the
properties of these correlation functions and their relation
to more accurate models.

II. THE TIME-CORRELATION FUNCTIONS:
GENERAL EXPRESSIONS

It will be convenient to use the "microscopic" spin
operators sa (a=x,y, z), which are related to the "macro-
scopic" spin operators Sa =g,. ,s; by s =Sa/X.
These operators satisfy the slightly modified commutation
relations

[s~,sy.]=i s, /K, etc.

We consider a system described by an arbitrary axially
symmetric infinite-range spin Hamiltonian

A =AH(s, s, )

with an elementary spin o.. The static properties of this
Hamiltonian were recently investigated. " The end result
was that in addition to the high-temperature paramagnet-
ic state there are three types of ordered (low-temperature)
phases. In terms of the thermal averages s, =(s, ) and
s =(s ), these phases can be characterized as follows.
(a) Ising type, for which ~s,

~

=s, and s is determined
from the equation s =trB ( per dH/ds), (b)—intermediate
type, for which s, and s are determined from the coupled
equations

BH/Bs, =0
and

s=cr8 ( —Po BH/Bs),

and (c) XY type, for which s, =0 and

s =crB~( —PaBH/Bs),
and

cr8~(o)Lt) =(tr+ —, )coth[(cr+ 2 )p] ——,coth(p/2)

is Brillouin's function.
We are interested in the time-correlation functions

S P(t)=(s (t)sit(0)), a,p=x,y. As will be evident later,
it is convenient to study the time dependence of
s+ ——s~+i s~. In terms of these operators

S„„(t)=[S+ (t)+S +(t)+S++(t)+S (t)]/4,
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where S+ (t) = (s+ (t)s (0) ), etc. Similar relations hold
for S»(t), S„y(t), and Sy„(t).

The time dependence of s» is determined by their com-
mutators with the Hamiltonian. The only terms in the
Hamiltonian which do not commute with these operators
are the terms containing s, . One can easily show that for
an arbitrary function of s, the identity

s»f(s, )=f s, +—s»

1 8
exp +— f(s, ) s»g

is satisfied. It follows immediately that

where F, (F, ) contain the even (odd) terms in s, . In this
case

and

S~(t)= —,[(exp(itF, )cos(tF, )(s —s, ) )

+ (i/N) (exp(itF, )sin(tF, )s, ) ]

S„„(t)= —,
'
[—.(exp(itF, )sin(tF, )(s —s, ) )

+ (i /N) (exp(itF, )cos(tF, )s, ) ] .

(6)

In the special case considered by Dekeyser and Lee,
H'= —Js +As „we obtain F» ——A(+2s, —1/N) so that

S„„(t)= —,exp[ —i(A, /N)t][(cos(2Ats, )(s —s, ) )

s» i [A——,s»] =iF»(s, s, )s», (2) +(i/N)(sin(2Ats, )s, )],
(7)

I'~ ——X 1 —exp +—

In the limit X—+ oo we obtain

H(s, s, ) . (3) S„„(t)= —,exp[ i (A—/N)t][ —(sin(2Ats, )(s —s, ) )

+(i/N)(cos(2Ats, )s, )] .

$

1 BH + ~ ~

2g () Z A
$

(4)

In the discussion of the XI' and intermediate phases it
will be important to note that the thermal average of the

leading term in Eq. (4), (BH/Bs, ), vanishes. From Eq.
(2) it follows that

s» ( t) = exp [itF» (s,s, ) ]s» (0)

s (t) =exp[itF (s,s, ))s (0) .

Thus

S» (t)= (exp[itF» (s,s, )]s»(0)s (0) )

= (exp[itF+ (s,s, )][s —s, + (1/N)s, ]),
S +(t)=(exp[itF (s,s, )][s —s, —(I/N)s, ]),
S++ (t) = (exp[itF+ (s,s, )]s +(0)),

a similar relation holding for S (t).
Evaluating these correlation functions in a basis

I ~
s,s, ) I of eigenstates of the axially symmetric Hamil-

tonian, we observe that

Equation (7) is in agreement with Eq. (30a) of Ref. 7.
In order to evaluate the correlation functions we have

to consider the fluctuations of s and s, around their
equilibrium values, s and s, . As these fluctuations are of
order X ' relative to the equilibrium values, we shall
follow Dekeyser and Lee and write s=s+N '~ x and
s, =s, +X ' z with x and z varying over appropriate
ranges.

As is usually the case, the probability distribution may
be considered as a sharp Gaussian centered at the equi-
librium values. A slight modification of this statement is
necessary for the behavior of s, in the Ising-like phase,
and will be considered in Sec. IIIC. In writing the ap-.

propriate expansions we shall use the notation

a"+J'U
U,J

=
$,$

The degeneracy function for an arbitrary elementary
spin o can be written in the form'

0 =go(s)exp[ —NR'(s)],

where

W =ps +in sinh(p/2) —ln sinh[p(cr+ —,
'

)],
and p is determined by the equation

S~ »(t) =S (t) =0,
so thai

s=crB (op) . (10)

S (t)=S»(t)=[S» (t)+S +(t)]/4

S„y(t)= Sy„(t)=i[S»—(t) S»(t)]/4 .—
For a Hamiltonian which is even in s„Eq. (3) implies

that

E+ ——I', +I,

The preexponential factor go(s) is not relevant to the
equilibrium properties and was therefore omitted in Ref.
13. It only affects the correlation functions above the
critical temperature, because for small s this factor can be
shown to be proportional to s, in the limit X~oo. In
view of Eq. (9), the degeneracy function is, for arbitrary
o, an implicit function of s and only for o = —, an explicit
expression can be obtained. This expression, up to nor-
malization, is
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0= (1—4s )
~ exp[ ——,

' N[(1 —2s)ln(1 —2s)+(1+2s)ln(1+2s)] I2$+1

Expanding in the fluctuations we obtain, for all but the Is-
ing-type phase,

G—G+N [W2x +f3(H2px +H~~xz+Hp2z )]

where

1 8 8'
2 Qs

From Eq. (9) it follows that c) W/Bs =p ancl

a'W a~ Os

c)s 2 c)s c)p

1

4sinh (p/2)

(cr+ —,
' )'

(13)
sinh [(o+—,

'
)p]

To obtain c) W/ )s cas a function of s we substitute in Eq.
(13) the value of p satisfying Eq. (10). The two asymptot-
ic expressions

P

8 8
Bs

3 S~Ocr(o+1).
1

0 —S

are easily obtained. The low-s limit remains fairly accu-
rate up to slcr-0. 1.

In order to expand F+ (s,s, ) in terms of the fluctuations
we note that in the paramagnetic as well as in the XF and
intermediate phases Hp& ——0 so that the leading terms

and is in agreement with that used by Dekeyser and I ee,
apart from the preexponential factor (1—4s ) '~, which
is always inconsequential.

The distribution function can be written in the form
exp[ —NG (s,s, ) ]/Z where

G(s,s, ) = W(s)+PH(s, s, )

and

Z=gexp[ —NG(s, s, )] .

I

(lowest order in N) are due to the fluctuations of s and s,
in c)H/c)s„resulting in

F+=+N '~ (H))x+Hpqz) . (14)

III. THE TIME-.CORRELATION FUNCTIONS
IN THE EQUILIBRIUM PHASES

A. The paramagnetic phase

Above the critical temperature the average values s and
s, vanish. Therefore, the only terms in the Hamiltonian
which contribute to Eq. (12) are those involving s and s, .
Thus, we can restrict the Hamiltonian to the form
H= —Js +A,s, studied by Dekeyser and Lee, without
loss of generality.

For this case Eqs. (6), (11),and (12) yield

S»(t) = exp[ —i(A, /N)t](I ~+iN ' I2)/Z,XX

where

The second derivative term in Eq. (4) contributes a term
of order X ' which may be neglected.

In the Ising case Ho~&0, so that

F+——+[Hoi+N ~ (Hllx+H02z))

Inspection of Eqs. (14) and (15) indicates that in the limit
X~oo only the Ising phase will exhibit a time depen-
dence in the correlation functionsS»(t) and S„~(t), while
for the other phases these functions. will be time indepen-
dent.

The expressions for the time-correlation functions, Eqs.
(5), contain the factor s s, +s, /—N. The term s, /N is
only comparable with the s —s, term in the Ising case.
In the paramagnetic case s —s, —X ' and
s,/N-N; in the XF and intermediate cases s —s, is
independent of N while s, /N is at most of order N
Therefore, in all but the Ising case, in the limit N ~ oo we
obtain S +(t)=S+ (t) so that S„~(t)=0

In the following section we evaluate the time-
correlation functions for the various phases possible, re-
taining the lowest-order S-dependent terms.

I~ ——I dx J dzx exp( ax Isk—z )c —s(o2AtN'~ z)(,x —z ),
I2 —— dx dz x exp( —ax —/3lz )sin(2A, tN ' z)z,

0 —X

Z = dx dz x exp —fax —Az

and

3
2o(o.+1)

3
2a(a+1) 2a(a+1)

Evaluating the integrals we obtain
&& exp At/N ——, PJ,

,
2o(o+1)
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where ( s„')= [T/( T —T„)]a(a+1)/3N,

This is the generalization to arbitrary cr of Eq. (36a) of
Dekeyser and Lee. In this range of temperatures Eq. (8)
results in S„y(t)=0, because s, fluctuates symmetrically
about s, =0.

As one could have expected on the basis of the fact that
the leading term in I'+ [Eq. (4)] vanishes, in the thermo-
dynamic limit (N~co) S~ is time independent and Eq.
(16) simply means that

where T~=2Jcr(o. +1)/3k. If 2, &0, i.e., the transition is
into an XY-type phase, T„ is the critical temperature and
(s„) exhibits critical fluctuations which are identical with
those of the usual mean-field results for the Heisenberg
model. If A, ~O, i.e., the low-temperature phase is Ising-
type, the critical fluctuations are present in (s, ) but not
in (s„). The static susceptibility, being proportional to
(s2), exhibits the Curie-Weiss behavior X-(T—T„)

B. XY and intermediate phases

Assuming that the equilibrium values s and s„ for which G [Eq. (11)) is extremal, have been determined from the
magnetization equation, we proceed to evaluate the correlation functions S„„(t)and S,y(t). The coefficients appearing in
Eqs. (12) and (14) are determined at s and s, .

The expression to be evaluated is

S+ (t)= f dx f dz exp[ (ax +PH—„xz+PH02z )]exp[itN ' (H»x+H02z)][s s, +2N '—(sx —s,z)]
oo CO

—1f dx f dzexp[ —(ax +PHllxz+PH02z )]

where

a= 8'2(s)+PH20(s, s, );
The integrals involved are straightforward, resulting in

2

Syy( ) (s s ) p (G20H02+ G02H 11 G11H11H02)/(4G20G02 G 11 )

where

G20 ~2 +PH20 G 11 PH I 1 G02 PH02

Note that in the limit N~ oo,

S (t) =Syy(t) =(s —s )/2 .

For the Dekeyser-Lee —type Hamiltonian, H = —Js
+A,s „with an arbitrary value of the elementary spin a.,
we obtain

Hp2 ——2X, H] ] ——0,
G2p ——W2 —PJ, G 1 1

——0,

Gp2 ——PA, .

S„(t)= —,
' (s —s, )exp( kt /PN), —

which agrees with the result obtained for o = —,
' in Ref. 7

[Eq. (41a)].
In order to interpret these results it is important to real-

ize that in the XF and intermediate phases S~(t) and
S„y(t) have a longitudinal contribution, i.e., are not trans-
verse correlation functions. The correlation function
(s,(t)s, (0)), which is the transverse correlation function
in the XY case, is rigorously time independent for the

infinite-range Hamiltonian, because s, = —i [s„H]=0.
This situation is familiar with, respect to the isotropic
finite-range Heisenberg Hamiltonian.

In analogy with the isotropic Heisenberg Hamiltonian
we expect the finite-range analog of our axially symmetric
Hamiltonian to exhibit in the XY phase a branch of mag-
nons with a dispersion law satisfying lim& 001(q) =0. An
examination of the uniaxial Heisenberg model suggests
that the dispersion law is of the form co(q) cc

~ q ~
(q~0)

with a coefficient which includes the anisotropy ( J,—J„).
This result, which is to be contrasted with the quadratic
dependence of co on q obtained for the isotropic case, is
derived in the Appendix. The linear-dispersion law re-
sults in a —T dependence of the low-temperature mag-
netization and specific heat, instead of the —T ~ depen-
dence resulting from the spin-wave contribution in the
isotropic case. An intermediate-type solution does not ex-
ist for the axially. symmetric Heisenberg Hamiltonian,
which makes it impossible to obtain a similar estimate of
the low-q form of the dispersion law, in the simple way
presented in the Appendix.

C. Ising-type phase

The Ising case (s, =s) has to be treated separately for
the following three reasons.

(i) The fluctuations of s and s, occur about the same
average value so that the satisfaction of the condition
s, (s is nontrivial.
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(ii) In the limit N~ao, F+ =+Ho~ where Ho~ &0,
leading to a nonvanishing time dependence of the correla-
tion functions.

(iii) A further consequence of the fact that Hp& &0 is
that the dependence of the Hamiltonian on s, is expressed
by means of the expansion

H(s, s, )=H(s, s)+Ho~(s, —s)+. . . (17)

In order to evaluate the time-correlation functions we
note that as a consequence of Eq. (17) the distribution of
the fluctuations of s, is not Gaussian but rather given by
exp[ N/3H—o, (s, —s, )] with s, =s and s, &s =s+N '~ x.
Therefore, the typical fluctuations in s, are of the order of
magnitude of X, unlike the typical Gaussian Auctua-
tions, which are of order N ' . Thus

s —s, +—s, =(s+s, )(s —s, )+—s,

I=2s(s —s, )+—s, (18)

where terms of order N were neglected.
This approach is equivalent to that of Dekeyser and

Lee, which involves the asymptotic properties of the
Dawson integral.

The canonical partition function is obtained in the form

Z= f ds f ds, g(s)expI —N[W(s)+/3H(s, s)

+PHo~ (s, —s) ] I .

After integration with respect to s„we evaluate the in-
tegral over s using an expansion about s, up to quadratic
terms in the fluctuations, obtaining

Z= g '
e ""I2~g[W,+P(H»+2H„+Ho2)]I'" .

2NP Ho(

Using Eq. (18), we obtain

o s itHO ) 1S+ (t) =—f ds f dsg(s)expt —N[&+/3H+PHo&(s, s)]Ie "—2s (s —s)+—s

Similarly,

S —&tHO~S (t)= —e
N

2
/3 I Hoi i

s 2S„„(t)= i sin(tHo& )+ cos(tHo~ )XX
Hoi

s 2l
S„~(t)= cos(tHo& )+ sin(tHo~ )xy

Hoi

For the system studied by Dekeyser and Lee,

H= —Js +As, (A&0), Ho& ——2As

which can be integrated straightforwardly to yield
P

s "JIoi 2
N /3f H„/

(19)

temperature collective mode. It is analogous to the opti-
cal spin mode obtained in the study of ferromagnetic reso-
nance, where it is due to a combination of the effects of
the external magnetic field and the anisotropy of the
dipole-dipole interaction. ' In view of the similarity of
Eq. (19) to the spin correlation function studied by Lee, it
is clear that all his results concerning the response func-
tions can be transferred to the present context with the
trivial replacement of his constant coo with the tempera-
ture dependent

~
Ho~ ~

. In particular, this implies a
resonative behavior of the dynamic magnetic susceptibili-
ty.

A treatment analogous to that used in the Appendix re-
sults in the present case in the low-q dispersion law
~=coo+aq . As a consequence of the nonvanishing value
of coo the magnetization and the specific heat will have a
gaplike exponential behavior at low temperatures. Thus
mean-field theory is a more valid approach in this ex-
tremely anisotropic case than for systems having a gapless
spin-wave spectrum which corresponds to a broken-
symmetry thermodynamic ground state. ' '

ACKNO&I EDGMENTS

S„„(t)= s 1
cos(2A, ts ) +i sin(2i, ts )—k/3s

which is in agreement with their Eq. (45).
The frequency ra=

~
Ho~

~
appearing in the spin corre-

lation functions is the frequency of a magnon with an in-
finite wavelength (vanishing wave vector, q). Such a
nonvanishing q~O limit corresponds to a branch of opti-
cal magnons. The energy gap %co corresponds to the fi-
nite energy required for a rotation of the spin from the z'
axis to the xy plane. This frequency depends on s and,
therefore, on the temperature, and is thus a finite-

Very helpful discussions with Dr. Tsofar Maniv and
Professor David Mukamel are gratefully acknowledged.
This research was supported by the Fund for the Promo-
tion of Research at the Technion and the Technion Vice
President for Research Fund.

APPENDIX

For the axially symmetric finite-range Heisenberg
Hamiltonian

~=—g [J„(~i —j ~
)(s s„,+sy sy )

+J ( /i —j /)s, ,s, ],
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we derive the dispersion relation for finite-temperature
magnons in the XY phase, following the procedure
presented by White. '

The Fourier-transformed 'Hamiltonian is

A = —g [J„(:q')[s„(q ')s„(—q ')+s~(q ')s~( —q ')]

+J,( —q ')s, ( q ')s, ( —q ')
I .

We assume that the magnetization is along the x axis.
The equations of motion for the transverse components
are

s~(q)= —2s [J,(q) —J„(0)]s,(q),

s, ( q ) = —2s [J~ (0)—J„(q ) ]s~ ( q ) .

A solution of the form

s (q, t) ~exp[iro(q)t],

where

co(q) =2s I [J,(0)—J„(q)][J„(0)—J,(q)] I
'

is obtained.
In the limit q —+0, the dispersion relation becomes

s (q)= —i[s (q),A ], a=y, z .

Using the random-phase approximation and noting that

(s,(q))=s &(q)

(where s =5/X, 5 being the magnetization), we obtain

to(q) = 2s[J (o)—Jz(0)1'"

In the isotropic case J„(q ) =J, ( q ) we obtain
to(q)=2s [J„(0)—J„(q)] which, for q —&0, results in the
familiar quadratic dispersion law.
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