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The dynamics of a two-state system coupled to the dissipative degrees of freedom of the environ-

ment appears in many different contexts. In this paper we have given a general formulation of the

problem as well as a detailed comparison of two a priori very different heat baths: (a) a collection of
harmonic oscillators coupled to the system, and (b) a collection of fermions coupled to the system.
Consideration of such heat baths is motivated by the assertion that the weakly excited states of the
environment can be modeled by a collection of elementary excitations following Landau. Our con-
clusion is that the case of Ohmic dissipation of harmonic-oscillator heat bath is very similar to the
fermionic bath, although a crucially important dimensionless parameter 0, assumes a different range
of values in the two different cases.

I. INTRODUCTION

It is difficult to overemphasize the fact that the dynam-
ics of a two-state system coupled to the dissipative degrees
of freedom of the environment appears in many different
situations. In the past it has been discussed in its various
forms in the context of a number of different problems in-
volving defect tunneling in solids. More recently, it has
played an important role in the discussion of tunneling
states in insulating and metallic glasses. It has also been
invoked to explain the unusual dielectric relaxation phe-
nomena in solids, and also as the basis for a new model
for A15 superconductors. Our interest in this subject
was initially motivated by the recent activity in the subject
of macroscopic quantum coherence in superconducting-
quantum-interference devices (SQUID). Such two-state
models are also of importance in the theory of quantum
measurement and in many problems in chemical phys-
ics. Furthermore, the present problem is related, in a
very general sense, to the widely discussed Kondo prob-
lem in solid-state physics.

The aim of the present paper is to introduce an exact
and unified formalism to discuss the real-time dynamics
of a two-state system coupled to the environment. Al-
though our main interest would be in the case of Ohmic
dissipation which raises many special interesting ques-
tions, 9 the general framework, as we show, can be readily
adapted to discuss very general dissipative mechanisms.
The central result. of our paper is an exact formula which
gives the dynamics of the two-state system coupled. to a
general linear heat bath (the precise meaning will be dis-
cussed below). We then apply this formula to discuss the
similarities as well as the differences between a priori two
very different heat baths: one consisting of bosons and
the other consisting of fermions. This comparison, we be-
lieve, should clarify a number of interesting questions in-
the theory of macroscopic quantum coherence in super-
conducting interference devices. The general framework
of the present paper is based on the formalism and the
ideas of Feynman and Vernon' and Schwinger. " We be-
lieve that here we have extended their ideas in new direc-
tions.

II. THE NATURE OF THE HEAT BATH
AND THE HAMILTONIAN

In a number of situations the weakly excited states of a
macroscopic system can be described in terms of quasi-
particles, a concept generally due to Landau. Although
the interaction between the quasiparticles brings about
profound changes in the properties of the macroscopic
system itself, when the macroscopic system is merely there
to act as a reservoir to extract energy, or, what is the
same, to provide a dissipative mechanism to the dynamics
of a subsystem (the two-state system in the present con-
text), such a macroscopic system acts to a good approxi-
mation as a collection of independent elementary excita-
tions coupled to the subsystem under consideration. What
is important are certain general properties of the elemen-
tary excitations: spin, charge, and statistics; their influ-
ence on the subsystem is characterized by a spectral densi-
ty of the excitations. To be useful such a characterization
should be complete in terms of a small nuinber of parame-
ters. This then is our fundamental philosophy, an asser-
tion that underlies all discussions of heat baths in all
literature. In fact, we have gone one step beyond the usu-
al discussion by giving the heat bath its proper quantum
numbers as well as a (so far unspecified) spectral density.
We certainly do not intend to imply that the interaction
between the elementary excitations does not exist; in fact,
it must, in order that the system equilibrates, but it is of
no special importance to our problem except in so far as it
is taken into account in the definition of the spectral den-
sity parametrized by a small number of parameters intrin-
sic to the heat bath. The question now arises as to what if
the dynamics is such that a priori we have no reason to
believe that the excitation is weak. This important ques-
tion, we believe, cannot have a general answer, since the
particular nature of a given heat bath may be important
and should be answered on a case by case basis. However,
we can argue in a fashion similar to Caldeira and Leg-
gett' that a large part of the strong interaction can be in-
corporated as an adiabatic shift of the parameters defining
the subsystem; the residual interaction between the subsys-
tem and the heat bath could be weak.
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Hs = —pz ~x ~ (2.1)

For the moment the Hamiltonian of the environment, H„
would be left arbitrary, and as mentioned earlier,
represents a collection of independent elementary excita-
tions or quasiparticles. The coupling between the pseu-
dospin and the environment will be generally denoted by

Hr =~.He . (2.2)

Here we have assumed it to be linear, which is true for a
number of interesting cases (for a more general discussion,
see Caldeira and Leggett' ). The total Hamiltonian is
then given by

H, =H, +H, +HI .

We shall chiefly consider two special cases.
(a) Bosonic bath:

(2.3)

H, = —po., b.o ++co b b—+o, g f (b +b ),

It is important to note here that although our starting
point is similar to that of Caldeira and Leggett, it is not
identical. We emphasize here the concept of quasiparti-
cles or elementary excitations in the sense of Landau,
which can fall in different classes depending on their
spectrum and quantum numbers, whereas Caldeira and
Leggett have argued that it is sufficient to consider them
as bosons for the present purpose. It is one of our inten-
tions to find out if this difference in starting points leads
to different conclusions.

It is most convenient to represent the two-state system
in a pseudospin formalism; thus for the Hamiltonian we
write (cr's are the usual Pauli matrices)

III. THE INCLUSIVE TRANSITION PROBABILITY

The question we ask is the following: First suppose
that at time t; =0 the pseudospin is definitely known to be
in a given state, say f, and the environment is in its
thermal-equilibrium state. Then, what is the probability
that at time tf the spin is in the same state t, but with the
environment in any other possible state? This probability,
we emphasize, is an inclusive probability given by the
"reaction"

(spin), + (env), h,~,~~(spin), +(env), „~,h;„s .

The principles of quantum mechanics tell us that we must
sum over all possible final states of the environment. We
thus need to calculate the probability 8', given by

—&En

8', =g ~

G ' „(tf,t, )
~

' .
Zenv

(3.1)

IV. DYNAMICS ALONCx A CONTOUR
IN THE COMPLEX-TIME PLANE

Here 1/k&P is the temperature and E„ the energy levels
of the environment, Z,„„ is the partition function.
GrI1 Ii ( tf ti ) is the probability amplitude for the transition
in which at t; the environment is in state n and the spin g,
and at tf the spin is f but the environment is in any possi-
ble state m. A sum over the final states of the environ-
ment is denoted by m. In the next section we shall show
how this inclusive probability can be expressed in terms of
the dynamics of the environment plus the system along a
contour in the complex-time plane.

(2.4)

where the spectral density J(co) of the environment will
be denoted by

J(to)=g f'5(co —~ ) .

When J(co)-to as co~0, and vanishes when co is much
larger than a microscopic cutoff co„ the dissipation will
be referred to as Ohmic.

(b) Fermionic bath:

Jo,
~r = poi —go~+ g—ekck„ckv+ g cI,„ck„.

k, g
& k, k, ~

The basic ideas in this section have already been ex-
pressed by Schwinger, " and Feynman and Vernon. ' Our
derivation, however, is novel in the sense that both the
fermionic and the bosonic heat baths can be treated in a
unified manner. The results in this section are both exact
and general; in the next two sections we specialize to the
two specific Hamiltonians given by Eqs. (2.4) and (2.5).
Now we can write G~„'(tf, t; ) as

6 (tf t )=(mT
J
e '

f nT&

—t'Ho{ t —t. )= mme 'f 'T

X exp —1 fV(t Idt x,tl, (4.1)'
(2.5) where

where b are the boson creation operators and ckz are the
fermion creation operators for wave vector k and the spin
direction g. The significance of the remaining variables
will become clearer later on. At this point we point out
that we do not present the case of the dynamics of the
phase variable in a Josephson junction since the discussion
of this problem already exists in the literature. ' Howev-
er, this problem also fits very nicely into our formalism.

I

Hp ———poz+H, +o.,H, (4.2)

V(t) = —b.e ' cr„e (4.3)

Note that we do not need to specify the nature of the envi-
ronment yet; we therefore obtain

and V(t), the operator in the interaction representation, is
given by

ce 'n —i
Gri111(tf tj) —g ( i)"f dt I f dt2 — f dt„(m T

~

e ' V(t
& ) V(t2) V(t„)

~

n T )
n=p tl l

iHot —iHotNow no'ting that V(t) = —(5/2)e (cr+ ~o ) ' one can trivially rewrite 8', (t) as

(4.4)
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W, (t)=$ $ ( —I)'+j~"+'j f'dt, f " 'dt„ f'ds, . f ds„.
i =0 j=p

—PE„
x

m, n Zenv

2 0+S2J —2 0 S2J 2 0 S
1

— 0+Sl 2 0

where we have set t; =0 and tf = t. H p+ are defined by

Hp+ ———p+H, +H, (4.6a)

Hp ——p+H, —H, .

The sum over the intermediate states
~

m }in Eq. (4.5) gives unity and we obtain

(4.6b)

W, (t) = t~ ( 1)i+jg2i+2j
pellv 2 =P J =P

tz; s1 szJ e " n - n (4.7)

where the integrand is given by the expression

(
~

. . .
~

n ) Tr[e (e 0+ 2je 0 2j).—. . (e o—le 0+ 1)(e 0+ 1e 0—I). . . (e 0—2ie 0+ 2i)]

(4.9)

for s in segment II,

Here, the exponential factors do not commute with each other. We now order the operators on the contour C, as shown
in Fig. 1(a), and define for s in segment I,

22

g(s)=g (s)= g ( —1) +'[6(s —t )—6(s —t, )];
m=1

2J
g(s)=g (s)= g ( —1)"+'[6(s —s„)—6(s —s„,}]; (4.10)

and g(s) =0 for s in segment III. We can rewrite Eq. (2.8) as

g e "(ri
~ ~

n ) =exp ip f dsg(s) Tr T& exp i f ds[H—,(s)+g(s)H, (s)]
n

For W, (t) we have

(4.11)

00 OO
22 —l $2 '

W, (t)= ' $ $(—1)'+jA'+ jf dt, . f "
'dt2, f ds, . f" dsz,

env 2=p J=p

(4.13)

P

exp ip f ds g(s) Tr Tc exp i f ds[H—,(s)+g(s)H, (s)] . (4.12)

The expression Tr( ) is precisely of the form discussed by Schwinger —the environment described by the Hamiltoni-
an H, is perturbed by a time-dependent perturbation g(s) which is generally different along the forward and the back-
ward directions of the time evolution; this is a manifestation of the presence of dissipation. If we define

Zi =Tr Tc exp i f ds[H—,(s)+A,g(s}H,(s)]

then the Tr term in Eq. (4.12) is just Zi. It is simple to show that
1

Zi ——Z,„„exp —f dA, f ds g(s)(,H, (s) }i„ (4.14)

where

Z~(A(s))i„=i Tr Tc exp i f ds'[H, (s')—+A/(s')H, (s')] A(s)

Equation (4.12) can be rewritten as
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00 00 2' —1
r

g (t)= g g ( —1}'+Jh '+ J f dt, . f dt; f ds, f ds exp ip f'dt'g(t')
i =0 j=0

)&exp —f dA, f ds g(s)(H, (s))i (4.15)

Up to now we have not made any assumptions about the
heat bath; its effect is buried in (H, (s))i. To calculate
JY, (t) we are going to use Eq. (2.4) and Eq. (2.5) for the

boson and the fermion baths, respectively.

V. DEFINITIONS AND TERMINOLOGIES

%'e now introduce some terminology that will be used
later. As shown in Fig. 2, the arrow indicates the positive
direction along the contour in the complex s plane. The
right (left) side of a contour is defined as the neighboring
region which is to the right (left) of the contour when one
goes along the counter in the positive direction. I.et s and
s' be two distinct points on the contour; s is said to be to
the right (left) of s' if the path going from s' to s is in the
positive (negative) direction of the contour, as in Fig. 2; s
(s') is to the right (left) of s' (s). Since we are only in-
terested in open contours, this definition should not cause
any confusion. The following functions are also useful:

1 if s is to the right of s'
8 ss' ='

0 'otherwise,

VI. BOSONIC HEAT BATH

From Eq. (2.4) we have

(H, ( )) =gf [(b ( )) +(b ( )) ] .

In order to calculate this quantity conveniently, we shall
introduce a function g(r) where w is a parametrization
[shown in Fig. 1(b}]of the contour C, :

+1, 0&r&t
g(r)= —1, t«&2t

i, 2t &—r&2t+P .
(6.2)

The relation between r and s is as follows:

I

except for a cut along the contour C. We will denote
4 +—(s} for s on the contour as the analytic continuation of
4(z) from the left (+ ) and from the right ( —). We shall
refer to the contour in Fig. 1(a) as C,. The symbol fds
will be used exclusively to mean integration along seg-
ments I and II belonging to C„and in the direction indi-
cated.

sgn, (s,s') =e, (s,s') —e, (s',s) .

Let @(z) be an analytic function on the complex s plane

r+ie, 0&r&t
s= 2t —r—ie, t &&~2'

i(r 2t), —2t &—r &2t+P .

From the definition of (A )i we then have

= 'R

$

(b)

I

I

0

I

1(~&=I
I

I

I

t

I

'g(T) =-I
I

I 1E I

2t 2t+P

I

I ~(&) =-i
I

l

FIG. 1. (a) Complex contour C„e is infinitesimal. (b)

Reparametrization of the contour in (a}. FIG. 2. Complex contour C.
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2~+P
I I I( b (r) &i„= Tr T exp i—f dr'[H, (~')+A/(r')H, (~')]il(r') b (r)

ZA

2~+P
& b (r) &i„—— Tr T,exp i—f dr'[H, (r')+A/(w')H, (r')]rl(r') b (r)

Zg

(6.4)

(6.5)

(6.6)

and

where the definition of g is extended according to Eq.
(6.3). Froin Eqs. (6.4) and (6.5) we can readily prove that

( b (0) &i.= (b (2t+P) &i,

I

The term in square brackets is obtained by adding 1 to
G (r', v').

(3) t & z & 2t, rl(r) = —1. From above we obtain

G (t, r') =[G (O, r')e +1]e . (6.15)

(b (0)&i.=(b (2t+P)&i, . (6.7)
Using this as the new initial condition, we integrate over
the present segment to obtain

Taking a derivative with respect to r in Eqs. (6.4) and
(6.5), we have

d(b (r) &i —g( ) &b ( )& = —&g( )g( )f, (6.8)

d(b~(r) &i
+ill(r)co (b (r) &i ——Ag(r)g(r)f . (6.9)

6—
( i) 6—

(0 . i) &a~(r 2t) —im~(r 2t) i'—~Y (6.16}

(4) 2t &r&2t+P, rl(r)= i —Us. ing the result from
(3), in this segment we have

G (2t, r') =6 (O, r')+e (6.17)
Defining the Green's functions as

dG~ (r,r')
+ig(r)co~6~ (r, r') =5(r—r'),

dr
we obtain

2t+P
& b-(r) &~= —~f. f 6.'(r, r')~(r') g(r')dr,

2t+P
& b.(r) &,=sf. f 6.-(r, r')q(r )g(7 )d7'.

(6.10)

(6.11)

(6.12)

The periodic boundary condition has eliminated the inho-
mogeneous terms in these equations. G~ can be solved
easily. We shall explicitly exhibit the solution for
6 (r, r'}, with 0 & r' & rand give the solution for the
general case. To solve Eq. (6.10) we integrate the corre-
sponding homogeneous equation from r=O with the ini-
tial value G~ (O,r') up to r', add a unit jump at
G~ (r', r'), use the result as a new initial condition, and
integrate again the homogeneous equation up to r=2t+P.
Then by applying the periodic boundary condition,
G (O,r')=6 (2t+P, r'), we can solve for G (O, r'). Fi-
nally G~(0, r') is set back into the formula which
expresses G (r, r') in terms of 6 (O, r') to obtain the solu-
tion to Eq. (6.10). For 0&x'&t the procedure is carried
out as follows:

(1) 0 & r & t, g(r) = 1. For 0 & r & r', we integrate the
homogeneous equation to obtain

Using this as the initial condition we obtain

i'd

G (O, r') =
e —1

(6.20)

Now that G~ (O, v') is known, we can write the com-
plete solution for 0 & r' & t as follows:

G (r,r )='

—im (g—8)
pl~e ~ 0(r(r
(n +1)e r'&r&t

( 1 )
+im~(r 2t)+im~d— (6.21)

(n +1)e, 2t&r&2t+P

where n~= 1/(e —1). Using Eq. (6.3) we can now re-
turn to the original variables s,s':

Now by setting r=2t+P, we obtain the relation between
6 (2t+P, r') and 6 (O, v'), given by

G~ (2t+@,r')=[6~ (O, r')+e ]e . (6.19)

Together with the periodic boundary conditions we can
solve for G~ (O, r') to obtain

G (r, r') =6 (O, r')e

where G (O, r') is the initial value of G (r, r').
(2) For r' &r & t we have

(6.13)
G (s,s') = +iso (s —s')+e, (s,s') epe

e
(6.22}

Finally, from Eqs. (6.11), (6.12), (6.22), and (4.14), we ob-
tain(6.14)

I

Zi Z,„„exp ———gf~ f ds f ds'g+(sg'+(s')e '" ' ' + f ds f ds'g (s)g (s')e'

—f ds f ds'g (s)g+(s')e

t g+ ~ f ds f ds'[g+(s) —g (s)][/+(s') —g (s')]e
e

(6.23)
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The exponential term in Eq. (6.23) is nothing but the influence functional obtained previously. ' '" Thus for the bosonic
environment we have

s2
g, (t}=g g ( —1)'+J'6'+ i f dt, . . . f dt2; f dsi . f ds2jexp ip f ds[g+(s) g—(s)]

i =0 j=O Zenv

(6.24)

where Zi/Z, „„is given by Eq. (6.23). Equation (6.24) can
now be rewritten in the form of Eq. (1) in Chakravarty
and Leggett. This is done by relabeling the path by the
tixne sequence t&, t2, . . . , t2„such that there is a "blip" in
the internal ( tzj. i, tzj ) and a sojourn in ( t2J, t2J. +, ).

VII. FERMIONIC BATH

The calculation of (H, )k for the fermionic bath is
lengthier than the corresponding part for the bosonic
bath. Sections VII A—VII D will be devoted only to the
problem of the fermionic bath. We first introduce the
Green's function, then set up the Dyson's equation along
the contour in Fig. 1(a) (Sec. VIIA), solve it (Secs. VII 8
and VII C), and finally evaluate Zi (Sec. VII D).

I

I

The quantity of interest is (H, )z, from Eq. (2.5) we
have

(H, (r)),=—g (c,.(r)c„.(r)), .J
(7.1)

and

H, =H, )+H, q,

H, =H,' )+H. . .
ZA, , fzA, , 4 ~

(7.2)

(7.3)

(7.4)

Notice that the spin-up electrons do not mix with the
spin-dawn electrans; we can separate ( )z into a spin-up
part and a spin-down pari. Hence,

& ck (r)ck (r))k= ' Tr T exp i fdr'[H, (—r')+Xg(r')H, (r')]ri(r') ck (r)ck (r)
cTt

J

(7 5)

where Tr means all states carresponding to o are summed over. The definitions of H, , H, , and Zk are obvious.
For convenience we shall omit the spin index; the parameter A, will also be omitted. We now define the Green's function
Gkk (r, r ) as follows:

Gkk (r,r')= iB(r r—')Tr T—exp i f dr"[—H, (r")+g(r")H, (r")]rl(r") ck(r)ck (r')

+i8(r' r)Tr T—exp i f dr"[—H, (r")+g(r")H, (r")]rl(r")ck (r')ck(r) (7.6)

where we have used the same parametrization v as in Eq.
(6.3} and the function ri defined in Eq. (6.2). We also de-
fine the local Green's function 6 (r,r') as

1fk=
e '+1 (7.10)

(H, (r)) = 6(r, r+) . —J
(7.8)

Therefore we shall set up the Dyson's equation for
G (r, r') and solve it to obtain the answer we are pursuing.
I.et us now derive 6 (r,r') which will be needed to solve
the Dyson's equation. Gkk (r,r') can be obtained by
directly evaluating Eq. (7.6) with /=0. We find that

0 —iekP{v;8)
Gkk'(r r )= t5kk'[« r')(1 —fk—)e

Q( r
)fk

—lEkp 1; )] (7.9)

where P(r, r') = dr" ri(r" ), and
7

6(r,r') =g Gkk~(r, r') . (7.7)
k, k'

I.et Gkk be the free Green's function, i.e., K, =0, and also
let 6 be the free local Green's function. The label r in
g(r), H(r), etc. is simply a parameter to define the order
in which the operatars act. Equation (7.1) can be written
in terms of 6 as

If we express Gkk (r, r') in terms af the variables s,s'
[refer to Eq. (6.3)] along the contour C„we find

0 —i'ek{s —s')
Gkk (s,s') = i 5kk [6—,(s,s')(1 fk)e-

—. (' s}fke " ] . (7.»)
One should not forget that s,s' are now defined on the
contour C„which includes sections from both the real
and the imaginary axes. From Eqs. (7.7) and (7.11) we ob-
tain 60(s,s'):

6 (s,s') = i f d—ep(e)e

+6,(s,s')—1

e+1
p(e) is the density of states. We are going to assume p(e)
to be a constant throughout the conduction band of band-
width 2/5, e.g., p(e)=poe ~', 5&0. We obtain, in the
limit 5/P && 1 and P—Im(s —s') »5, 6 as

6 (s,s')= —po —csch —[s s' i5sgn,—(s,s—')]
(7.13}
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A. Dyson's equation

The Hamiltonian corresponding to the Green's function
Gkk «r') is

0 is
R

G„(S-S)

GR(S-S ) S,S ~ Seg. I

h (r) =H, +g(r)H, .

In the operator form, Dyson's equation reads

(7.14) I
S p /8

6 =6 +G (gH, )G .

In the functional representation we have

Gkk (s,s') =Gkk (s,s')

+ g J du du'Gkk (t, u)(gH, )k, I,,(u, u')
k), k2

x Gk, k (u', s') . (7.15)

li I'
I L I

S ~ Seg. I I ~~ i

S e Seg. H
I

(, S r
/

r I. I
I

l

SR

The integration path is the contour C,. If we sum over
k, k' on both sides of Eq. (7.14) we obtain

G(s,s')=G (s,s')+ —J du G (s, u)g(u)G(u, s') . (7.16)
E

The boundary condition is fixed by G .

G'(s-s')
I

0 I I

G& (s-s ) s,sr seg. I

Po

8

B. Long-time approximation

In principle we can use Eq. (7.13) for G to solve the
Dyson's equation. However, we do not know how to do
that exactly. Nonetheless, if we approximate G by its
"long-time" behavior, i.e., take 6 to be given by

r

oG (s —s')= —p, —
p sinh[(~/p)(s —s')] (7.17)

we can solve the Dyson's equation to obtain the correct
answer for the transient part of G(s,s'). This is the
method proposed by Nozieres and De Dominicis. ' The
instantaneous response (the adiabatic part of G) to g is
not well captured by the approximation; we shall deal
with this problem later. We now examine in more detail
the way the cutoff should be handled, and what we mean
by the long-time approximation. We first examine the
long-time approximation. Let us go back to Eq. (7.13)
and consider how G (s —s') behaves as s' sweeps from
s'=s —e (which we will designate as s ) to s'=s+e
(which we will denote as s+ ). Let G~ ——Re(G ),
Gl ——-Im(G ).

Consider both s and s' on the same branch, I, II, or III
of C,; take segment I for example. When s' approaches s
from the left, Gx increases up to a large number and then
decreases back to zero till s'=s; after that s' goes to the
right of s, GR then becomes negative, and its absolute
value becomes large, it finally approaches zero. Figure
3(a) shows schematically the behavior of G~ and Fig. 3(b)
shows the behavior of GI.

When s is in segment I and s' in segment II, G~ retains
the same form as shown in Fig. 3(a). Since sgn, (s,s') is
always negative in this case, i.e., s is to the right of s al-
though its value ranges from s+ to s, Gi changes to a
more symmetric form shown in Fig. 3(b). In Fig. 1 the
distance e between segments I and II is an infinitesimal

I

SR

quantity. If Eq. (7.17) is evaluated on the contour C,
with arbitrarily small e, i.e., s,s are in C„ it is clear that
Gii is well simulated by it. But for GI, it is also clear
that Eq. (7.17) cannot describe the characteristic shape of
G (s —s') when s is in segment I, s' is in segment II, and
vice versa. Fortunately there is an easy way out of this
difficulty. All we have to do is to evaluate Eq. (7.17) on
the contour cs, 5 designating the cutoff. For example, if
s is in segment I of C„s' is in segment II of C, (e «5),
the points corresponding to s and s' on Cs are s+i5/2
and s' —i 5/2. Equation (7.17) then gives

77Pp P
sinhI (~ p/)[( +si5/2) (s' i 5/—2)]j—

'7TPp P
P sinh[(m /P)(s s'+i 5)]—

In fact the formula above is exactly the same as Eq.
(7.13). Other cases are also easy to check. Although Eq.
(7.17) does not always give the exact result as the case
above, it is always a good approximation for the long-time
behavior of Eq. (7.13). Now the meaning of the phrase
"long time" becomes clear: It simply means that 4~ be-
tween two points is &&5. One can consider Eq. (7.17) as

1

se sag. I &JS~ Seg. 1I
l

FIG. 3. (a) Schematic plot of G~(s —s'). (b) Schematic plot
of GI(s —s').
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the result of (a) a change of variable, C,~Cs, and (b) the
long-time approximation.

From this discussion it is natural to find G(s,s+), s,s'
are in C, as follows.

(i) Start from the Dyson's Eq. (7.16) and the Eq. (7.13);
the variables in these equations are on C,.

(ii} Change the variables from C, to Cs, and make the
long-time approximation on G; i.e., replace Eq. (7.13) by
Eq. (7.17).

(iii) Solve the singular integral equation on Cs and find
G(s,s+).

(iv) Change the variables from Cs back to C,. Replace
the short-time cutoff which was ignored in the long-time
approxim. ation.

This completes the discussion of how to handle the cut-
off and the meaning of long-time approximation. We
have seen that due to the particular contour that we have
in our problem, the meaning of the long-time approxima-
tion introduced by Nozieres and De Dominicis' has to be
reinterpreted.

G(s,s+ )=G,q(s, s+ )+G„(s,s+ ), (7.24)

—Pp mG,~(s,s') = P —csch —(s —s')
1+g'(s) P P

g(s)
2 l'trp05(s —s') 11+/(s)

r

1 1

X+(s) X (s)
1

4m

2

Xf, du-
sinh —(u —s)

G„(s,s )= &Pp

g(s)

(7.25)

tion; a direct solution for discontinuous B(s) is also avail-
able. ' It is now straightforward to obtain G(t, t+). The
arithmetic is the same as Hamann's Appendix, ' and we
shall not repeat it here. The answer is (G,~ and G«signi-
fy the adiabatic and the transient parts G as explained in
Sec. VII B)

C. The equa1-tune 1unit of 6 (s,s')

From Eqs. (7.16) and (7.17) we obtain

PpJ
G(s,s')=G (s,s'}—

X J du —csch —(s —u)
c~ p p

X g(u) G( ut') .

Introducing the following functions,

B(s) =i g(s),

(7.18)

(7.19)

X [X+(u)—X (u)],

where

1
X (z) =exp —coth —(u —z}Zoic . p p

)& ln du
1 —B
1+8

X+(t) are d—efined in Sec. V. They are

X+(s} e+te(s) +r(si

(7.26)

(7.27)

(7.28)

happ J
g'(s) = g(s),

P(s) =G (s,s'),
g(s)=G (s —s'),

Eq. (7.18) can be written as
r

1
g(s) —. P —csch —(s —u)

im cs p p

(7.20)

(7.21)

(7.'22}

e(s)= —tan 'g(s),

I (s)=— —cath —(u —s) e(u)du .P m. m.

cs p p
r

(7.29)

(7.30)

Clearly G,z(s,s') does not have a finite limit as s'~s+.
As discussed in Sec. VIII 8 the adiabatic part is expected
to go wrong due to the long-time approximation. Figure
3 shows that the original Go has a cutoff of order 1/5. If
we replace

XB(u)g(u)du =g(s) . (7.23)

This equation is in Muskhelishvili's standard form.
The method of solving this equation is the same as the
Appendix of Hamann. ' However, one may observe the
following differences: (1) The kernel here is csch instead
of csc; (2} the contour here is Cs instead of a straight-line
segment; (3) the function B(t) is discontinuous here rather
than continuous. Observations (1) and (2) do not make
any difference in solving the equation. Observation (3)
may cause some problems, since the Cauchy integral is
logarithm. ically divergent at those points where the
discantinuities of B(s) occur. We are going to assume
that B(s) is continuous in solving the equation, and then
let B(s) tend to a step function at the end of the calcula-

—po
—csch —(s —s')
p p

by G of Eq. (7.7), and 5(s —s') by i /5, we have

G,q(ss ) =+ iX
2

1

1+/ (s)
mg(s) 5z

1+g~(s) P2

(7.31)

X=2po/5 equals number of electron states in the band.
This indicates that G,q(s, s+) is, up to the order (5/p),
temperature independent. %e can do better than Eq.
(7.31) by solving G,z(s,s') at zero temperature exactly and
then take s'~s+ limit. To find the adiabatic part of 6
we should first find the Green's function for the constant
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potential problem. For a constant potential Eq. (7.6)
reduces to the usual definition of the Green's function.
Dyson's equation for real time s,s' is

G(s —s') =G (s —s')+ V f du 6 (s —u}6(u —s'),
(7.32)

where V=J/X or J/—N. Taking the Fourier transform
of both sides, we have

temperature limit.
One may also notice that 6« in Eq. (7.26) is not

well defined in the form it is written, since
P/sinh [(m./P)(u —s)] is really not a well-defined object.
Replacing the cutoff as described in Sec. VII 8, the diver-
gence can be eliminated. As we show below, this is not
yet necessary if we only need to evaluate Zi.

D. Evaluation of Z&/Z „

6(~)= 1

[6 (c0)] ' —V

Hence,

6 ( )
—IcosdN

6 (co) ' —V

At zero temperature 6 (co) is easily found to be

p(e) N6 (co)= de
m —@+iq sgm co+iD sgnco

where for convenience we have used

(7.33)

(7.34)

(7.35)

From Eqs. (4.14) and (7.8) we have to evaluate the fol-
lowing integral:

1I ~ $ 6 $~$ Igd +Itr

I,d
—fg(——s)ds .iJ
2

(7.44)

where I,d is the contribution from G,d and I„is the con-
tributian from 6„. Zi/Z, „„is simply e zl. The factor
of 2 comes from combining the contribution from spin-up
and spin-down states. .I,d is easy to find:

D(e)=—

to obtain the result. We shall see that 6(0 ) depends
only on po, Vo, and ¹ When D is large the Lorentzian
cutoff should be as good as the exponential cutoff. We
substitute Eq. (7.35) into Eq. (7.34) and carry out the in-
tegration to obtain for s &0 [si(z) and ci(z} below are the
usual sine and cosine integrals' ],

[f(r ) —f ( —r')1+ [g (} ) g( —}}]-,
N '

~ Ei
2' 2m

(7.36)

where

g(s) term in Eq. (7.42) does not contribute.
Since g(s) =0 along the imaginary axis the integral f ds
reduces to fds; also since g(s)tan '[g(s)A, ] is indepen-
dent of s, the integral fds p(s)tan '[$(s)A, ] is equal to
zero. Equation (7.44) gives an adiabatic energy shift of
the two-level system, To calculate I„we have to do the
integral

P

ds ds
X+(s) X (s) P

x . , [x+(s )—x-(s }].I'
sinh [(m/P)(s' —s)]

y = —Ds (mpoV+ i),

po
——p(a=0) =

nD

f(z) =sinz si(z) +cosz ci(z),

g (z) =sinz ci(z) —cosz si(z) .

Taking the s =0 limit we obtain

6 (0 )= 1 ——tan (npoV)
¹ 2
2 m

Thus G,d(s, s+) is given by

G,q(s, s+ )= 1——tan g(s)
&i 2
2 m'

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

(7.45)

The relation between I„and I,', is given by
T

(7.46)

We have changed f ds in Eq (7.43) .to f ds. This is
5

perfectly alright since G(s,s') is defined along Cs. We
still think of e(s) as a continuous function an Cs,' hence
X—+(s) are also continuous. We perform an integration by
part with respect to the variable s' and obtain

I,', =f ds', [X+(s')—X (s')]

1
ds — — P-

X+(s) X (s) P

We now replace Eq. (7.31) by Eq. (7.42). From Eq. (7.36)
we can alsa get the long-time behavior of G,d. Since
f(z)-1/z and g(z)-1/z for large

~
z ~, we have for

large s &&1/D,
—Po 16(s)-
1+/ s

this is exactly the same as G,d in Eq. (7.25) in the zero-

m(s' —s}Xcoth (7.47)

The integral f ds can be found using the Sokhotski for-
mula. For

C'(z)= —. f ds
1 (s)

2' L s —g
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and P(s) Holder continuous along the smooth contour I.,
Sokhotski's formulas states that

N+(s) —4 (s) =P(s) (7.48) Itr &E dS
Cg X+(s) X (s)

@+(s)+N (s)= f ~ ds .
KE LS

Therefore, in our case we have

(7.49)
[X+(s)—X (s)]

s

=4m. f ds cos8 +cos8sin8d sin8 . dl (s)
5 ds ds

(7.51)
1 1

X+(s) X (s)
+

I' m
ds —coth —(s —s')

ni cs p p

(7.50)1 1

X+(s) X (s)

The first term does not contribute due to the periodic
boundary condition on 8. Remember that we have em-
bedded the parameter A, in g' throughout the calculation.
Extracting A, explicitly, we have, from Eq. (7.30),

'2
m (,)

Ag(s)tan '[Ag(s')]
cs s p p 1+A g(s)

From (7;46) we have
2

I« — f——ds f ds'P — csch —(s —s') g(sg'(s') f dA, z

gptan '(A,gp)

s s 1+A, gp
2—tan 'gp f ds f ds'P — csch —(s —s') g(s)g(s'),

8 n' s s p p

(7.52)

(7.53)

where gp happ J/X. ——From Eqs. (7.43), (7.44), and (7.53) we finally have
'2 2

I

2I=iJf g(s)ds ———tan 'gp f ds f ds' (7.S4)4 m P sinh I(m/P)[s —s' —i5sgn, (s —s')]I

where we have reintroduced the cutoff i5; (Ii ds f ds' is now the double integral along the path arbitrarily close to the
real axis. In principle we could stop at Eq. (7.54), but in order to compare the present result with the result for the bo-
sonic bath we shall try to rewrite Eq. (7.54} in a form similar to the exponent of Eq. (6.23). We introduce J(co)=toe
and obtain the result [to order (5/p) ]:

r 2

2I=iJf g(s)ds+ ——tan 'gp f da) J(a))f ds f ds'g(s)g(s')

ej —1

'I—i co(s —s')

X 2 e '"' * '[1+e,(s,s') —e, (s',s)]+ (7.55)

Aside from the adiabatic shift, Eq. (7.S5) is the same as
Eq. (6.23) when we identify

2 m

—tan gp f da) J(a))1 2
0

a = —tan —1

2

(7.56)

with g f . Note that since we need J(m ) =cue ~ in or-
der to rnatch the fermionic result to the bosonic result, the
corresponding bosonic bath is necessarily Ohmic [cf. the
statements after Eq. (2.4)]. Therefore the electrons behave
collectively as if they were bosons. However, for the di-
mensionless dissipation coefficient a, as defined in Eq. (3)
of Chakravarty and I.eggett, we have

VIII. CONCLUSION

In this paper we addressed the problem of the dynamics
of a two-state system coupled to the dissipative degrees of
freedom of the environment (heat bath) and have shown
that the inclusive transition probability of a two-state sys-
tem can be expressed in a simple formula Eq. (4.15} in-
dependent (to a large extent) of the nature of the heat
bath. We then explicitly compared two different heat
baths: fermionic and bosonic. Our conclusion is that the
case of Ohmic dissipation of the bosonic bath is remark-
ably similar to the fermionic case provided one remembers
that a crucial dimensionless parameter a (see Refs. 5) ap-
pearing in the bosonic case is to be identified with
[(2/n )tan 'gp] [Eq. (7.56)] of the fermionic case. Since
(2/m)tan 'gp is never greater than unity, no matter how
large gp(=~pp J/N) is, the dimensionless coupling con-
stant never exceeds unity in the fermionic case. This con-
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elusion is similar to that arrived at by Yu and Anderson
for a similar Hamiltonian; an important difference be-
tween their work and our's is that we have explicitly con-
sidered the real-time finite-temperature dynamics,
whereas they have considered the thermodynamics of
such a two-state system. In the language of macroscopic
quantum coherence (Refs. 5), it is clear that for the fer-
mionic bath considered here the system could never be in
the broken-symmetry regime at zero temperature.

The formulation of the paper, as mentioned earlier, ex-
tends the ideas of Schwinger" and Feynman and Vernon'
by presenting a unifying method to treat both bosonic and
fermionic environments. The fermionic case also required
a careful interpretation of the long-time approximation of
Nozieres and De Dominicis' as well as the extension of
the well-known singular-integral-equation techniques ap-
plied to similar problems' ' ' to a contour on the com-
plex plane. Although the mathematics of certain singular
integral equations on a complex contour is well known, '

we believe that here we have made effective use of such

mathematics.
Although we started with the idea that even if any one

degree of freedom is weakly excited it does not necessarily
follow that the environment can be considered as a collec-
tion of harmonic oscillators, the curious feature, however,
is that for the problem studied here, the bosonic heat bath
with Ohmic dissipation behaves in a way very similar to
the fermionic bath. However, an important parameter, as
discussed above, has a different range.

In the future we hope to discuss the role of tunneling
states in the metallic glasses using the pr'esent formalism.
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