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Threshold of Barkhausen emission and onset of hysteresis in iron
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The threshold of Barkhausen emission and hysteresis in a polycrystalline sample of iron has been
measured using a SQUID (superconducting quantum-interference device) magnetic gradiometer in a
residual field of less than 10 Oe. In the range 10 &H &2)&10 Oe, the magnetization was
found to be proportional to the applied field and varied reversibly without any discernible
Barkhausen emission greater than 10 emu. At higher field levels, the appearance of isolated
Barkhausen jumps coincided with the onset of magnetic hysteresis. Repeated field cycles in this
threshold region removed the Barkhausen signals and extended the range of reversible magnetiza-
tion (equivalent to a magnetic Kaiser effect). At still higher field levels, a second threshold of non-

vanishing Barkhausen emission and hysteresis appeared. Direct summation of the individual
Barkhausen energy losses indicates that the total energy dissipated during the onset of hysteresis
varies as (H —H, )+(H —H, ), where H, is the field at which the first Barkhausen jump occurs.
Measurements also were made on a single-crystal iron whisker. At higher field levels, occasional
Barkhausen emission was observed, but in most instances the data showed irreversible behavior
without observable Barkhausen discontinuities. The observations for both the multicrystalline and
single-crystal specimen are found to be consistent with the consequences of a general phenomenolo-

gy of hysteresis.

I. INTRODUCTION

A. Reversible and irreversible magnetization processes

The availability of SQUID (superconducting quantum-
interference device) magnetometers capable of detecting
fiux variations of the order 10 ' Wb, or 10 Mx, has
made it feasible to investigate the transition from reversi-
ble to irreversible behavior in the magnetization of fer-
romagnetic materials. Experiments carried out in an ultra
low-field environment (10 Oe over a volume of 20 m ),
with superposed uniform fields swept at rates as slow as
10 Oe/sec, have shown that in polycrystalline iron there
is a sharp demarcation between reversible and irreversible
magnetization. The appearance of isolated Barkhausen
jumps coincides precisely with the onset of hysteresis.
Furthermore, the net changes in magnetization resulting
from external-field cycles correspond approximately to
the algebraic sums of the intervening Barkhausen jumps.

Before discussing these observations in detail, it is use-
ful to provide some background on ferromagnetism in
weak magnetic fields. The basic processes underlying re-
versible magnetization changes in ferromagnets are usus. l-
ly identified with reversible domain-wall bowings or dis-
placements, and reversible rotations of the magnetizations
of individual domains. ' The experimental information
concerning reversible-magnetization changes in macro-
scopic ferromagnet may be summarized as follows: If H
is the magnetic field and I is the corresponding magneti-
zation, then

where the susceptibility X is strictly constant for arbitrary
variations of H in the range

0&H, &H&HU«H, . (1.2)

O~H ~Hm,
and then sy'mmetrically cycled between the limits

H ~H ~0~ H~ H(descending—)—

and

H~ H~O~H +H—( ascen—ding ) . —

(1.4a)

(1.4b)

After a few cycles the magnetization is described by the
well-known Rayleigh law

Here, Hc is the coercive field, which for iron is on the or-
der of 0. 1—5 Oe, depending on sample purity and
preparation. In practice, the upper limit of reversible
magnetization for iron is approximately HU-0. 04 Oe,
while the lower bound, HL, is limited by thermal fluctua-
tions (see Sec. III A). Rayleigh estimated that
HL —10 Oe, but more recent measurements on nickel
ellipsoids —shielded from stray external fields exceeding
10 Oe—showed irregular variations of I for fields
below HI —10 Oe '

The simplest reproducible results for irreversible mag-
netization changes in ferromagnets are also obtained in
weak magnetic fields. In contrast to Eq. (1.2), the fields
are first increased along the virgin curve to some max-
imum value H

I=gH, I (H) =(Xq +ctH )H+ , ct(H~ H), ——(1.5)
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where, by virtue of Eq. (1.5),
1Ig ———,aHm . (1.8)

In Ellwood's work, Iz ——10 Oe, with H~ -55.8 mOe
and a-0.064.

Irreversible magnetization changes are usually attribut-
ed to Barkhausen jumps. ' ' These discontinuities are
produced by abrupt ( & 10 sec) shifts in domain config-
urations caused by the movement of walls. It is assumed
that dislocations, precipitates, or other obstacles normally
pin the walls, but if external fields exceeding certain
threshold values are applied, then the walls are able to
surmount these potential barriers and move until they are
snagged by the next potential peaks. ' This situation is
indicated schematically in Fig. 6(a)—also see Sec. IV. A
statistical treatment of random jumps over this
"landscape" of potential hills and valleys leads to a poly-
nomial expansion for the magnetization, '

I(H)=aH+bH + . . (1.9)

Experiments confirm that this type of quadratic expres-
sion fits the virgin magnetization curve. However, since
the statistical arguments are applied to a fixed landscape
of microscopic potential curves, it is not possible to ac-
count for the evolution of virgin to asymptotic hysteresis.

B. Opea problems

1. Discordant experiments

In this brief treatment of weak-field ferromagnetism we
have already mentioned experiments that indicate a
failure of the simple proportionality in Eq. (1.1) for ex-
tremely weak fields. ' The discrepancies associated with
irreversible magnetization are far more serious and well

where the upper and lower signs correspond to the des-
cending and ascending branches, respectively. For unan-
nealed iron, typical values for the parameters are X~ (ini-
tial susceptibility) -7, and a (Rayleigh constant) -4,
when H is measured in Oe.

These irreversible —albeit reproducible —variations of
I(H) are observed only over a limited range of the max-
imum field H~. If the bounds of this "Rayleigh region"
are denoted by HL and HU, then H is restricted by a set
of inequalities analogous to Eq. (1.2),

0 (HL /H~ &HU (Hg, (1.6)

where Hc is again the coercive field. Representative
values of HP are 1.4 Oe (for "hard" Swedish iron ), 3.2
Oe (for "powdered" iron ), and 0.38 Oe (for annealed
iron' ). Ellwood also verified the existence of well-
defined hysteresis loops of the type [Eq. (1.5)] for field ex-
cursions as small as HL -55.8 mOe. Even lower values,
HI -5 mOe, have been obtained with window-frame
monocrystals of Fe-Si." For later reference, we note that
the remanence, which is a measure of the nonuniqueness
of I, is given by

IIi ——, [I(H =0, —descending branch)

I(H =0—, ascending branch)],

documented: First, we recall that the measurements car-
ried out by Ellwood were intended to settle a long-
standing controversy concerning hysteresis losses in the
Rayleigh region. From Warburg's principle (cf. the Ap-
pendix) it follows that the energy dissipated per cycle over
a Rayleigh loop is given by

4 3
m~ =Taa (1.10)

2. Too many Barkhausen jumps

When the amplitude of the magnetic field sweeps is de-
creased below HU, as defined in Eq. (1.6), there is a rapid
decrease in the number of Barkhausen jumps. ' ' '

There is an isolated claim that below a certain threshold
they disappear altogether, ' but the prevailing opinion is
that smaller fields are generally associated with smaller
jumps. " This makes it plausible that the smooth varia-
tion of the magnetization at the lowest field levels is sim-
ply an artifact of limited experimental resolution. At the
domain level this implies that reversible and irreversible
wall deformations always coexist, and that the magnitude
of the applied field simply varies the mix. Since a linear
relation such as Eq. (1.1) is incompatible with hysteresis,
the ultimate conclusion of this line of reasoning is that the
linear Rayleigh law is simply an empirical approximation
without deeper significance.

3. Too few Barkhausen jumps

It is curious that the same arguments that cast doubt on
the validity of Eq. (1.1) also may be turned against the
other Rayleigh law, Eq. (1.5). The essential point is that
if irreversible magnetization is actually the cumulative re-
sult of statistical wanderings over a microscopic energy
landscape, then sensitive detectors should show that the
two branches of the Rayleigh loop are, in fact, generated
by distinct patterns of Barkhausen jumps. This assertion
has been checked experimentally by Bush and Tebble,

However, early experiments by Jordan' and Gans'
showed that the energy losses included a quadratic term:

~JG ~Hm+Hm . (1.1 1)

Ellwood's attempts to resolve this discrepancy were am-
biguous: on one hand, his results confirmed that the areas
of the Rayleigh loops were strictly proportional to H
but direct ac-bridge measurements of the power dissipa-
tion also showed that the magnetic hysteresis losses were
described by the Jordan-Gans form, Eq. (1.11). In partic-
ular, for fields in the range 0.05 &H &0.4 Oe, the evi-
dence was clear that the energy losses varied as 8'~ H~.

Forty years later, similar results were obtained by
Baldwin. ' ' Using updated bridge methods he verified
that Ni-Fe and several gadolinium samples exhibited stan-
dard Rayleigh hysteresis in weak fields (for Gd,
0 02 &H~. & 0.6 Oe), but at still lower field levels (0. 1—10
mOe) all the samples showed a transition to the quadratic
Jordan-Gans type of energy dissipation. Baldwin em-
phasized that series expansions such as Eq. (1.9) were
bound to lead to quadratic and cubic variations for the
remanence and energy losses and could not be reconciled
with the results of the low-field measurements.
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TABLE I. Contributions of discontinuous and reversible processes to the total change in magnetization.

Material

8arkhausen Reversible
magnetization magnetization

I;„(%) I„„(%)

Missing
magnetization Barkhausen energy

Iz- —I;„—I„, (%) Hysteresis loop energy

Hard-drawn iron'
Large-grained iron'
Nickel' (annealed)
Nickelb (hard)

'Reference 23.
"Reference 24.

86
57
47

~20

9
5

16

5
38
37

(0.2

and Tebble, Skidmore, and Corner, at Leeds; and also by
Koller, Pfrenger, and Stierstadt at Munich. For hard-
drawn iron, the Leeds group obtained consistent results.
As shown in Table I, the total change in magnetization
(IT) measured for a half-cycle of a stabilized hysteresis
loop was nearly equal to the sum of discontinuous mag-
netization changes due to Barkhausen jumps (I;„)and a
small reversible component (I„„). However, for large-
grained iron and annealed nickel, about 40% of the total
magnetization changes could not be accounted for by ex-
perimentally integrating along the hysteresis loop. The
last line of Table I summarizes the results of Koller et al. :
Both in hard and soft nickel samples, the discontinuous
magnetization changes were far too small to explain the
observed hysteresis. Moreover, the energy dissipated in ir-
reversible jumps was less than 20% of the energy losses
inferred from the areas of the hysteresis loops. The only
possible way of reconciling these results with statistical
hysteresis theories, such as Neel's, ' is to suppose that
there are very many Barkhausen jumps that are so small
that they fall below the threshold of experimental resolu-
tion.

4. Barkhausen jumps and the magnetic Kaiser effect

It is apparent from Eqs. (1.2) and (1.6) that reversible
and irreversible magnetization changes can occur at the
same field levels, for instance, in iron at 40 mOe. This
does not imply any inconsistency: As indicated in Eqs.
(1.4a) and (1.4b), the virgin curve will split progressively
into Rayleigh loops when the field cycles include changes
in direction, i.e., tuto sided hyste-resis On the other .hand,
if the field varies in magnitude but not in direction, then
the linear behavior of Eq. (1.1) persists. In fact, experi-
ments support a stronger claim: If, in the case of iron,
one starts at a base field of 0.4 Oe=10HU [cf. Eq. (1.2)]
and then applies symmetric field cycles with amplitudes
bounded by HU, i.e., one-sided hysteresis, then the hys-
teresis implicit in Neel s expansion, Eq. (1.9), disappears,
and the susceptibility in the range 10IIU+HU becomes
strictly constant. The I„,entries in column 3 of Table I
were obtained essentially by this method. '

Since one-sided hysteresis cycles can create localized in-
tervals of constant, or reversible, susceptibility, it is plau-
sible to assume that the intensity of Barkhausen emission
in these intervals should also decrease or disappear alto-
gether. Specifically, starting from a given base field, the
irreversible magnetization and Barkhausen emission on
the first field increase above the base level should be

greater than the corresponding changes on subsequent cy-
cles. Such a progressive quenching of Barkhausen emis-
sion in one-sided hysteresis would be a magnetic counter-
part of the Kaiser effect in acoustic emission. Both
effects are consequences of a general hysteresis theory-
see Sec. IV.

C. Scope of the present work

This background of open problems and conjectures sug-
gested a series of experiments intended to answer the fol-
lowing specific questions:

(a) Is there a definite lower threshold for the Bark-
hausen effect? In other words, is there a very-low-field re-

gime where the magnetization is uniquely determined by
the field?

(b) Is the onset of the Barkhausen effect always corre-
lated with the appearance of hysteresis? Can the total
changes in magnetization be accounted for by summing
the reversible components and the Barkhausen jurnps7

(c) Is it possible to diminish or eliminate Barkhausen
emission by repeated field cycles'7 Is there a magnetic
Kaiser effect'?

(d) What are the energy losses for incipient hysteresis?
How can Warburg's principle be modified for open or
drifting hysteresis loops' ?

(e) Are there any indications that it is possible to have
multivalued, i.e., history-dependent, magnetization with-
out any apparent Barkhausen jumps?

The results of the present work are summarized in Sec. V.

II. EQUIPMENT AND SAMPLES

A. Magnetic gradiometer

A S.H.E. Corporation model BMP SQUID biomagnetic
gradiometer was used to measure the magnetization of
several pure iron samples in an ultralow-field environment
provided by the NASA Goddard Space Flight Center At-
titude Control Test Facility at Greenbelt, Maryland
(NASA denotes National Aeronautics and Space Admin-
istration). The overall setup of the experiment is shown in
Fig. 1. The gradiometer coil is 6.3 cm long and 2.3 cm in
diameter; its axis was positioned vertically for all rnea-
surements. This coil had a total of eight turns: the two
turns at the top and the two at the bottom were wound in
the same direction, while the four turns in the middle
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FIG. 1. Schematic of SQUID setup at the NASA Attitude

Control Test Facility. A three-axis, 12.7-m-diam Braunbeck
coil system provides a cancellation of the geomagnetjc field to
+10 Oe over a volume of 20 m'.

RECORDER

B. Magnetic field facility

AH magnetization measurements were carried out at the
Attitude Control Test Facility (ACTF) of the NASA

were wound in the opposite direction. This configuration
produces a null output voltage in the presence of a uni-
form magnetic field or a field with a constant gradient,
i.e., it is a second-derivative gradiometer. When this coil
arrangement is placed inside a helium Dewar, the bottom
two turns are approximately 1.0 cm above the bottom out-
side surface of the Dewar. If a small ferromagnetic sam-
ple is placed in the vicinity of the Dewar bottom, its mag-
netization is sensed principally by the lower two turns of
the SQUID coils. If the magnetization is altered by
means of a uniform external field, as indicated in Fig. 1,
then the gradiometer will sense only the changes in mag-
netization of the sample. It is important to note that a
SQUID-based gradiometer has a dc response. Thus, it
measures magnetic moment or flux directly, whereas most
other types of magnetometry involve the time derivative
of these quantities.

Leads from the gradiometer coils are connected to the
input terminals of the S.H.E. Corporation Hybrid™
SQUID Sensor. The sum of instrumental and environ-
mental noise in the (0—10)-Hz bandwidth was on the or-
der of 4X 10 ' 6/Hz' . Under these operating condi-
tions, the limiting slew rate of the SQUID is 10 4&o/sec,
where No ——hc/2e =2.07& 10 Gcm .

The SQUID calibration was checked by a simulation of
the magnetization experiments. A five-turn test coil with
an overall length of 3 mrn and a 28.3 rnm cross section
was fabricated. These dimensions approximated the iron
sample used in most experiments. The test coil was
placed at several distances below the Dewar tail along the
axis of the gradiometer, and the change in SQUID output
as a function of dc current in the test coil was determined.
In a range of the sample positions from 1 to 15 mm below
the Dewar bottom, the test-coil results and the quoted
SQUID-calibration value agreed to within 10%.

Goddard Space Flight Center at Greenbelt, Maryland.
The ACTF building is a nonmagnetic cement-block struc-
ture containing a three-axis 12.7-m-diam Braunbeck coil
system that can compensate for various kinds of field in-
homogeneities such as diurnal variations, temperature-
induced gradients, etc. This arrangement provides an
overall cancellation of the geomagnetic field to within
+10 Oe, and a field homogeneity of 0.001%%uo over a
spherical volume of 24.4 m .

Auxiliary windings in the Braunbeck coil system were
used to generate uniform magnetizing fields, as shown in
Fig. 1. The currents in these windings were derived from
two operational amplifiers whose output voltages could be
ramped linearly in time for durations between one second
and several thousand seconds. The output from this cir-
cuit drove a Hewlett-Packard model 62698 dc power sup-
ply operated in a voltage-programmable amplifier mode.
This power supply is capable of delivering a 40-V output
with a 20-A drain. However, the ACTF coil sets, when
connected in parallel, presented a net resistance of 4 0,
thereby limiting the attainable current to about 10 A. The
corresponding peak magnetic fields at the sample position
were limited to 0.37 Oe (see run 10 in Fig. 3). This ar-
rangement permitted field-sweep rates as slow as 0.81
pOe/sec. The magnetic fields at the samples could be
raised to still higher levels by combining this variable-
field arrangement with fixed base fields. For this purpose
other auxiliary windings in the Braunbeck system could
provide dc fields in steps of 1&&10 Oe up to a max-
imum of 0.6 Oe.

When the gradiometer coils were centered within the
Braunbeck coil system, the SQUID could be balanced to
about one part in 10 for the north-south and east-west
directions, and to about one part in 10 for the vertical
direction. The response of the SQUID (without any sam-
ple present) to a ramped field in any of these directions
was then due to residual imbalances in the gradiometer
and spatial nonuniformities of the ramping field. In gen-
eral, the SQUID response to a ramped field in the absence
of any sample was never more than a few percent of the
response observed when one of the iron samples was posi-
tioned within 2 or 3 cm of the Dewar bottom.

C. Iron samples and demagnetization procedures

The combination of the ACTF environment and
SQUID magnetometer was used to spot-check the mag-
netization of a variety of samples including gadolinium
and a metallic glass ribbon. However, the detailed studies
described in the next section were carried out on two iron
samples. One of these, which we shall refer to as the
"pill, " was cut from a circular -rod of Johnson-Mathey

- 99.999% spectroscopically pure iron. This sample was
annealed in a hydrogen atmosphere at 650'C for several
hours. The average height of the sample was 2.67 mm
and its diameter was 4.98 mm, or approximately the size
of a pill. This sample weighed 0.406 g and had a comput-
ed volume of 5.20X10 cm; these values are consistent
with the handbook density of 7.874 g/cm for pure Fe.
The other sample is an iron whisker 1.72 cm long with an
average rectangular cross section of 0.14 mm, kindly pro-
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vided by Professor R. V. Coleman of the University of
Virginia. This whisker was also annealed prior to the ex-
perirnents.

All samples were carefully demagnetized in the 10
Oe environment of the ACTF immediately before the
measurements. Two variac voltage dividers in series were
connected to a small degaussing solenoid that could gen-
erate a field of 2 kOe with the full 110-V ac line voltage
across it. With a sample placed inside the solenoid, the
(secondary) variac connected directly to the demagnetiz-
ing solenoid was adjusted to its maximum voltage setting
of 130 V. The primary variac was initially set to a high
value, usually about 90 V, so that the current through the
solenoid was just less than 20 A. The primary variac set-
ting was then reduced at a decreasing rate during a period
of a few minutes until a value of 1—2 V was reached. The
secondary variac was then 'turned down in a similar
fashion, also stopping at a setting of 1—2 V. Owing to
the series variac arrangement, this final setting corre-
sponded to 10 V. The sample was then withdrawn
slowly and placed on a platform directly under the
SQUID Dewar. The demagnetizing solenoid was also
slowly moved to a location far from the field-free ACTF
region before the remaining current was disconnected.
Apart from the iron samples, no ferromagnetic objects
were anywhere near the SQUID gradiometer coils.

The domain structure of ferromagnetic samples sets a
practical lower limit on all demagnetizing procedures.
Studies of erasure limits and noise on tape recordings in-
dicate that, to a good approximation, the lower limits of
magnetization (

I
I

I d, ,s) can be estimated by adding the
magnetic moments of individual domains (md, ) by
"random-walk" methods, i.e.,

1 1 8n
I

I
I demag V gmdom I

rn
I d, , (2.1)

where n is the number of domains in the sample and V is
the sample volume. By this means one can crudely esti-
mate that, for the pill, 10 & II

I d, ,s&10 emu, and,
indeed, after demagnetization, the SQUID signals indicat-
ed a residual magnetization on the order of 6& 10 " emu.

At the end of their long article on the Barkhausen ef-
fect, Tebble et al. recommend that future work be done
with samples having large demagnetizing factors. This
criterion has been met in the dimensions chosen for the
pill sample. Large demagnetizing factors are helpful in
avoiding clusters or avalanches of Barkhausen jumps.
This becomes clear if we recall that the effective magnetic
field inside a sample (H;„,) is related to the applied field
(H,„,) by

~int ~ext (2.2)

H;„,=H,„,/(1+XX),
and, furthermore, that

(2A)

where X is the demagnetizing factor. Assuming, as usual,
that the magnetization is [cf. Eq. (1.1)]

(2.3)

then Eq. (2.2) indicates that the internal field is given by

xI= H,„,-H,„,/X when XX &&1 .
1+XX

(2.5)

The pill's "longitudinal" demagnetizing factor' for fields
parallel to the 2.67-mm axis is %~=5.6 —see Eq. (3.1) et
seq. In addition, for pure iron, the initial susceptibilities
are in the range 20%&7&80. According to Eq. (2.4) the
internal fields in the pill are then at least a factor of 100
smaller than the applied fields. VA'th external field-sweep
rates of 10 Oe/sec and an instrumental resolution of 0.1

sec, it should, in principle, be possible to discriminate
Barkhausen jumps separated by only 10 Oe. For sam-
ples at room temperature, such small field increments are
probably comparable to fluctuations induced by thermal
noise. "4

where XI is the longitudinal demagnetizing factor. An in-
dependent measurement of the demagnetizing factors of
the pill carried out with a PAR model 150 vibrating-
sample magnetometer yielded a value of XI ' ——0.178.
Both of these results are in good agreement with the sem-
itheoretical estimate (based on sample dimensions)

'=0. 177 given by Warmuth. Similar results were
obtained with additional field cycles extending to 187
pOe.

The questions raised in item (a) in Sec. I C can now be
answered as follows: For very slow field sweeps in the
range 1—187 pOe, the magnetization in a polycrystalline
sample of pure iron is reversible and without any
Barkhausen jumps above a noise level of about 3&10
emu. Qwing to the large demagnetizing factor of this
sample, the corresponding internal fields are lower by a

III. EXPERIMENTS

A. Reversible magnetization

The iron pill sample described in Sec. II 6 was demag-
netized and placed against the bottom of the Dewar. The
residual magnetic moment was measured to be
2&(10 emu, cf. Eq. (2.1). In the most sensitive range,
there was a signal with a peak-to-peak value of 4.2& 10
emu in the bandwidth from 0 to 10 Hz. These fluctua-
tions were roughly a factor of 3 greater than those ob-
served in the absence of any samples. It was not deter-
rnined whether these fluctuations were due to mechanical
vibrations or thermal noise. Next, a uniform vertical
field, i.e., one aligned with the gradiorneter axis and the
2.67-mrn axis of the sample, was applied. This field was
first increased from (0+1) to (70+1) pOe at a uniform
rate of 1.3 pOe/sec, and then uniformly decreased to
(0+1) pOe. This cycle was repeated once again. The
magnetic moment of the sample changed by 6.0&(10
emu as the field was increased from 0 to 70 pOe. The net
change in magnetic moment over. a complete cycle
(0~70—+0 pOe) was less than 2X 10 emu. .

It is clear from all low-field traces that apart from a
fluctuating component, the magnetization is strictly pro-
portional to the applied field and completely reversible.
These results can also be checked with the help of Eq.
(2.5). Inserting the experimental values, we find

1 o 16 Q 10 emu

7.0& 10 Oe
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factor of (1—4) & 10, cf. Eq. (2.4). Since XX &&1, it is
clear from Eq. (2.5) that the ratio I/H, „, is insensitive to
the magnitude and any possible dependence of 7 on ap-
plied field.

B. Threshold of Sarkhausen emission:
The magnetic Kaiser effect

l. Bizrkhaussen signals

The magnetization measurements of the iron pill sam-
ple were gradually extended to higher transverse field lev-
els until finally isolated jumps of the type shown in Fig. 2
appeared. Since the noise fluctuations are symmetrically
distributed about the linear rise in magnetization, these
asymmetric shifts stand out conspicuously. A typical
jurnp corresponds to a change in magnetic moment of
5&&10 emu; this value is about an order of magnitude
smaller than the jumps reported by Tebble et al. , but
quite reasonable for Barkhausen signals. These
magnetic-moment changes, of course, correspond to
abrupt shifts in the total magnetization of the pill. The
connection between bulk magnetization changes and local-
ized rearrangements of the domain structure can be estab-
lished only by means of model-dependent boundary-value
problems.

The intrinsic switching time for Barkhausen jumps is
controlled by domain-wall movements. ' Since the wall
velocities are of the order of 10 —10 cm/sec, the corre-
sponding jump durations may be as short as 10 sec,
However, if the Barkhausen jumps occur in the interior of
a conducting material, the corresponding magnetization
of the bulk sample will switch on a slower time scale be-
cause of eddy-current decays. In particular, for an infin-
itely long cylinder with permeability p and conductivity
o., the effective eddy-current-decay time is

~-~po.a 2 (3.2)

Amp

aa,„,
6.0& 10 emu 0 86 10

70 pOe

(3.3)

where Am& is the change in the magnetic moment of the

where a is the radius of the cylinder. Assuming p-400,
o ' —10 Qcm, and a=2.4mm, Eq. (3.2) indicates that
the magnetization of the iron pi11 wi11 switch on a time
scale of about -4X 10 sec. If we combine this estimate
with the maximum slewing rate of the SQUID gradiome-
ter ( —10 @o/sec) for this frequency domain, we find an
upper limit on the order of 10 emu for the magnetic
moments of the Barkhausen jumps that can be measured
when the pill is placed within 1—2 cm of the Dewar bot-
tom.

The slowest element of our analyzing system was a
strip-chart recorder with an effective bandwidth of 10 Hz.
This affected our ability to detect Barkhausen jumps at
higher field levels and faster sweep rates. Consider, for
example, the situation where the pill is placed against the
Dewar bottom and a vertical field is applied as in Sec.
IIIA. In this case, Eq. (3.1) implies that

I I I l I I I l I I I I I i I I I

I

H . Hdecreasing H.increasing

FIG. 2. Strip-chart record of changing flux (on the vertical
scale) as a function of external field (on the horizontal scale)
showing three Barkhausen jumps near the peak field on run no.
13. The jumps are equivalent to magnetic-moment changes of
—10 emu in the iron pill sample. The field was ramped at
0.897 mOe/sec. The two full-scale vertical lines are due to
manual resets. The peak field, seen near the left end of the fig-
ure, was 299 mOe.

pill. If the field is swept at a rate of 1.3 pOe/sec, then in
0.1 sec the continuous change in'moment is —10 emu,
whereas the discontinuous change due to a Barkhausen
jump is -5)&10 emu. This disparity is the reason that
the Barkhausen jumps stand out so clearly in the traces
shown on Fig. 2. However, these estimates also make it
clear that with faster sweep rates, say 300—500 pOe/sec,
the Barkhausen discontinuities will no 1onger be visible as
steps on the strip-chart traces. This problem can be
avoided with oscilloscope recording and/or compensating
coils, but with the means at hand it was decided to use
transverse magnetization to enhance the Barkhausen sig-
nals. The transverse-field orientation is shown in Fig. 1.

All the Barkhausen measurements reported in this sec-
tion were obtained with this transverse-field orientation.
As indicated in Sec. IIB, ramping auxiliary field coils in
the transverse direction produced no significant imbalance
in the gradiometer response unless an iron sample was
present. The essential point of this arrangement is that if
the magnetized sample is represented by a finite solenoid,
then in the transverse orientation the coupling between the
magnetization of the sample and the gradiometer coil sys-
tem can be minimized. Allowing for slight asymmetries
in the geometry of the iron pill, angular misalignments of
1 —2, and centering errors of 0. 1—0.2 mm, it is easy to
show that the gradiometer response to the sample magnet-
ization is reduced by about 2 orders of magnitude. Since
the transverse demagnetization factor of the sample is ap-
proximately' X, =3.6, as determined by independent mea-
surements, this reduction also could be verified experi-
mentally. However, the gradiometer coupling to random-
ly oriented Barkhausen jumps was not affected by this
choice of field direction.

All of the information concerning Barkhausen emission
displayed in Fig. 3 was obtained with the iron pill posi-
tioned so that there was a 1.18-cm gap between its top
surface and the Dewar bottom, and with the field in the
transverse orientation. Under these conditions the slope
of the continuous portion of the magnetization curve cor-
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FIG. 3. Pattern of Barkhausen jumps for a polycrystalline iron sample. The solid triangles indicate the fields where jumps oc-
curred during increasing field sweeps; the open circles show the jumps observed on decreasing field sweeps. Spurious signals occurred
during run no. 16 and the down-field part of run no. 17.

responded to SQUID signals of approximately 1814+Oe.
Allowing for maximum sweep rates of 900pOe/sec, this
resulted in increments of 0.0163@oin 0.1 sec. In contrast,
typical Barkhausen discontinuities corresponded to shifts
of about 0.3@o.

2. Threshold ofBarkhausen emission

As indicated in Fig. 3 the first Barkhausen jump
occurred at H,„,=68.9 mOe on run no. 4. The magni-
tude of the change in magnetic moment was
4m~ ——1.57X 10 emu with a +10%%uo error. According
to Eq. (2.4), because of the demagnetizing effect, the inter-
nal field in the sample is lower by a factor of roughly
(1—4)X10 . Strictly speaking, the onset of Barkhausen
emission may mark the end of a gap rather than a thresh-
old because on the prior lower-field runs (nos. 1—3)
Barkhausen jumps might have occurred below the noise
level of 3 X 10 emu. Nevertheless, the present observa-

tions exclude the possibility that there is a smooth spec-
trum of Barkhausen signals gradually fading below the
noise level. The existence of a gap, or terminus, in the
Barkhausen spectrum is dependent on the nature of the
sample as well as on the method of magnetization: A cur-
sory check of a (metastable) metallic glass sample showed
an extremely high level of spontaneous Barkhausen noise
in a zero-field environment. On the other hand, it is
known that high demagnetizing factors and transverse
magnetization inhibit Barkhausen emission. ' ' '

The existence of a threshold in Barkhausen emission
also was checked in another series of runs with the pill
sample placed against the gradiometer Dewar. The ob-
served pattern was entirely analogous to that shown in run
nos. 1—4 in Fig. 3, except that the initial jump occurred at
a lower field level, II,„,=48.8 mOe.

'

It also is apparent from Fig. 3 that when the field on
run no. 4 was decreased from its maximum value of 74.7
mOe there were no further Barkhausen jumps. A com-
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parison of the initial and final magnetizatio~ of the sam-
ple showed that the difference was completely accounted
for by the single Barkhausen event. The slopes of the as-
cending and descending magnetization records were equal
within experimental error.

I 80

O Ioo-
E

80—

I I I I I I I I I I I I I I I I I

4
——————~———~————-4——~——————

4 4 ~

3. Magnetic Kaiser effect

The one-sided hysteresis cycles shown in Fig. 3.include
82 Barkhausen jumps on 19 ascending branches and 52
jumps on the corresponding descending branches. In ad-
dition to this obvious division, there are definite patterns
in the distribution of the jumps. It is clear from cycle
nos. 4—8, 37—40, and 60—66 that the Barkhausen jumps
appear on the f'trst field sweeps to higher levels, and in
subsequent cycles the jumps reappear only for field values
exceeding the peak fields reached in the preceding sweeps.
Similar "memory" effects in Barkhausen emission have
been observed in polycrystalline gadolinium when subject-
ed to field cycles of increasing amplitude in the range
2—18 Oe. The first example of such a regime of disap-
pearing discontinuities was found by Kaiser in acoustic
emission.

In all the cycles shown in Fig. 3, it was possible to
check the magnetization changes explicitly (cf. Table II).
In every case the net magnetization change over a com-
plete field cycle was commensurate with the cumulative
increments of the Barkhausen jumps. In this sense the on-
set of hysteresis and Barkhausen discontinuities are direct-
ly related.

Another interesting regularity appears in run nos. 8—13
and 41—45: Evidently in these cases the onset of
Barkhausen signals has the character of a second thresh-
old of persistent hysteresis, i.e., a region in which subse-
quent field cycles do not eliminate the Barkhausen jumps.
Measurements show that the initial Barkhausen jumps on
run nos. 8—13 and 41—45 do not occur at reproducible
field points, but the graphical summary given on Fig. 4
indicates a well-defined clustering around a threshold
value of H,„,=158 mOe, or roughly H;„,-200—
800 pOe. The practical significance of this second thresh-
old is that it sets a definite upper limit on the "interval of
reversibility" that can be cleared of Barkhausen discon-
tinuities in a few field sweeps. In this sense it provides a
microscopic explanation for Rayleigh s HU in Eq. (1.2).

Run nos. 8—15, 39, and 41—45 in Fig. 3 show another
pattern of regularity: Whenever the second threshold is
crossed on an ascending field sweep, Barkhausen jumps
appear on the descending field sweep. Furthermore, the
value of the field difference between the position of the
maximum, or last, Barkhausen jump encountered on the
ascending cycle and the position of the first Barkhausen
jump encountered on the descending cycle is equal in
magnitude to the second threshold field. Just as before,
the pattern of the individual Barkhausen jumps is not
reproducible. In fact, the actual field values of the gaps
between the ascending and descending Barkhausen events
may vary considerably. However, as shown in Fig. 4, the
widths of these gaps are sharply defined, and, within our
present experimental capability, indistinguishable from
the magnitude of the second-threshold field.

60—
040—

0 INITIAL BARKHAUSEN JUMPS
ONSET OF PERSISTENT JUMPS
GAP WIDTHS

0 I I I I I

0 4 7 I7 37 39
I I I I I I I I I I I I

8 9 IO I I l2 l3 l4 l5 4I 42 43 44 45
CYCLE NUMBER

FIG. 4. Regularities of Barkhausen jumps. The open circles
show the fields for which the first Barkhausen jump occurred
on each ascending field of a cycle. The gap widths represent the
field differences between the last Barkhausen jump for an as-
cending field and the first jump along the descending field of
the same cycle.

C. Energy losses in incipient hysteresis

The energy changes associated with magnetizing pro-
cesses are usually represented as path-dependent vector

The statistics are too sparse to draw any definite con-
clusions about a possible equipartition of Barkhausen
jumps on the ascending and descending branches for field
sweeps exceeding the second threshold. Nevertheless, de-
tailed plots of the corresponding magnetization changes
for repeated cycles exhibit a definite evolution from virgin
to asymptotic hysteresis. For instance, between run no.
10 and run no. 13 the net change in the magnetization of
the pill decreased by at least a factor of 17: In other
words, run no. 10 corresponds to an open or incomplete
loop on the I-H plane, whereas by the time run no. 13 was
reached the loop had closed to within the gradiometer
resolution.

The power-supply limitations discussed in Sec. IIB
prevented us from extending the range of field sweeps in a
continuous manner beyond the maximum value of 367
mOe reached in run no. 10. Thus, as indicated in Fig. 3,
we turned a vice into a virtue by employing auxiliary sup-
plies to establish successive base fields at 250 and 500
mOe: In this fashion we reproduced Rayleigh's original
scheme of stepwise field increases (cf. Sec. IB4 and Ref.
6). The resulting experimental evidence is clear: In the
entire low-field regime spanned by Fig. 3, that is, for
fields in the range 10 &H, , &1 Oe, or equivalently,
10 &H;„,~10 Oe, the precise value of the initial
magnetization of the sample is irrelevant. Since, in any
case, there are inherent limitations in the degree of
demagnetization, as shown in Eq. (2.1), this is a useful re-
sult. However, the essential consequences lie deeper: the
fact that the entire pattern Offirst and second Barkhausen
threshol'ds —together with their associated memory
effects "an be exhibited in three different field regimes in
run nos. 1—13, 14—17, and 36—45, each beginning with a
different base field, shows that there are definite topograph
ic regularities On the extended energy surfaces that describe
the hysteresis. This point is discussed in further detail in
Sec. IV.
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line integrals in the I-0 plane,

5'=V JH,„,dI . (3.4)

jump occurs, and the auxiliary function f(n) is given by

If the magnetization increments are split into reversible
and. irreversible components, then the energy also can be
written in the form

w'= @rev+ birr r

where the reversible component for a transition from an
initial state (i ) to a final state (f) is

@re„=VI H;„r dIre„+ 2 V&( frrev Ig IIrev I&'

j=2

(3.6b)

When the data points are replotted according to Eqs. (3.6),
one finds that 8';„(n) is a linear function of H,„,(g) for
all ascending field sweeps. This regularity suggests that
one should normalize the slopes so that the energy varia-
tions due to the different base fields become less conspicu-
ous. An obvious choice is the following:

(3.5b) 8',",'r (n) =f(n)[He„,(n) —H,„,(1)], n ~ 1 (3.7a)

As usual, V is the volume of the sample and % is the
demagnetizing factor.

The energy dissipation is given by a discrete sum over
Barkhausen jumps,

n

8';„=Q fhmj f fH,„,(j) f
. (3.5c)

5';~(n) =f(n)[H,„,(n) —H,„,(1)], n & 1 (3.6a)

where H,„,(1) is the field where the initial Barkhausen

The transition from Eq. (3.4) to Eqs. (3.5b) and (3.5c) and
its connection with Warburg's principle for nonequilibri-
um processes is discussed in the Appendix.

In this subsection we present detailed results for the
variation of 8';„based on the Barkhausen measurements
displayed in Fig. 3. For each jump we measured the mag-
nitude of the change in magnetic moment,

f
b,mj f, and

the corresponding value of the field,
f
H,„,(j) f, where the

jump occurred. In order to focus on a specific example,
the raw data for the ascending field sweep in run no. 10
are given in Table II. It should be cautioned that since

f
b,mj f

represents a change in the bulk magnetic moment
of the sample, the actual energy dissipated at the domain
level is different; the precise correspondence would have
to be established by calorimetric methods.

Since the number of Barkhausen jumps is an increasing
function of the field, it is convenient to plot 8';„as a
function of n, or, equivalently, He„,(n). A few trial
graphs confirmed that the particular value of the base
field was irrelevant. In fact, the essential trends in the
data emerged most clearly when the threshold of
Barkhausen emission in any given run was chosen as the
origin for that particular run. For this purpose it is con-
venient to rewrite Eq. (3.5c) in the form

8',",', (n) = 8'; (—n)/H, „,(1) and f(n) =—f(n)/H, „,(1) .

f bmj
f
=[Am]e„—1.13&&10 emu, (3.8a)

where the average change in magnetic moment was com-
puted from data for all runs. Furthermore,

r(J) f
—=H (1)+(j 1)[~H]... [~H]..-23 mOe

(3.8b)

where the average field interval between jumps, [hH],„,
also was obtained using aB available data. It then is sim-
ple to show that

In other words, the normalized cumulative energy dissipa-
tion 5',".;, for any given run is simply the usual energy
dissipation divided by the magnitude of the field where
the first Barkhausen jump occurred on that particular
run.

Figure 5 shows a compilation of plots of 8',";, (n)
versus H,„,(n) —H,„,(1) for ten distinct ascending hys-
teresis cycles. It is evident that in the range
0&H,„,(n) —H,„,(1)&210 mOe, all of the data indicate
that f (n) is a constant with a value of about 6.6&&10
erg/Oe. This "universal" linear behavior is a conse-
quence of two further empirical regularities: (i) All of the
Barkhausen jumps on Fig. 3 have roughly the same order
of magnitude, and (ii) the spacing between the jumps does
not vary erratically. The auxiliary function f ( n) can then
be computed explicitly.

We first note that the sum in Eq. (3.6b) can be simpli-
fied because

TABLE II. Cumulative energy losses in incipient hysteresis. Data for run no. 10 on Fig. 3.

Barkhausen jump number {j)
2 3 4 5

1.00
1S4

0
1'

1.15
174
20
2.29

1.23
195
41
3.85

1.15
227 .

73
5.55

1.15

246
92
7.39

1.00
274
120

9.17

1.12
295
141
11.3

1.00
345
191
13.6

Equation (3.6b) is undefined for n =1; however, the normalized energy dissipation for the initial jump
can be obtained directly fram Eq. (3.5c).
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FIG. 5. Variation of hysteresis energy with magnetic field. The normalized energy dissipation defined in Eq. (3.7b) is plotted along
the ordinate. For each cycle the incremental field is measured from the initial Barkhausen jump. The experimental accuracy is indi-
cated by the error bar for the 160-mOe point. At 242 mOe there was a burst of noise that may have obscured a Barkhausen jump; the
"corrected" points were obtained by combining all other data for cycle no. 14 with Eq. (3.9).

[dm]„[b,H],„f(n)= 1—
[b,H],„H,„,(1) n —1

8',";,' (n)=g(n)
~
H,„,(n) —H,„,(1)

~

(3.10a)

n [AH],„n +1+
2H,„,(1) n —1

(3.9}

The fact that f(n) is scaled by the ratio of the averages
[Am],„/[bH],„ is dimensionally obvious. However, the
terms in the large square brackets are more interesting: In
particular, it is finally clear that the basic reason for the
linear behavior in Fig. 5 is that the threshold for
Barkhausen jumps is much greater than the interUal be-
tween jumps. Specifically, for all the runs above the
second threshold we have the upper bound
[bH],„/H,„,(1)-0.14. It is then easy to check that for
moderate values of n the expression in large square brack-
ets in Eq. (3.9) is nearly constant, i.e., f( )-n6. 7&&10
erg/Oe; this agrees with the average slope found in Fig.
5.

The second term in large square brackets in Eq. (3.9) in-
dicates that for field excursions where n[EH],„becomes
comparable to 2H, „,(1}, the linear variation of N';„(n)
with H,„,(n) will fail. This is indeed the case for run no.
14 where n =14, n[b,H],„=278 mOe, and 2H, „,(1)=508
mOe. For extremely high field sweeps where
n[bH], „&&2H,„,(1)—in other words, for field excursions
far above the Barkhausen threshold —the cumulative ener-

gy dissipation in Eq. (3.7a) becomes a quadratic function
of the field. It is plausible that this may be the underlying
reason for the quadratic component of the Jordan-Gans
law, Eq. (1.11).

Finally, it can be shown that the cumulative energy dis-
sipation for the descending field sweeps in Fig. 3 is given
by an analogous expression:

where

[b,m ],„
[hH],„

n [bH] n+1
2H,„,(1) n —1

(3.10b)

D. Hysteresis in an iron whisker

The onset of hysteresis in weak magnetic fields was also
observed in the iron whisker sample described in Sec. II C.
For these experiments the 1.72-cm axis of the whisker was
oriented coaxially with the SQUID gradiometer coils and
the sample placed in contact with the Dewar bottom. In
order to minimize Barkhausen emission and internal fields
in the whisker, the transverse magnetization shown in Fig.
1 was used for most measurements. According to Eq.
(2.4) the internal field is then approximately given by

H;„,=4vrH, „,/pNz -H,„,/10 (3.11)

where the permeability of the whisker is p-2000 and the
transverse demagnetizing factor is Xz —2m. The Braun-
beck coil system and operational amplifiers described in

In this case the index "1"refers to the first Barkhausen
jump encountered as the field is decreased; the corre-
sponding field value is H,„,(1). This simple change in
convention has an important physical consequence: For
the descending field sweeps one always ends with the con-
dition n[BH]„=He,t(1), and therefore Eqs. (3.10) will
always have significant nonlinear components.
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Sec. IIB provided controlled field sweeps in the interval
10 &H,„,&0.3 Oe. Fixed base fields of 0.3 and 0.6 Oe
were used to extend the upper limits to 0.9 Oe. The evo-
lution of the whisker hysteresis was followed in 96 mag-
netization cycles roughly paralleling the sequence shown
in Fig. 3.

In the lowest field range, 1 pOe&H„, &20 mOe, the
magnetization of the whisker was linear and reversible.
This behavior is consistent with the results obtained for
the pill sample in Sec. III A.

For field excursions up to 200 mOe the magnetization
remained linear within 2% but showed a hysteresis.
The corresponding triangular magnetization pattern is
sketched in Fig. 8(c). The hysteresis had a memory
dependence analogous to the magnetic Kaiser effect
described in Sec. IIIB3. This behavior is illustrated with
several examples in Table III. For. instance, the top row
of the table summarizes the measurements for run m = 1.
This was the first time, after a whisker demagnetization,
that the field was increased from 0 to 31.5 mOe. As indi-
cated by the slope in column 4, the associated gradiometer
flux increased by (387+2.5)@0, where @0——2.07&&10
Gcm is the flux quantum. When the field was reduced
to zero, the gradiometer flux decreased by (374+2;5)C&0,
leaving a net flux change of (13+5)40. The second
(rn =2) row of the table indicates that the next field cycle
terminated at a somewhat lower peak value,
0~27.3 mOe —+0, and this time the hysteresis was essen-
tially quenched. A similar pattern appeared in all further
field cycles. Invariably there was a net flux change on the
mth cycle if H,„,(m) exceeded the field maxima attained
on all previous cycles. The entries for m =38 and 51 in
Table III indicate that this memory effect persisted during
at least 13 intermediate-field excursions. On the other
hand, if the peak field decreased, that is, if
H,„,{m)~H,„,(m +1), then the net flux change on the

(m+1)st cycle was very small or vanished altogether.
This quenching is illustrated by the entries for m =2, 17,
39, 52, 69, and 80 in Table III.

The Kaiser-like behavior of the hysteresis and memory
effects continued with regularity up to the highest field
levels that could be reached by combining the 367-mOe
sweep field with a 600-mOe base field. In addition, above
200 mOe, field cycles with hysteresis showed a nonlineari-
ty of the magnetization on the initial up sweeps [cf. Eq.
(1.9) and footnote c of Table III]. Sporadic Barkhausen
jumps of the order of (10—50)@0 occurred above 500
mOe. In all cases, two or three repeat cycles at lower field
levels tended to restore linear and reversible behavior in
the magnetization.

The crucial point of the low-field whisker hysteresis is
that it represents irreversible behavior without any obseru-
able Barkhausen discontinuities. Estimates similar to
those given in Sec. III8 1 show that the largest
Barkhausen signals that could have escaped detection by
the SQUID gradiometer —strip-chart recording system
would be flux jumps of about 0.540, corresponding to
magnetic moment changes of 10 emu in the whisker.
This implies, for example, that if the whisker hysteresis
on the lowest-field run {m = 1 on Table III) were entirely
due to unobserved Barkhausen jumps, then there must
have been at least six of these discontinuities. Similar es-
timates can be derived from the data for other field cycles.

If these "invisible" Barkhausen jumps really existed,
and it were possible to eliminate them by successive field
sweeps following the pattern of Fig. 3, then the Kaiser-
like behavior of the whisker and pill hysteresis could be
traced to a common origin. The differences between the
"Up" and "Down" slopes of the magnetization in
Columns 4 and 5 of Table III would then also have to be
ascribed to the cumulative effects of these invisible jumps,
cf. Sec. I B 3. Although the possibility of such an ultrami-

TABLE III. Magnetic hysteresis in an iron whisker.

Run no.
(m)

I
2

15
16
17
38
39
51
52
68"
69
79
80

Maximum field
[H,„,(m)]

(mOe)

31.5
27.3

127.5
214.2
198.5
288
235
318
317
383'
371'

645'

Net flux change
(in units of @0)

13+5
0+5
0+5

115+5
18+5

146+9
0+9

129+5
44+5
84+2
2.7+2

106+2
4.4+2

Up slope'
(40/mOe)

12.3
11.2
11.9
12.8'
12.3
11.8'
11.7
11.8'
12.0
4.3'
3.3
4.8'
3.2

Down slope
(+0/mOe)

11.9
11.2
11.7
12.2
12.2
11.4
1 1.8
11.5
11.4
3.1

3.2
3.2
3.1

'(Gradiometer flux)/(external field), increasing H,„,.
As above, decreasing H,„,.

'Average slope; the susceptibility is not constant.
For all m & 64, the whisker end was moved 1.2 cm below the Dewar; this diminished the flux at the

gradiometer by a factor of 2.5.
'For 68 & m & 78 the base field was 300 mOe.
For 79 & m & 87 the base field was 600 mOe.
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IV. HYSTERESIS THEGRY

The magnetic hysteresis and memory effects displayed
by the iron pill and whisker samples are consequences of a
general phenomenology of hysteresis. This theory also
accounts for the changes in energy dissipation that occur
during the transition from virgin to asymptotic hysteresis.
Since the first systematic investigations by Ewing in.the
1880's it has been known that the effects of hysteresis can
be simulated by irreversible transitions among sets of
metastable states in magnetic dipole systems (Ewing ar-
rays ' s). This classical picture has been refined by quan-
tum mechanics and modern theories of domain formation,
but transitions between metastable states are still at the
core of all current theories of hysteresis. ' In this section
we give a brief review of the standard model of magnetic
hysteresis' ' and discuss the generalizations that are as-
sociated with the memory and energy dissipation effects.

A. Standard model

It is usually assumed that the states of a magnetic ma-
terial can be characterized by a free-energy sum

V(q, )=g V;(q, ) (4.1)

which includes contributions from structural features
such as (i) the crystaHine energy, (ii) the anisotropy ener-

gy, (iii) strain energy, (iv) exchange energy, (v) magneto-
static energy, and (vi) domain-wall energy. The configu-
ration coordinates qj denote wall displacements, pinning
sites, spin aggregates, and other variables that specify the
states of the system. The domain configurations can then,
in principle, be obtained from the variational problem

5 V=O, or =0,av
Bq~

(4.2a)

with the local stability constraint that the Hessian matrix

8 V~(q) =
~qj ~qk

(4.2b)

is positive definite.
If an external magnetic field is applied, the domain

configurations may change. The response of the system is
usually treated by perturbation methods. It is assumed
that after the field is switched on, the total energy is given
by

croscopic regime of Barkhausen noise has been mentioned
in the literature, "'" extensive studies of magnetic
domains in iron whiskers point in the opposite direction:
Bitter patterns of carefully grown pure whiskers with few
defects show large domains with well-defined wall defor-
.mations. ~ Recent SQUID measurements of Bark-
hausen signals from iron whiskers also show only isolated
large jumps () 10 &bo) in fields above 0.1 Oe.~ Similar
results have been obtained with the whisker used in the
present experiments when the external field was oriented
parallel to the 1.72-cm axis.

A new interpretation of the origin of the whisker hys-
teresis is given in the next section.

VT(H e, ) = —H~, g Ukcoslk + V(q, )
k

(4.3)

where V(qj. ) is the material energy from Eq. (4.1), and the
magnetic interactions are summed over all the domain
volumes Uk. As usual, I, denotes the saturation magneti-
zation, and Pk is the angle between the field and the mag-
netization of the kth domain. The changes in the domain
structure can then be obtained from the equilibrium con-
dition

5 '-(H, q~) =5V(qz) HI, g—5(ukcosgk) =0, (4.4)

in analogy with Eq. (4.2a).
The simplest illustration of these external-field effects

is provided by the shift of a single 180' domain wall. Sup-
pose this wall is parallel to the y-z plane and separates
two domains in the shape of square prisms with a com-
mon cross-sectional area L . If the wall moves through a
distance 5x, the variation of the magnetic energy is
2HI, L cosP 5x. In this special case, Eq. (4.4) reduces to

H=(2I, L cosP)
dx

(4.&)

which, in principle, furnishes an explicit relation between
the field strength and the wall displacements.

Useful qualitative results can be obtained even if the de-
tailed variation of V(x) is unspecified. Figure 6(a) shows
how Barkhausen jumps and hysteresis effects appear in
cases where dV/dx is not monotonic. To be specific, sup-
pose that the wall is initially at point a. As indicated on
the figure, this is an equilibrium position with
H =0V/dx =0. For systems with one degree of freedom
the Hessian stability criterion [Eq. (4.2b)j reduces to

d V~
(4.6)

dx

d V )0,
and, therefore, a also marks a position of stable equilibri-
um. If the field is switched on and allowed to vary in the
range O=H(a) &H &H(b), the wall will shift to new
equilibrium positions determined by Eq. (4.5). According
to Eq. (4.6), all of the displacements in the interval
O=x (a) &x &x (b) are stable and reversible. Clearly, this
simple model reflects the reversible magnetization ob-
served in the pill and whisker samples at the lowest field
levels, particularly on run nos. I—3 in Fig. 3.

The field H (b) is an upper bound for this region of re-
versibility. Figure 6(a) shows that all wall positions in the
interval x(b) &x &x(d) are unstable, and therefore as
soon as the field reaches H(b) the system will jump to
another point of stable equilibrium. This discontinuous
transition is indicated on the figure by the dashed line ex-
tending from b to c. Physically, this jurnp corresponds to
the first Barkhausen signal observed on run no. 4 in Fig.
3. If the field is decreased again, the wall will shift
through the stable region x(c)~x(d), and finally jump
from d to e. The inset on the right-hand side of Fig. 6(a)
shows how repeated field variations can build up a com-
plicated hysteresis network of smooth and discontinuous
domain transformations.

This hysteresis model has been extended in two direc-
tions:
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(1) The domain dynamics implicit in Eqs. (4.4) and
(4.5) have been checked by many experiments with simple
systems. For example, in selected monocrystals, esti-
mates of the free energy derived from band-structure cal-
culations can be correlated with the observed wall dynam-
ics. " However, this contact with solid-state physics is
far removed from the practical prob1ems of hysteresis in
bulk ferromagnets.

Neel was among the first to suggest that statistical
methods might bridge this gap. '

(2) The basic idea is to replace a complicated Hamil-
tonian by a random Hamiltonian. This approximation is
useful in many other situations, e.g., structural mechanics
and nuclear physics, ' even though its justification is still
unclear and no error bounds are available. Neel intro-

duced this stochastic element in the hysteresis model by
assuming that the free energy in Eq. (4.1) is a random
Uariable. In practical terms this means that for every wall
position x the corresponding value of dV/dx is to be un-
derstood as a probability density with a Gaussian distribu-
tion. In addition, the random variables associated with x
and x+nl n ==1,2, . . . , are all assumed to be indepen-
dent. (For technical reasons it is necessary to discretize
the wall displacements. ) The essential consequence is that

q. & . & now becomes a relation between an experimental-
ly determined field H and the ensemble average
( V/dx ). The corresporiding total free energ, V (H x)
in E . &4.3& jq. & . ~, is equivalent to an ensemble of potential wells
characterized by a mean depth or "activation field" H, .
For fields that are weak in the sense that H &&H theQP
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Gaussian ensemble averages can be approximated by sim-
ple polynomials. Equation (4.5) can then be inverted and
combined with Eq. (4.3) to give a relation between the
average magnetic moment and the field, i.e.,

(4.7)

This expansion is equivalent to Eq. (1.9) and is the princi-
pal result of the statistical hysteresis theory.

with the help of the Hessian. As before, in Eq. (4.2b), this
means that the matrix

8 U
A (H, o)=

Bq~ Bqk
(4.10)

is positive definite. Barkhausen jumps and quasireversible
transitions (see below) occur whenever this Hessian be-
comes singular, i.e.,

B. General hysteresis det
~

A (H, o)
~

=0. (4.11)

8 U(qj [H],H) =0,
Bgj

(4.8)

where U is the total energy of the system in the presence
of the external field, and the configuration coordinates
may have an explicit field dependence. Since multiple
solutions will always occur in hysteresis systems, it is con-
venient to label the extremals of Eq. (4.8) with a separate
index o-, i.e.,

qJ =qj (H), cr= 1,2, . . . . (4.9)

The subset of locaHy stab1e states can then be identified

The systematic extinction of Barkhausen jumps (or
magnetic Kaiser effect) and the regular hysteresis patterns
shown in Figs. 3 and 4 imply that the magnetic free ener-

gy of the polycrystalline iron sample used in our experi-
ments is not a random variable. A similar conclusion fol-
lows from the Barkhausen memory effects observed in ga-
dolinium. A comparison of Figs. 3 and 6(a) shows that
the structure of the dV/dx curve is almost completely
determined by the regularities of the Barkhausen jumps
and the constraints of Rolle's theorem. For instance, the
disappearance of the jumps on run nos. 4—8 and 37—41 is
reflected in the sequence of increasing maxima f, h, and j.
The return sweeps to zero field are represented by the
points g and i. Run nos. 8 and 9 correspond to the hys-
teresis cycle j~k~l —+m, etc. However, this procedure
has its practical limits. If all 134 Barkhausen jumps in
Fig. 3 were mapped onto the dV/dx curve in Fig. 6(a),
the resulting tangle of lines would obscure all traces of the
underlying hysteresis patterns.

This information is presented in a clearer format in Fig.
6(b). By introducing the magnetic field as an extra di-
mension, the criss cross of Barkhausen jumps is avoided
and the evolution of the hysteresis is laid out in the form
of a space-time diagram. The total energy U(q[H], H)
also differs from the perturbed energy VT(H, q) of the
standard model. We reca11 that a basic assumption of the
perturbation treatment is that the free energy of the ma-
terial determines the locally stable domain configurations,
and that the only effect of a varying external field is to in-
duce transitions among this set of predetermined states.
However, this approximation can fail even in simple clas-
sical systems. Detailed studies of Ewing arrays show that
external fields, lattice distortions, etc. can create entirely
new domain structures and most of the hysteresis is due to
trarisitions among these nonperturbative states.

These complications are taken into account in the gen-
eral hysteresis theory by replacing Eqs. (4.1)—(4.4) with
the variational condition

If H is varied, the system will move along the stable o ex-
tremals and change states at the nodes determined by Eq.
(4.11). The resulting hysteresis networks are usually quite
complex because the determinant is practically always a
complicated function of the field H. The general hys-
teresis theory is discussed in detail in Refs. 36 and 38.

C. Memory effects and hysteresis cycles

The magnetic Kaiser effect can now be given a simple
graphical interpretation with the help of Fig. 6(b). Sup-
pose we begin with the pi11 sample after a demagnetiza-
tion'. In Fig. 3 this state is represented by the initial point
on cycle no. 1; in Fig. 6(b) it corresponds to the local
minimum at a. If the field is now cycled between
0(H ~68.9 mOe, the reversible magnetization on run
nos. 1—4 is represented in Fig. 6(b) by reversible motion in
the local stability trough between a and b. The
Barkhausen jump at 68.9 mOe on run no. 4 terminates
this interval of reversibility. In Fig. 6(b) this transition
corresponds to the end of the o =1 stability trough at
b—a singularity of the Hessian. At this point the system
"rolls" down the energy surface (corresponding to an exo-
thermic domain transformation) and reequilibrates at c in
a new stability trough. The remaining field increase from
68.9 to 74.7 mOe on cycle no. 4, then prods the system
from c to w in the o.=2 track.

It is apparent from Fig. 3 that no Barkhausen jumps
occur during the field decrease (74.7~0 mOe) on run no.
4. This implies that on the next field increase on run no.
5 the system must retrace its path in the o.=2 trough. Es-
cape from a stability valley is only possible at a singulari-
ty of the Hessian. The absence of jumps means that Eq.
(4.11) does not have this kind of instability between c and
w. Magnetization measurements also exclude quasirever-
sible forks (cf. Sec. IVD). The essential conclusion is that
the first Barkhausen jump on track o =2 must occur at a
higher field value than H(w), or H(b), on track cr=l-
this monotonic progression of singularities is the essence of
the Kaiser effect. The succeeding field cycles confirm this
picture in detail. For instance, on run no. 5 the peak field
was 70.9 mOe, i.e., less than H (w), and on run no. 6 the
peak field was adjusted to reproduce H(w) —no Bark-
hausen jumps occurred on either cycle. However, on the
next cycle (no. 7) the field was raised to higher levels, and
jumps appeared at 88, 108, 130, and 153 mQe. Since no
jumps were observed during the field decrease, this mono-
tonic progression should continue. Indeed, on run no. 8

the first Barkhausen jump on the ascending cycle oc-
curred at 158 mOe. A similar progression is exhibited by
cycle nos. 36—39.
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FKs. 7. (a) Kaiser effect in Barkhausen jumps. The hysteresis network is a projection of the a —i stability valleys of Fig. 6(b) on
the H-q plane. The first band edge is the onset of irreversibility {Ref. 36). (b) Fading or drifting hysteresis. The diverging dotted-
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Steady or asymptotic hysteresis. If the field variations match the mesh size, the system will be trapped in the loop. The associated
energy dissipation will remain constant from cycle to cycle. (d} Kaiser effect in bifurcations. Hysteresis without Barkhausen jumps.

The memory dependence of Barkhausen jumps is
displayed by the hysteresis network in Fig. 7(a). This dia-
gram is a projection of the energy surface in Fig. 6(b) on
the H-qJ plane. Although the precise location of the no-
dal points a —j is determined by the characteristics of the
pill sample, the overall pattern of these transitions has a
general significance: The. same type of memory effect ap-
pears in the hysteresis of dipole arrays, ' the shakedown
of frames in structural mechanics, ' and of course in
acoustic emission, i.e., the Kaiser effect.

The first Barkhausen jump on a decreasing field sweep
appears on cycle no. 8. According to Fig. 6(b), this corre-
sponds to a tr'ansition such as l to m. Consequently, dur-
ing the next field increase on cycle no. 9, the system
traverses a new stability valley (o.=6). There are no a
priori bounds on the location of the next singular point n,
and therefore the corresponding field H(n) does not have
to exceed H(k) In other .words, jumps on descending
field sweeps signal the end of the Kaiser effect. Pasztor
and Schmidt found the same "failure" of the Kaiser effect
in their acoustic emission studies (cf. cycle no. 7 on Fig. 7
of Ref. 27).

Figures 3 and 4 indicate that beyond the first "band
edge" of the Kaiser effect new kinds of hysteresis patterns
appear: (1) The threshold of Barkhausen emission tends
to occur at the same field level froin cycle to cycle, and (2)
for any given cycle the difference in field between the last
Barkhausen jump seen during the field increase and the
first Barkhausen jump on the field decrease also tends to
be constant. In fact, it is numerically equal to the thresh-
old value found in (1). Figures 6(b) and 7(c) show that
this characteristic field, which happens to be approxi-
mately 158 mOe for the pill sample, can be interpreted as
the average mesh size of the hysteresis network on the en-

ergy surface. The difference in the pattern of Barkhausen
jumps ori the ascending and descending field cycles on
Fig. 3 is a consequence of this mesh structure. Quantita-
tively, this means that there are regularities in the field
differences, e.g.,

H(j) —H(l) =H(n) —H(l) =H(p) H(r)=—158 mOe .

(4.12)

The basic significance of the mesh size is displayed in
Figs. 7(b) and (c); these also represent projections of the
energy surface of Fig. 6(b) on the H qJ plane. A-necessary
condition for persistent hysteresis is that the uariation of the
applied field exceeds the mesh size The s. implest illustra-
tion is provided by the isolated hysteresis loop
p~q~r~s on Figs. 6(b) and 7(c). This loop is entered
via a Barkhausen jump at p. If the subsequent field varia-
tion is smaller than the mesh size, the system will respond
reversibly. Run no. 40 in Fig. 3 is an experimental exam-
ple. For field variations comparable to the mesh size but
bounded by H (s ) and H (q), the system is trapped in this
loop and will exhibit an invariant (that is, asymptotic)
hysteresis. Still larger field variations may decant the sys-
tem into other stability troughs, and the hysteresis will
drift.

Figure 7(b) shows the simplest idealization of drif)ing
hysteresis. In this case the number of Barkhausen jumps
will slowly decrease as the field is cycled between. fixed
limits. Eventually the system will migrate to a region of
the energy surface where the mesh size is larger than the
field variation, and complete reversibility is restored.
Point z marks such a cycle in Fig. 7(b). Experimentally,
this dramatic extension of reversibility is exhibited by run
nos. 60, 65, and 66 in Fig. 3. Additional examples of
drifting hysteresis are discussed in Refs. 36, 38, and 42.

D. Hysteresis without Barkhausen jumps

In n-dimensional spaces the instability criterion [Eq.
(4.11)]can lead to many different types of singularities or
"catastrophes. " Discontinuous transitions such as
Barkhausen jumps or acoustic emission pulses are the
easiest to detect experimentally and therefore have re-
ceived the most attention. However, the network sketched
in Fig. 7(d) shows that instability and irreversibility can
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also arise from simple bifurcations. Studies of magnetic
dipole systems (or Ewing arrays) confirm that hysteresis
can result from the bifurcation of stability valleys on the
energy surface. ' This situation is illustrated on the
right-hand side of Fig. 6(b): Suppose that the system is
initially in a state represented by point t. Then, for all
field cycles between 0&H&H(t), the system will re-
spond reversibly by moving in the stability trough be-
tween t and t. If the field is increased further —so that
the system reaches u —and then is decreased again, the
one-to-one correspondence between fields and states is
broken, because, at the bifurcation~oint Y~, the system
can continue either on the old t —t track, or on the new
U —U track.

It is plausible that the iron whisker hysteresis described
in Sec. III0 is due to domain bifurcation. This
phenomenon would provide a mechanism for irreversible
magnetization without Barkhausen jumps. In particular,
the reversibility that is observed at low fields and the
Kaiser-like behavior of the hysteresis at higher fields can
be accounted for by supposing that the whisker hysteresis
occurs in a network resembling that of the pill sample. In
both cases the instabilities are ranged in an increasing
field sequence, i.e., H (b) &H (f), etc. and H ( Y& )

&H ( Y2 ), etc Th.e essential difference is that in the
whisker case the jumps are replaced by bifurcation [cf.
Figs. 6(b) and 7(d)].

At the domain level, bifurcations and Barkhausen
jumps both involve the coherent transition of at least 10'o

electrons. In this sense each instability point on Fig. 6(b)
actually represents an ensemble of transformations of the
underlying density matrices. This implies, in particular,
that if the bifurcation Y& is crossed in a decreasing field
cycle, the choice between the t —t track and the U —U

track is governed by a probability distribution. The
changes in the whisker magnetization shown on Table III
reflect, in part, the evolution of this probability distribu-
tion.

E. Energy dissipation

Stochastic elements also appear in energy dissipation.
In the standard model they enter via Eq. (4.7), and, as
shown in Ref. 15, lead to Rayleigh's cubic law of hys-
teresis losses [Eq. (1.10)]. However, the results of Jor-
dan, ' Gans, ', Ellwood, Baldwin, ' and the measure-
ments reported in Sec. IIIC all indicate that the energy
losses in low-field hysteresis are proportional to the first
and'second powers of the field. Baldwin' has shown that
these power laws are incompatible with Eq. (4.7).

The variation in these power laws can be derived from
the general hysteresis theory. According to Eq. (3.5c), the
energy dissipation is given by a discrete sum over
Barkhausen jumps. If we rewrite this equation in the
form

(4.13)

where ej is the energy dissipated at the jth jurnp, it be-
comes clear that the basic problem is to find a connection
between the total number of jumps n and the field varia-
tion H(t). Figure 6(b) suggests a geometrical version of

this problem. Suppose that at time to the system is at
some initial point H (to), qj(H(to)) on the energy surface.
Subsequent variations of H will then induce a wandering
of the system through the hysteresis network. If
H(H(to), H(t)) denotes the path traversed during the in-
terval t —to, the energy losses can be determined by sum-
ming Eq. (4.13) over all the jumps encountered along H.
Since H is generally a functional of the entire field history
between to and t, the explicit computation of 8';„ is diffi-
cult.

The experimental power laws for the energy dissipation
can now be obtained with the simplifying assumption that
the hysteresis networks are sufficiently large so that the
path "length" i ( H ) can be estimated by statistical
methods. Basically, this means replacing Eq. (4.13) by the
average energy dissipation

(4.14)

where p is the number of jumps per unit path length.
In order to evaluate Eq. (4.14), it is necessary to assign a
metric to the energy surface so that distances and lengths
can be computed. Furthermore, the ensemble of paths be-
tween fixed end points must be endowed with a probabili-
ty measure so that average path lengths can be deter-
mined. These technical problems can be resolved with the
help of the theory of probabilistic metric spaces. " The
end result is that the average energy loss is given by

( 8';«) =c, (H Hb)+c2(H —Hb) +c3(H— Hb)—
(4.15)

where Hb is the field at the band edge, cf. Figs. 7(a) and
(b); and the ratios of the coefficients c; are scaled by the
distance between the initial and final points on the energy
surface. It can be shown under quite general conditions
that in virgin hysteresis the linear and quadratic terms
dominate; in these cases, Hb~H„ the field marking the
threshold of irreversible behavior. Similarly, it can be
shown that in asymptotic hysteresis [Fig. 7(c)] the cubic
term dominates. Needless to say, Eq. (4.15) provides a
general setting for the energy-loss results previously given
in Eqs. (3.7a)—(3.10b).

V. SUMMARY AND CONCLUSIONS

The questions raised in Sec. I C can now be answered as
follows:

(a) For very slow field sweeps ( —1 pOe/sec) in the
range 1—187 pOe, the magnetization in polycrystalline
samples of pure iron, at room temperature, is reversible
and without any discernible Barkhausen emission above a
noise level of about 3X10 emu. (Note added: Similar
behavior is observed in nickel. )

(b) In polycrystalline samples of iron there is a sharp
demarcation between reversible and irreversible magneti-
zation: This transition coincides with the appearance of
Barkhausen jumps. The onset of magnetic hysteresis also
coincides with the threshold of Barkhausen emission.
Within the experimental errors, the total changes in mag-
netization can be accounted for by superposing ihe Bar-
khausen jumps and the reversible components of magneti-
zation.

(c) Repeated field cycles in the threshold region of
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Barkhausen emission remove the jumps and extend the
range of reversible magnetization: This quenching
phenomenon is equivalent to a magnetic Kaiser effect.

(d) The energy losses in incipient or drifting hysteresis
are proportional to (H H—, )+(H H—,), where H, is the
field at which the first Barkhausen jump occurs.

(e) In the field range 20—SOO mOe, iron whiskers exhib-
it magnetic hysteresis without any detectable Barkhausen
signals.
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APPENDIX: EXTENSIONS
OF WARBURG'S PRINCIPLE

If the magnetization energy [Eq. (3.4)] is evaluated for
a hysteresis cycle, the formal result is the loop integral

8'g ——VIIi H,„, d I .

It was first suggested by Warburg that under steady-
state conditions, 8'~ represents the irreversible energy
losses per cycle. This equivalence between the areas of
hysteresis loops and energy dissipation is exploited in
many practical applications, but its limits of validity are
unclear. For instance, in low-field hysteresis, Ellwood's
measurements showed that the areas of hysteresis loops
and the energy dissipation were different. Similarly, in
high fields, the experiments of Tebble et al. ' and of
Koller et al. " demonstrated that there were large
discrepancies between the areas of hysteresis loops and cu-
mulative Barkhausen energy losses (Sec. IB3). The pat-
tern of Barkhausen jumps observed in the present experi-
ments also poses a problem: It is difficult to see how a
linear law of energy dissipation such as Eq. (3.7a) can be
associated with the area of a loop in the I-K plane.

Barkhausen jumps are tacitly included in the magneti-
zation energy by interpreting (Al) as a Stieltjes integral.
This point is illustrated by the inset labeled "Stieltjes" in
Fig. 8(a). This represents an enlargement of the hysteresis
loop V —V in the vicinity of one of the vertices. As usual,
the transition from the lower to the upper branch of the
magnetization curve is presumed to occur via
Barkhausen jumps —these are indicated on the figure by
the vertical lines. For practical calculations it is con-
venient to consider the simplest case: a hysteresis loop in
the form of a parallelogram bounded by two jumps. Ex-
perimentally, this situation corresponds to run nos. 8, 9,
and 41 in Fig. 3; on Fig. 6(b) it is represented by the loop
s~p~q —&r. If for the moment we ignore the angular
dependence implicit in (Al), the magnetization energy for
the cycle shown on Fig. 8(b) is

(Ii H d I ~'f H dI+ f H dI (reversible contribution)
S q

+68'(p~q) —58'(r —+s) (Stieltjes contribution),

where

(A2a)

(A2b)

6@(p~q)=H(p)
l
I(q) I(p) I, KS'—(r~s)=H(s) (I(s) I(r)I— (A2c)

Geometrically, it is obvious that Eqs. (A2) yield the area
of the parallelogram. However, this result is only ob-
tained if the two Stieltjes contributions partially cancel. In
other words, irrespective of the sign conventions for exo-
thermic and endothermic processes, one jump must
represent an energy gain and the other an energy loss.
This concept clashes with the standard model of
Barkhausen jumps presented in Sec. IV. Below the mag-
netic domain level there are microscopic degrees of free-
dom associated with the damping of wall movements,
thermal fluctuations, zero-point fluctuations, etc. The ir-
reversibility of Barkhausen transitions is a consequence of
the fact that the jumps always transfer energy into these
microscopic degrees of freedom. The inadequacy of the

Stieltjes picture also follows from the occurrence of "neg-
ative" Barkhausen jumps: In these cases a field increase
causes a jump with decreasing magnetization and
vice versa 'Several .jumps of this type were observed
during the course of the present experiments.

The exothermic picture of Barkhausen jumps is indicat-
ed in the upper inset on Fig. 8(a). The macroscopic hys-
teresis loop V —V is now represented by an aggregate of
disjoint curve fragments, each fragment corresponding to
an interval of reversible magnetization. The Barkhausen
jumps link these fragments, but the result is'not a closed
curve on the I-K plane. In this picture the energy flow
consists of reversible and irreversible components as in
Eq. (3.5a). Specifically,
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FIG. 8. (a) Macroscopic and microscopic hysteresis. The insets show two idealizations of irreversible domain transformations.
The differences are explained in the Appendix. (b) Hysteresis cycle bounded by two Barkhausen jumps. The two vertical lines r ~s,
and p~q represent jumps in the Stieltjes picture, Eqs. (A2). In the Barkhausen picture the energy transfer during a jump does not
correspond to a locus on the I-II plane. (c) Hysteresis of an iron whisker. The diagram shows the magnetization for runs m =1 and
2 in Table III. Cycle no. 1 had a net magnetization change proportional to —13',' this is represented by the interval A —C. The hys-
teresis disappeared on subsequent cycles ( m )2) to lower peak fields.

curve
fragments

H.d I (reversible contribution) (A3a)

+g ej [irreversible (Barkhausen) contribution],
J

(A3b)

g ej ——V[A 8'(p~q)+b, S'(r~s)] . (A4)

where Eq. (A3b) coincides with Eqs. (3.5c) and (4.13). If
these expressions are evaluated For the hysteresis cycle in
Fig. 8(b), the reversible components in Eqs. (A2a) and
(A3a) are equal, but the irreversible parts of Eqs. (A2b)
and (A3b) differ by a minus sign, i.e.,

Evidently, the total energy budget of Eqs. (A3) is not re-
lated to the area of a loop.

Warburg inferred the connection between energy dissi-
pation and the loop integral in Eq. (Al) by applying the
first law to a cyclic magnetization process. If we drop the
cyclic assumption, we are left with the weaker constraint

8';(total energy input) & 8'; (Barkhausen losses) . (A5)

In the particular case of the parallelogram cycle in Fig.
8(b), the reversible energy input —Eqs. (A2a) or (A3a)—
vanishes, and Eq. (A5) reduces to a tautology. However,
the experimental picture is different. For example, on run
no. 8 in Fig. 3, the 8arkhausen energy losses were
3 X 10 erg/cm, and the slopes of the increasing and de-
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creasing field cycles were both measured to be
0.29=I/M, „,=K, ' [1 (N—,X) '] (Sec. III B 1). It is
easy to check that a susceptibility difference of
5X/X —3X10 would be sufficient to account for the
Barkhausen losses. The precision of the slope measure-
ments would require improvement by 4 orders of magni
tude to detect this difference. At higher field levels,
Barkhausen emission increases, and it is easier to distin-
guish reversible and irreversible energy dissipation (cf.
Sec. 9.7.5 of Ref. 3).

Since hysteresis in bulk ferromagnets involves transi-
tions among many metastable states, it is difficult to
check when cyclic or steady-state conditions, i.e., asymp-
totic hysteresis, have been reached. This evolution of hys-
teresis can also be modeled by Ewing arrays. One then
can see in detail that it is easy to counterfeit the closure of
a hysteresis loop. The external field and the magnetiza-
tion are cycled, but the system does not have to return to
its initial state because there may be many metastable
states that have the same magnetization. In these non-

equilibrium situations the energy and magnetization are
highly degenerate functions of the configuration coordi-
nates [cf. Eq. (4.8) and (4.9)] and therefore cannot satisfy
any relation of the type 8'=8'(I), etc. Warburg's prin-
ciple is valid only when the system returns to its initial
microstate. Under these circumstances the first law [Eq.
(A5)] reduces to an equality and it becomes feasible to re-
late the reversible and irreversible energy losses in hys-
teresis. It is plausible that engineering estimates of energy
dissipation —say, for transformers —can be related to the
areas of hysteresis loops, because in asymptotic hysteresis
[Fig. 7(c)] the systems approximately retrace the same set
of microstates during each cycle.

Finally, in Fig. 8(c) we show the hysteresis pattern for
the iron whisker corresponding to runs m =1 and 2 in
Table III. By virtue of the Kaiser effect there is a net en-
ergy transfer to the whisker during run no. 1; this is
represented by the area of the triangle ABC. As indicated
in Sec. IIID, this is an example of hysteresis without
loops or any discernible Barkhausen emission.
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