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Green's-function theory of quadrupolar coupled systems
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The isotropic quadrupolar coupling Hamiltonian is studied by means of double-time Green s func-
tions. The equations-of-motion hierarchy is decoupled by using the concepts of cumulant averages
and self-consistently identifying the statistically independent operators of the system. Our results
satisfy all relevant spin-1 identities. We obtain the transition temperature and the ground-state or-
der parameter for the sc, fcc, and bcc lattices. Our result for the ground-state order parameter is
larger than that obtained by current decoupling schemes.

I. INTRODUCTION II. DOUBLE- TIME GREEN'S FUNCTIONS

Systems in which quadrupolar interactions dominate in-
clude molecular solids, ' liquid crystals, and the Jahn-
Teller ferroelectric system. Attempts to develop double-
time Green's-function (DTGF) theories of even the sim-
plest (i.e., isotropic) quadrupolar coupled system have met
with many difficulties. Barma pointed out an ambiguity
in the random-phase-approximation (RPA) treatment of
the system and proposed a "trace-invariance criterion" to
resolve the ambiguity and obtain a single value of the or-
der parameter. In addition, B arm a proposed a new
(DTGF) treatment which provided a larger value of the
T=O order parameter than RPA. Fittipaldi and Tahir-
Kheli pointed out that Barma's new treatment did not
preserve certain spin-1 identities. Using a Barma-type
DTGF treatment which preserved some (but not all)
relevant spin-1 identities, they obtained an order-
parameter value between those of RPA and Barma, as-
cribing this 'result to "oscillatory, though convergent, suc-
cessive approximation. " Ritchie and Mavroyannis pro-
posed another, more complex, DTGF scheme which did
not preserve the spin-1 identities, dismissing this
shortcoming as being equivalent to the expected failure of
an approximate scheme to provide exact results for the
correlations of the system. However, the identities in
question were assumed valid throughout the entire treat-
ment and were found not to be satisfied at the end, thus
violating self-consistency. Ritchie and Mavroyannis did
not obtain numerical results with their scheme.

In this paper we consider the isotropic quadrupolar sys-
tem for all T. Our treatment is based upon the concepts
of cumulant averages and statistical independence, is
unambiguous, and satisfies all spin-1 identities. We ob-
tain the susceptibility for T & T„ the critical temperature,
and the ground-state value of the order parameter for the
simple-cubic (sc), face-centered-cubic, and body-centered-
cubic lattices. Our value for the sc order parameter in the
ground state is larger than that obtained by Barma.

where

+(p —l)e(t' —t)]
X ([A(t),B(t')]„), (2.1)

A(t)=e' 'Ae ' ', [A,B]„=AB+riBA, (2.2)

and e(t) is unity for t &0 and zero for t &0. The single
angular brackets in Eq. (2.1) denote thermal average. It
follows from Eq. (2.1) that ((A(t);B(t')))Ipv) is a function
of t t' only. —

The Fourier transform of (( A (t);B))P)' is defined by

((A.B ))(g) j dt e((E+iPe)t((A (t).B ))(7j)

e~0+ (2.3)
and satisfies the equation of motion

Z((A;B )),(~)= ([A,B]„)+ (([A,H];B)),(~) . (2.4)

The GF on the right-hand side of Eq. (2A) is generally of
"higher order" and must be decoupled so that a closed
system of equations is obtained. Note that the Fourier-
transformed GF as defined in Eq. (2.3) is sectionally holo-
morphic; the retarded (or advanced) GF is analytic in the
upper (respectively, lower) half of the complex E plane. '

It has been shown ' that the commutator GF cannot
have a pole at E=0, i.e.,

C( —) 0
where

C'&'= hm Z((A;B))',~'
E—+0

(2 5)

(2.6)

and that the correlation (,BA (t) ) may be calculated from

The retarded (p=+ 1) or advanced (p= —1) commuta-
tor (g = —1) or anticommutator (g = + 1) double-time
Green's function (DTGF) is defined by

((A(t);B(t') ))((p"))= ——[(p+1)e(t—t')
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(BA(t) ) = —,
' (1—77)c'

+ t I d@(ePE++)
—le iE—t

2'IT

X»m («A;B»,"',,
—(& A;B)&'"';,) . (2.7)

[Sf»]= —i~3QQ'+i g Jti[ (~3Qt' —Qt')Qi'

—Q'(~3gi' —Qi')

+Q'Qi' —Q'Qi']

[St',H]= i $—J;i[2(g; Qi' —Q Qi ) —Q;Qi+Q; Qi
I

(3.7)

Also, the response of the system to an external field is
described by the generalized susceptibility, *"

g~E(E) = —lim ((A;B ))E+,,
@~0+

III. QUADRUPOLAR COUPLED SYSTEMS

(2.g)

We consider the spin-1 operator basis consisting of the
dipolar operators S,", S~, S,', and the quadrupolar opera-
tors

[Q;,H] = i ~—3 g Jti(Sfgi St"Q—i ),
l

[Qt' H]= —i g Jtt(2st'Qt' sfQi—' st"Q—t')
l

[g,',H] =i g J,,(2s,'g, ' s,"g—,'+ sfg,'),
I

[gt, H ]=i ~3QSt +i g Jtt [ Sf( V 3gi Qi' )—
I

(3.g)

(3.9)

(3.10)

(3.11)

g,'=~3[(s,')' —-', ],
Q

' =(s") —(s~)'

g,'=s,'s,'+s,'s,",
g 3 sxsz+ szsÃ

(3.1)

st"Qi'+—st'Qi" ]

[Q;,H]= iv 3Q—S," i g J. ;—i[S;"(~3gt +Qi )
I

+s'Qi' s'Qi'—] .

(3.12)

(3.13)

g,'=s~s,'+s,'sf .

In this basis, the isotropic nearest-neighbor coupling of
the quadrupolar operators is described by

Taking the thermal average of both sides of each member
of Eqs. (3.6)—(3.13) yields the correlation identities

4

H. = ——,
' g gJ;,g;"g,"

v=p /J

and a uniform field coupling to Q; is described by

H, = —Qgg, '.

(3.2)

(3.3)

Aq3 ——Qq4 ——0,

g J,,((sfg,') —(s,"g,') ) =o,
l

y J,,(2&s, g,'& &s. , g,'—& &s,"g,'—&)=o,

(3.14)

(3.15)

(3.16)

We consider the full Hamiltonian

H=Hp+H) (3,4)

g J i(2&s;gi') —(s;"g,'&+ &s,"g,"&)=o,
I

(3.17)

and consider the possibility of an ordered phase in which
(g; )&0 by allowing Q to approach zero.

Defining and invoking translational symmetry,

~sQy+ g J,i[ (sf(v 3g,' g,'))—
I

—(s,"g,') + (s;g,') ]=o, (3.18)

i =—&sp&, q. —= &g,"&, (3.&)

& Qi' —Qt'(~3gi'+ Qi')

+Q'Qi' Q'Qi ]— (3.6)

we note that due to simple rotational symmetries of H all
such single-site correlations vanish except qp.

The equations of motion of our. basis operators are
given by

[S;",H]=i V 3QQ;" i g Jti[ (~3gt +—gi )

~3Qx + g Jtl [ (St"(V 3Qi +Qi') )

+ (sfg,') —(s,'g,') ]=o .

Defining

G(tt, R(t)) ((sit./ ))(t)) I itiR(t)) ([sit / ] )

,R(t)) ((g .g ))(t)) L,R(t)) ([g ~ ] )

(3.19)

(3.20)

and using Eqs. (3.6)—(3.13), we obtain the Green's-
function equations of motion

EGx, (ti I x, (ti)+ ~3QG, R(t)) y J [ &&(~3QO+g1)Q4 g ))(ti) &&Q4(~3QO+Q1).g ))(t))
I

+((g gt',.~, ))'"'—((g gi', ~i&&'"'], (3.21)
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EG»' '"'=L»' '"' i—v 3QG ' '"'+' g J [ (((v 3Q —Q')Q 'R ))'"'—((Q (v 3Q —Q')'R ))'"'
I

+ «g,'g,',R, »."'-«g,'g,';R».'"], (3.22)

ggz, R(g) Lz, R(v) ~ y J (2«g2g 1.R ))(g) 2((g lg2. R ))(g) ((g3g4.R ))(q)+ ((g4g3. R )){g)) (3.23)

Egq' '~' Lg~j'='"' iV —3g Jt(((sfg), RJ ))R"'—((S,"Q),RJ ))g"'),
I

EG'"~'=L'""' .y J—,(2((S'g'R ))y' —((S"g/'R ))y' —((S"g,'R ))R~')
I

EG '"'=L ' '"'+' g Jt(2((s,'Q)",R ))R"'—((S;"Qt ', R ))R"'+. ((S»gt,'R ))R"'),
I

EG '"'"'=L ' '"'+ V 3QG»' '"'+ ' $J2[((s»(V 3gt —Qt );R ))R"'—((S"Q;R ))R" + ((S'Qt ', R. )) R'],
I

(3.24)

(3.25)

(3.26)

(3.27)

EG4 R(P) L4 R(P) ~3~G,R(P) y J [((S (V 3go+g1).R ))(P)+ ((S»g2.R ))(7j) ((S g3.R ))(g)]
1

(3.28)

IV. DECOUPLING SCHEME

+ (Q; (t)gt (t)R ), ,

(S; (t)g) (t)R, ) =u(Q;(t)R, )+q„(S; (t)R, )

+R((S; Qt') —2aq )

(4.1)

As expected, the Green's functions on the right-hand
sides of Eqs. (3.21)—(3.28) are of higher order than our
basic Careen's functions in Eq. (3.20) and must be approxi-
mately decoupled to provide a closed, soluble set of equa-
tions to replace Eqs. (3.21)—(3.28). We propose a decou-
pling scheme based upon the concepts of cumulants and
statistical independence. The cumulant averages of
(Q; (t)gt (t)RJ ) and (S; (t)gt"(t)RJ ), the correlations ap-
pearing in ((Q; Q~', RJ ))@

' and ((S; Qt ,Rz ))E"', 'are
defined by'

(Q; (t)Q("(t)RJ ) =qa(gt"(t)RJ )+q„(Q; (t)RJ)

+R((g; Qt ) —2qaq, )

t

((Qag»;R ))(v)=q G» (v)+q G

+ R((g; Qt") —2q q„),( 1+ 71 ) (4.6)

((Sag».R ))(v) &GyR(q)+q gaR(v)

+ R((S; Ql") —2aq ) .( I ~2i) (4.7)

~gxjR(ff) L x R(T/) + +3(@ + J )G4, R(g)
k k Ok k

(4.8)

We will self-consistently identify the statistically indepen-
dent operators as those whose diagonal susceptibilities in
the approximation, Eqs. (4.6) and (4.7), diverge in the or-
dered phase.

Using Eqs. (4.6) and Eq. (4.7) in the hierarchy, Eqs.
(3.21)—(3.28), and using the correlation identities, Eqs.
(3.14)—(3.19), and the fact that the only nonvanishing
single-site correlation is q0 yields the decoupled hierarchy
(after performing a spatial Fourier transform)

+ (S; (t)g)'(t)R, ), , (4.2) ~G4-'R'"'=L4, R(&) 3V(Q+q J )Gx, R(vl)
k k k

(4.9)

where the subscript c denotes cumulant average and
R =(R,.).

Our decoupling is based upon the assumption that at
least one of the operators in (Q; (t)gt"(t)RJ ) and
(S; (t)gt (t)RJ ) is statistically independent of the others.
This allows us to set'

~g», R(9) L»,R(r1) iV 3(II+ J )G3,R(vl)
k k . Ok k

~g 3,R(P) L 3,R(P) + .~3(Q+ J )G», R(g)
k k k

~Gz, R(g) I z, R(g) EG1,R{g) L 1,R(g)
k k ' k k

(4.10)

(4.11)

(4.12)

(Q; (t)g)"(t)R ),=(S; (t)gt(t)R ),=0
and obtain the approximations

( Q; (t)gt"(t)R, ) =qa(gt (t)RJ )+q„(g; (t)R, )

+R ( ( Q; Qt" ) —2q q ),
(S; (t)gt (t)R2 ) =a(g)(t)RJ )+q (S; (t)RJ )

+R((S; Q,"}—2 „) .

(4.3)

(4.4)

(4.5)

60 R( I) LO R( I) EG2 R(g) L2 R
k k ' k k

where

Gp, R(g) ' ~ JGp, ,R(g)1 ik-r"
ljk

I p, R(7fi) ' k r gI p, R(g)
sjk

and

(4.13)

(4.14)

Proceeding in identical fashion for (RJQ; (t)gt'(t)) and
(RJS; (t)gt"(t) ) we obtain the decoupling approximations: J -=J0—J- .

Ok k
(4.15)
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Solving Eqs. (4.8)—(4.13) we obtain

Gy, R(q)
EL&"v' .v—3(n+q J )L'"&'

k Ok k
2 2E —co~

k

EL"'v'+iv 3(n+qpJo)L"'&'
3,R(q) k k

2 2E —co~
k

EL"-' '"'+iv 3(0+qpJ -)L-'
~x,R(g} k 0 k k

2 2E —N~
k

(4.16)

(4.17)

(4.18)

«g Q';R, »'"', «S,'g,',R, )&'"',

((s,'g, ',R, ))E ', ((S~g,',R, )),'~',

((S,"Q,',R, )),'v', ((S, Q,',R, ))'~',

((S;g,';R, »'"' .

(4.27)

In order to assure that at least one statistically indepen-
dent operator appears in every Green's function in the set
of Eqs. (4.27), we must require that RJ be one of the sta-
tistica/1y independent operators.

Defining

64,R(q)
k

EL-' '"' iv 3—(Q+q J )L"-'
k k

2 2E —Q7~
k

(4.19)
(R;Sz ), v=x,y,zR,v

(R;Q)"), v=0, 1,2, 3,4
(4.28)

Gz, R(q)
k

L z, R(vp)

GO, R(vg)

E ' k

I O, R(g)
k

E

and

2Jk
(4.29)

G1,R(g)
k

where

k G2, R(q)
k

L 2, R(q)
k

(4.20)

;v3 0+qpJ-
2 6)~

we obtain by using Eqs. (4.16)—(4.19) in Eq. (2.7)

I x,R( —)

R,xa
k

by

a1-„=3(Q+qoJo)(Q+qoJ -„) .

Using Eq. (2.8), the diagonal susceptibilities are given
XI -' ' 'coth

k
(4.30)

X~= G~p'~' '(E—=O) .

Defining

and using Eqs. (4.16)—(4.20) in Eq. (4.21), we obtain

XO —X3—X4

XO

I+XpJp
'

X, =X)=72——0 .

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

I y, R( —)

k

I 3,R( —)

R, 3 ka-'
k

;V3 Q+qpJ-
2 CO~

XL '-' ' 'coth
k

i v 3 ~I+soJo+
2

k

XI-y' ' 'coth
k 2

(4.31)

(4.32)

For q0 ordering,

hm go+0
Q~O

(4.26)

I 4,R( —)

k ivy II+eoJo
2 co~

and, from Eqs. (4.22)—(4.25), Xp, g3, and g4 are the onl
divergent diagonal susceptibilities. We identify Q;, Q;,
and Q; as the members of the set of Eqs. (3.1), which are
statistically independent of every other member of the set.

Having determined the statistically independent opera-
tors under the approximations, Eq. (4.6) and Eq. (4.7), we
must, for self-consistency, require that at least one of
these statistically independent operators appears in every
G-reen's function that we have approximated as in Eq.
(4.6) and Eq. (4.7). This requirement is clearly satisfied
for Green's functions of the form ((Q; QI"',RJ ))E' if Q;
and/or Qf is one of the statistically independent operators
and for Green's functions of the form ((S; Qf;RJ ))z"' if
Q~" is one of the statistically independent operators. All
of the Green's functions we have decoupled fall into one
of these categories, except

XL,"' ' 'coth
k 2

(4.33)

which are exactly true due to the symmetry of M, and

a ~ =iV 3gp/2,
k

a '"= iv 3qp!2,—
(4.35)

(4.36)

Using Eq. (4.20) in Eq. (2.7) yields a series of identities. It
is important to note that Eqs. (4.30)—(4.33) are obtained
from both 1)=+ 1 and

p
= —1 versions of Eq. (2.7).

Using RJ =QJ, QJ, QJ in (4.30)—(4.33) gives

Ox 04 0, 03 3x 34 4, 43a-' =a-' =a-' =a-' =a ' =a ' =a-' =a-' =0,k k k k k k k k

(4.34)
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0+qpJpa~ = 2qp Coth
k Q)~

k

(4.37) (4.48)

pep ~
k

2
4, +qpJo

a -' = —,qp coth
k

(4.38)

Ql ~f=
2

(~3QI Ql )

Qt"~t"= (—v 3—Qt'+ Qt')
2

gives

q) ——0,

(4.39)

(4.40)

(4.41)

which is true by the symmetry of H. Summing Eq. (4.37)
and Eq. (4.38) over k and using the spin-1 identities

2 3 v3 (4.42)

1 4
2 3 v3 (4.43)

k

Summing Eq. (4.35) and Eq. (4.36) over k and using the
spin-1 identities

From Eq. (4.47) we obtain

kT, =0.4396,
Jp Jp b„

=0.4785,

(4.49)

Jp
=0.4956 .

For the region T & T„qp does not vanish as A~O and
in this limit Eq. (4.44) becomes

4 qo — l, zz

3 3 X
=v'3qp —g (1—y-„) i coth

k

—tv 3qpJo(1 —)'-)'"j
2 k

(4.50)

Taking P~ ao and anticiPating qp negative, we obtain an
expression for qp in the ground state

(4.51)
3F( ——, ) —1

yields, using Eq. (4.41)

4 qo 1 1=3qp( 0+qp Jp ) g coth
3 3 co

k
2

(4 44)

For ready comparison to previous work we calculate th'e
parameter L defined by

qo2 qp (4.52)

and obtain

For the nonordering region, we write Eq. (4.44) in the
form (using qo =Xone)

3 v3 N . 1+XpJ-

Xcoth (1+XpJp)'~'v3O

2

3F( ——,
'

) —1

We thus obtain the ground-state values of L,

Lsc = 0.8532, Lbcc = 0.8843,

Lg„—.——. 0.9006 .

(4.53)

(4.54)

X(1+XpJ -)'~' (4.45)

and take 0 and qo~0 to obtain

2 &o1 1—X3 P X -„1+XoJ-„
(4.46)

2
,3

Jp +( —1) '

where the Watson sum is defined by'

(4.47)

thus obtaining Xp. At the critical temperature Xp diverges
and we obtain

For the simple-cubic case, Barma obtained L„
= —0.9316, while Fittipaldi and Tahir-Kheli obtained

.L„=—0.9356. Our result is substantially larger than
these.

V. CONCLUSIONS

Green's function decoupling schemes are generally criti-
cized for being based upon unclear approximations and
for failing to satisfy relevant operator identities. Our
scheme is based upon the self consisten-t approximation
that those operators whose diagonal susceptibilities
diverge in the ordered phase are statistically independent
of all other operators. The results obtained with this
scheme satisfy all relevant spin-1 identities. Also, the
ground-state order parameter determined by this scheme
is larger than those obtained by previous decoupling
schemes.
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