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Positron trapping model including spatial diffusion of the positron

W. E. Frieze, K. G. Lynn, and D. O. Welch
Brookhauen Rational Laboratory, Upton, New York 11973

(Received 28 March 1984)

The trapping model for the annihilation rate of positrons implanted in solids has been combined
with a diffusion model for the spatial motion of the implanted positrons prior to annihilation. Re-
sults are given for a simple system having traps only at the surface of a sample and allowing no de-

trapping, and for a general case where both effects are included. Numerical results are given for the

example of positrons trapping in an image-potential well (as well as forming positronium) at a sur-
face.

I. INTRODUCTION

In virtually all the work that has been done on the mea-
surement of positron lifetimes in various solids, the
theoretical model used to fit the data has been based on
the simple two-state trapping model. ' Generalizations of
this model have been made to include more than two
states, more complicated trapping and detrapping modes,
and other effects. ' In all cases, however, explicit spatial
variations of the positron density have been neglected or
treated only very approximately; only time dependences
have been considered carefully. In many cases of uniform
implantation of the positrons in more or less homogene-
ous samples, spatial considerations are not in fact signifi-
cant. However, a number of systems would benefit from
a more careful treatment.

One such system in which spatial effects cannot be
neglected is that of the lifetime of positrons bound in
image-potential wells at the surfaces of solids. A first
measurement of this lifetime has recently been completed,
and in the analysis of the data from this measurement, a
more general model for the lifetimes of positrons in ma-
terials, including spatial diffusion of the implanted posi-
trons as well as the usual trapping and annihilation rates,
has been derived. In addition to its usefulness in the case
of low-energy positrons implanted near a surface by a pos-
itron beam, . this result should have significance for a
variety of more traditional measurements in bulk systems
as well. Even for homogeneous samples a non-
insignificant number of positrons will reach the surface,
and there become trapped or form positronium. More-
over, most samples are not truly very homogeneous. The
concentrations of large voids, grain boundaries, disloca-
tions, and other such macroscopic defects are often suffi-
ciently small that diffusion of the implanted positrons can
occur for a significant period before they encounter one
and are potentially able to trap. ' Even for microscopic
defects such as monovacancies, spatial effects could be
significant for small concentrations. In all of these cases
the results to be presented here for a semi-infinite solid
may prove useful, either as given, or modified to deal with
a different geometry.

The motion of thermalized positrons in crystalline
solids has been treated successfully using a simple, classi-

cal diffusion equation. ' We use this equation to describe
the inotion of positrons implanted in a semi-infinite medi-
um with a given implantation profile. To simplify the sit-
uation we consider only a one-dimensional problem
neglecting concentration variations parallel to the surface
of the sample. The method of solution is to solve the dif-
fusion equations subject to the boundary condition of per-
fect absorption of those positrons which reach the surface.
(We make no assumptions about the fate of those posi-
trons at this point, but onIy assume that they are removed
from the diffusion process. ) This allows us to obtain a
rate X(t) of positrons reaching the surface. Using this
function we can set up rate equations similar to those
found in the usual trapping model. The solution of these
rate equations yields the desired annihilation rate 8 (t).

We have actually solved the rate equations for a fairly
general trapping model allowing various types of detrap-
ping and any number of bulk and surface traps. To illus-
trate the method though, we first do a simple case with
only the lattice annihilation rate in the bulk (no bulk
traps) and without any detrapping permitted. This is
done for two elementary implantation profiles. After the
simple case is completed, we return to the more general
problem.

II. CASP OF A PERFECT SEMI-INFINITE SOLID

The one-dimensional diffusion equation, including an-
nihilation in the bulk but no trapping, is given by

where u (x, t) is the density of positrons at x and i, D is
the positron diffusion coefficient, and ao is the bulk an-
nihilation rate. The equation is to be solved subject to the
boundary conditions

u (O, t) =0 (absorbing boundary),

u (x,O) =Co(x) (implantation profile),

and the desired rate N(t) of positrons reaching the surface
is given by
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(3)

Equation (1) can easily be solved as a Fourier sine
transform

00 —(Dq 2+Ko)x
u (x, t) = A (q) sin(qx)e ' dq,

0

where

2x —(x/x&& j

Xo

which leads to

(1 la)

A more correct expression for the actual profile from a
monoenergetic positron beam may possibly be given by
the derivative of a Gaussian'

OC

A (q) =—f CQ(x) sin(qx)dx

/&0 —(qxo/2)~A(q)= e (1 lb)

from which we obtain N(t) as

—(,Dq2+K )tN(t)=D f qA(q)e '
dq .

We consider a system having some number m of pro-
cesses occurring at the surface, all fed by the rate N(t).
Examples of these processes would be trapping in a sur-
face image-potential well and formation of orthopositroni-
um or parapositronium. Each process has associated with
it an intrinsic annihilation rate K; and a branching ratio e;
(where g, &

eI =—1). The rate equations are then given by

n Q ( t) = —IcQnQ( t) —N (t)

n (t)= Ic;n;(t)+—e;N(t),

where np(t) is the probability that a positron is found in
the bulk at time t, n;(t) is the probability that a positron
is found in the ith surface associated component, and
primes denote differentiation with respect to t. Writing k
as a subscript which ranges from 0 to m, and defining
ep = —1 (so that gk Q ek =0), we can combine Eq. (6)
into a single equation given by

nk(t)+Icknk(t) =ekN(t) .

This may readily be solved to yield

nk(t)= nk(0)+ek f N(w)e "dr e

Using these expressions for A (q) in Eq. (9), we can obtain
(after some algebra) results for the nk(t) appropriate to
these two profiles. We shall actually quote the corre-
sponding overall annihilation rate R (t) —= gk QICknk(t).

In both profiles, this can be expressed in the same general
form by defining functions pk(t) such that

m

R (t) = g Akpk(t)e
k=0

(12)

p;(t) = KD

KD —
JM9

' 1/2

erf[(p;t)'/ ]

(13)

where ICD =D/x p is a rate determined by the average time2 ~

required for the positrons to diffuse to the surface. For
the differential Gaussian profile, we have

A p =Kp —g eIICIpI (0),
9=1

A, —e, K, .

The functions pk(t) differ for the two profiles. For the
exponential profile, we find

pp(t) =e erfc[(IcDt)' ],

Thus combining Eq. (5) with Eq. (8), we find the desired
expression for the probability densities

nk(t) = nk(0)+Dek f 2
qA (q)

Dg +pk

&((I e' '+""")dq—e
""'

p;(t)=1— P9

4KD

' 1/2

P9—erf +p; t
4KD

1/2
~P 9 Pt /4KD

e ' erf
4KD

(14)

1/2
t

Cp(x) = e
Xo

which leads to

2gxo
A (q)=

m(1+x' )

(10a)

(10b)

where pk
—
=ICQ —ICk. The initial conditions are np(0)=1

and n;(0)=0.
We shall consider two implantation profiles Cp(x) here

The simplest is just an exponential profile

Using these results for the pk(t) in Eq. (12) yields the
desired annihilation rate including the effect of the sur-
face. We find that Eq. (12) has a fairly straightforward
form. It is the usual sum of exponentials found in trap-
ping model results, but with two changes. First, the decay
rates in thy exponentials are precisely the intrinsic annihi-
lation rates of the various states, not combinations of in-
trinsic annihilation rates and trapping rates as in more
usual cases. As we shall see, this is a consequence of the
special case we have done, without bulk traps on detrap-
ping.

The second difference between Eq. (12) and earlier
forms is the presence of the functions p of time multiply-
ing the simple exponentials. These functions are the real
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difference here, and contain all the details of the diffusion
effects that we set out to derive. As we have seen, the
only influence of differing implantation profiles is to
modify the p's. Moreover, for sufficiently shallow im-
plantation we can write KD »Kk for all k; thus for
t »KD', we can approximate pq-(1TKDt) ' for the ex
ponential profile, pp (4-KDt) ' for the differential
gaussian profile, and pI —1 for both. Equation (12) be-
comes precisely a sum of pure exponentials in this approx-
imation, and as expected, the bulk annihilation rate ~0
does not enter.

I1 p = —KppI1 p
—N ( t )

m
I

n; = —K;;n;+ g KInj+cr;np+e;N(t),
j=1
(j ~i)

where

(15)

since bulk trapping is usually a one way process, -in the
direction of lower potential energy. (Thus usually at least
one of a pair KII and KJI will vanish for a given i and j.)

The rate equations in this general case are given by

III. A MORE GENERAL CASE

A more general situation than the simple case treated
above is shown schematically in Fig. 1. There we show a
system having one freely diffusing state and m nondiffus-
ing states (traps, positronium formation, etc.). Each has
an intrinsic annihilation rate written as &co or ic;. The non-
diffusing states (which we index by i and j, both varying
from 1 to m) can be either surface associated or bulk as-
sociated. These states are fed by two separate mecha-
nisms, depending on their classification: Those associated
with the surface are fed by N(t) as before, with branching
ratios e;. The trapping rates a; vanish in their case. The
nondiffusing states associated with the bulk are fed in-
stead by trapping rates a; multiplied by the bulk occupa-
tion number np(t); here, the branching ratios e; are taken
as zero. To simplify our notation we always write the
overall input rate from the diffusing state to a nondiffus-
ing state as o;np(t)+e;N(t). It is always understood,
however, that one or the other of these terms vanishes for
any given nondiffusing state.

In addition to the transition rates described above, we
permit arbitrary transitions among the nondiffusing
states, specified by the transition rates KIJ (from state j to
state i). In order to retain the ability to deal with the dif-
fusion equation and the rate equations separately though,
we cannot allow any return of positrons back to the
diffusing state from any of the nondiffusing states, i.e., we
neglect the effect of shallow traps in the bulk. This re-
striction should not in general prove to be significant

I

n '+K n =o np(t)+ eN(t),
where

(16)

' 02

m

—&12 —&1m

—K21 K22 —&2m

Kpp—=Kp+ g CTI

j=1
m

KII —KI + g Kjg
j=1
(j +i)

The equation for the bulk state (subscript 0) above is iden-
tical to that in Eq. (6) with the change Kp~Kpp. More-
over, the results given in Eq. (5), (10), and (ll) for N(t)
also remain valid here with the same substitution. So all
we need do is deal with the equations for the n;. To do
this we resort to matrix notation.

The equations for the n; for i &0 can be written in ma-
trix form as

ONDl FFUSIN

STATE i

NONDlFFUSlN
STATE j

; n,(t4-&; N(t)

p(t)+&I

BULK STATE

—Km 1 +m2 Kmm

To solve this equation we assume that x is diagonalizable
and write A,;; for its eigenvalues and M for the transfor-
mation matrix needed to bring K to diagonal form. Thus
designating the transformed matrix and vectors by e's, we
can write

*=MkM

FIG. 1. Schematic diagram of states to be considered in a
general case of the diffusion-trapping model. One diffusing
state and m nondiffusing states are considered. Arbitrary trap-
ping and detrapping rates are included with the single exception
that detrapping back into the diffusing state from a nondiffus-
ing state is not permitted.

n*=M n,
Here K is a diagonal matrix of the A,I s. Transforming
Eq. (16), we can write

(n,*)'+A;;n =rr; np(, t)+e; N(t) .

These equations are very similar in form to Eq. (6) and
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can be solved for a given N (t) in an analogous way.
The solution to Eq. (18) corresponding to Eq. (9), the

solution of Eq. (6), is
)fc

el. Dq +o& A (q) (.Dq—'+p, , )i
Pl I (1—e")dqe

Dq +p;; g

These are both readily found after the problem of di-
agonalizing the matrix 2 has been solved. It is the diago-
nalization of this matrix that presents the only potential
difficulties in using Eqs. (20)—(22). To make all of this
clear, we present below the results for a particular special
case as an example.

m

R (t) = g Akpk(t)e
k=0

(20)

where A,oo—=zoo. The bulk term is similar to that in Eqs.
(12) and (14) with

Ap =Ko—g e;a';p;(0)
i=1

1

(1+4icD t) 'po(t) =
(21)

where p;; —=zoo —A,;;. [We have implicitly used the initial
conditions ni*(0)=n;(0)=0.] Using this result, we can
again generate expressions for R (t) for any given implan-
tation profile. We only give the results for the differential
Gaussian profile here. They are

IV. THE CASE OF A SEMI-INFINITE SOLID
WITH BULK TRAPPING

AND SURFACE DETRAPPING

The special case we shall do involves a freely diffusing
bulk state and three nondiffusing states: State 1 is a bulk
defect with intrinsic annihilation rate a'i, trapping rate a&
from the freely diffusing state, and no detrapping. State 2
is a surface image-potential well with annihilation rate Ic2,
branching ratio e2, and detrapping rate 4Ic32 into positroni-
um (i.e., a32 into parapositronium and 3a32 into orthoposi-
tronium). We shall treat the orthopositronium decay rate
here as being negligibly small, but the 3ic32 detrapping rate
into orthopositronium must be included. State 3 is para-
positronium with annihilation rate Ic3, branching ratio e3,
and no detrapping (and of course input rate ir32 from state
2 as we have described). The bulk annihilation rate is Ko.

The rate matrix is given in this special case by
For surface associated components, we have the expres-
sions

m

Ai = ~ E'i m)~Kj
j=l

K1

,
0

0 0

+2+ 4ii32 0 ~

—Ic32 K3

(23)

p;(t)=1—
4&D

' 1/2
pig /4KD g I ii

e " .err"
4D

1/2
(22a) The eigenvalues A,;; are given by

A, 11 =K1 ~ A,22=K2+4Ic32 ~ A,33=K3 (24)

—erf
4 +piit
4IcD

while for the bulk associated components, we have
)fcm g.j

iii,j~j
j=1 Pcs

1/2

I 0
M= 0 1

0
0

0 K32 K2 —K3 +4K32

0
(2&)

and the transformation matrix and its inverse transpose
are

pg(&) =
1/2

p)" /4KDe" erf

(22b) (M ')'= 0 1

—Ic32

K2 —K3+4K32

0 0 1

Ic2 —Ic3+4ic32Pi)—erf +p"t
4icD

' 1/2

In these expressions, we have used m;1 for the components
of the inverse transpose of the transformation matrix
(M ')'

In Eqs. (20)—(22) then, we have presented the solution
to the diffusion-trapping model in a fairly general case.
Although these equations may look formidable, they are
relatively straightforward to reduce to any particular case
one might wish to consider. Since the form of the equa-
tions here is the- same as we have discussed in conjunction
with Eqs. (12)—(14), and since even the p s here are near-
ly identical to those given there, the only differences here
are in obtaining the exponents A,;; and the coefficients A;.

e2~32Ic3

Ic2 —Ic3+4+32 (26)

[Normalization of the matrix M does not effect the quan-
tities defined in Eqs. (20)—(22). We choose an arbitrary
normalization for M above. ] With use of these matrices,
it is easy to generate expressions for the constants in R (t).
They are

APO= KP+ 0 1

0 ICO 62+2 E31C3

K]CT1

KP+ 01—K1
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C=2. 1 keV
@II I(

TNF%

m~
rrmn Pa

C)
4J
M

CC

CL

10—

e2SC32~3
A3 ——e3a3+

v2 —a3+4&32

pii=&o+oi —&i ~

P22 Ko+o i —K2 —4K32 ~

933=&O+o i —&3 ~

The formulas for the p's are of course as given in Eqs.
(20)—(22). (Remember that aD =D/xo. ) Thus we have a
solution for the diffusion-trapping model in this particu-
lar' four-state system.

Plots of the four contributions to R (r) in this case are
given as Fig. 2. (In the plots, no detrapping is included so
that a32 ——0. ) The constants needed to generate the curves
are taken from the surface lifetime measurement referred
to in the Introduction. They are Kp=6. 13 ns ', a&

——4.07
ns ', ~2 ——1.71 ns ', sc3 ——8.00 ns ', o.i ——10.0 ns

T I NL (psec )

FIG. 2. Plots of R (t) and the four terms contained in it for
the case of a single bulk trap, and an image-potential well and

. positronium formation at the surface. No detrapping is includ-
ed. Numerical values for the constants in 8 (t) are taken from
Ref. 4 and are given in the text.

F2=60%, and e3 ——10%. [The remaining 30% of X(t) is
orthopositronium formation which is taken to have zero
decay rate for the purposes of this calculation. ] We also
use D =0.31 cm /s and xo ——408 A which yields

18.6 ns '. The curves in the figure show clearly the
deviation from simple exponential behavior for times
t (KD . For times t »aD' (not shown in the figure), the
curves all approach pure exponential decays.

V. CONCLUSION

We have presented in this paper a new expression, Eqs.
(20)—(22), for the annihilation rate of positrons implanted
in a semi-infinite, one-dimensional sample. The expres-
sion is obtained from a combination of the diffusion
model for the motion of thermalized positrons in solids,
and a many-state trapping model. This expression should
more correctly describe the annihilation rates in any posi-
tron lifetime experiment in which the annihilation occurs
with significant likelihood at sites separated from the im-
plantation locations of the positrons. Experiments on life-
times or trapping rates associated with sample surfaces
clearly fall into this category. However, any lifetime mea-
surement in which the average distance between trapping
centers is a significant fraction of a positron diffusion
length should properly make use of the results given here.
Moreover, the effects of the sample surface may not be
negligible even for bulk lifetime studies, particularly for
small samples. Again, the diffusion picture may be use-
ful. (It should be kept in mind that the diffusion coeffi-
cient D depends on temperature; thus diffusion effects
may be misinterpreted as actual changes in the trapping
rates in some cases. ) In conclusion, a number of positron
lifetime measurements, both surface and bulk, may well
be improved by a more careful consideration of the effects
of spatial separation and positron diffusion on the equa-
tions for the annihilation rate.
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