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The possible form of hyperscaling violations in finite-size scaling theory is discussed. ' The impli-
cations for recent tests in Monte Carlo simulations of the d =3 Ising model are examined, and new
results for the d =5 Ising model are presented.

f =L f(tL, hL uL )

gt Lg'(tL, hL, uL ), —— (2)

Recently two extensive Monte Carlo calculations'
have been carried out which test the validity of hyperscal-
ing in the three-dimensional Ising model. In the calcula-
tion by Freedman and Baker, ' they "observe a systematic
downward trend by more than twice the statistical error
for a quantity which should be constant if hyperscaling is
satisfied, " while Barber, Pearson, Toussaint, and Richard-
son conclude that their results require "the anomalous di-
mension to be small, and are consistent with hyperscal-
ing. " The purpose of this paper is to resolve this apparent
conflict by showing that these two collaborations evaluat-
ed different anomalous exponents, and that the exponent
evaluated by Barber et al. , which they erroneously identi-
fied with Fisher's anomalous dimension, actually van-
ishes on theoretical grounds. New Monte Carlo results
are also presented for the five-dimensional Ising model
which confirm the theoretical predictions for hyperscaling
violation in this case.

To start, we investigate the consequence of the existence
of a "dangerous irrelevant variable" on the finite-size scal-
ing form of the free energy, and on the hyperscaling rela-
tions for critical exponents. We then show that consisten-
cy conditions require that the anomalous exponent intro-
duced by Barber et al. must be zero. Finally, we discuss
the finite-size scaling form of the renormalized coupling
constant for the Ising model, and the results of a Monte
Carlo simulation for the dimensionahty d =5.

According to the renormalization-group derivations '

of finite-size scaling, the singular part of the free energy
fL, and the correlation length gL have the form

magnetic field, and u is an irrelevant variable, while
yT &0, yH &0, and yU &0 are renormalization-group ex-
ponents. We use equality signs to indicate here asymptot-
ic scaling relations. If the free-energy scaling functionf (x,y, z) is singular in the limit z~o, then u is called a
dangerous irrelevant variable. ' For simplicity we as-
sume here that the correlation scaling function g( xy, z) is
regular in this limit, but later we consider the possibility
that it is singular. We assume that for small z,

f(x,y,z)=z 'f(xz ',yz ') . (3)

The choice of this particular pattern, multiplicative singu-
lar powers of z, is motivated by the known mechanism
for the bulk scaling at d & d, =4. Equation (3) implies

f =L "F(tL r hL
—H) (4)

co'=d —d*/( yr)v.

These two exponents would be the same if yTv=1, which
was implicitly assumed by Barber et al. , but has not
been proven. We will show instead that d*=d for cubic
or similarly shaped systems, as usually employed in
Monte Carlo simulations. '

The existence of the limit L~ oo of fL corresponding
to the bulk free energy f implies that for x~+ oo and
y ~x

~

a fixed,

where scale factors have been absorbed in t and h, andd'=d —p&yU, yT ——yT+p2yU, and y~ ——yII+p3yU are the
effective exponents. Note that the anomalous exponent
introduced by Barber et al. corresponds to d —d*, while
Fisher'. s exponent co* is given by

where t is the reduced temperature t =(T—T, )/T, ( T, is
the transition temperature of the infinite system), h is the F(x,y) =

f
x

/
F+(y

/
x

f ),
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where h=yH jyT, and F+ is the scaling function for t & 0.
Likewise the existence of the bulk correlation length g in
this hmit leads to the asymptotic form

x, L'lt I'i' as T T;. (18)

To obtain this result from the scaling form, Eq. (14), we
must require

g'(x, y, O)=lx
I

"x (y lx I
),

where

(7)

(8)

lim W(x, O)cc Ix I

~ (19)

yT =d' j() +zp),
yH

——d'(y+ p)/(y+zp) . (10)

Hyperscaling violations occur if yT' and/or b, differ from
the exponents yT(=1/v) and b, '(=yH/yT) appearing in
the scaling form of the correlation length. However, we
will show that even in this case one must have d* =d.

We now give three arguments which support d*=d.
First, consider the finite-size magnetization ml and sus-
ceptibility 71 .

mL =(s)L,
x, =L'(("),—(.),'), (12)

where s = ( 1/L ")g s;, s; is the spin at the ith site, and
( )I. denotes the- thermal average. According to Eq. (4),
mI. and XL, have the scaling form

mL, —— LV(tL—— hL ),
Bh

(13)

and we assumed for simplicity that the scaling function g'

in Eq. (2) is nonsingular as z —+0. Taking suitable deriva-
tives of the free energy, one finds the following scaling re-
lations a=2 d* jy—T, p=d*/yf 6, an—d y =26—d*/yT,
where a, p, and y are the thermodynamic exponents for
the specific heat, magnetization, and susceptibility,
respectively. Consequently yT and y~ can be written as

(21)

which also implies p~
——0 in Eq. (3).

Second, we show that this condition also follows from
the finite-size scaling form of f~ at the ferromagnetic
phase boundary due to the existence of a discontinuity
fixed point. In this case the finite-size magnetization mL
below the critical temperature takes the form

mL, mb t—anh(mbhL d) (22)

for L »gb, and 'I h
I «(mba, ) 'L', where g'b is the

bulk correlation length, and mb is the bulk magnetization,
Eq. (15). Hence, XL is given by

XI =L mb cosh (mbhL~) . (23)

For h =0, XL reduces to Eq. (18) when T +T, , and-
therefore implies d* =d, Eq. (21).

Finally, we consider the finite-size scaling properties of
the zero-field probability distribution P (s) of the magneti-
zation below the critical temperature. Binder has shown
that for large L and s near +mb, PI (s) can be written ap-
proximately in the form

L
(

(s mb) L /2zb
d/2

z(z~x, )'"

d' =2(yH+ pyT) d—.
Substituting Eqs. (9) and (10) in Eq. (20), we obtain the re-
lation

Xg —— LW(—t—L,hL )
Bh2

(14) —[~+~b ] L+e ). (24)

m~=~ lt Ii'andxb b lt
I

r as T T

so that, by Eq. (12),

(s2)L =mb+L Xg (t &0, L~oo) .

(15)

(16)

However, if we first set h =0 and then take the limit
L~ ao, then (s )L, =—0 but we expect (see Refs. 4 and 6 for
details)

lim [(s ~ aL=o]=~)L~oo (17)

[in fact, Eq. (16) applies in this limit as well" ]. By Eqs.
(12) and (17), the zero-field susceptibility behaves accord-
ing to

where the scaling functions V and W are obtained from
F.

For the bulk magnetization, mb, as well as the suscepti-
bility, Xb, special care must be taken in order of the limits
L ~ oo and 6~0—+ below the critical temperature. Tak-
ing first the limit L~ ao, and afterwards the limit
h ~0+—

, one obtains the conventional bulk values,

Hence the arguments of the exponential functions have
the form

(
2b

which demonstrates the occurrence of the scaling com-
bination

I
t IL in Pl(s), where yT=d/(y+zp). Like-

wise, by including a magnetic field h, the arguments of
the exponential become (s+m& Xbh) L /2Xb an—d the
term linear in h can be written as

(b
I
t

I
Ld '"+ i ) "+i~/gL H .

This shows the dependence of Pl (s) on the scaling vari-

able L, where yH
——d(y+p) j(y+zp). These expres-

sions for yT and y~ are precisely Eqs. (9) and (10), but
with d =d. If we assume that no other scaling variables
occur, the scaling form Eq. (4) follows, with d' =d.

Next, we discuss some'recent Monte Carlo calcula-
tions' which test possible hyperscaling violation in the
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d =3 Ising model. These calculations evaluated the h =0
finite-size renormalized coupling gL introduced by
Binder, 4

g~=
(s')L,

g(4)
L

~ +L h=O
d (25)

where Xl is given by Eq. (14), and

g(4) "L L4&H ~ ~(4)(tLYT)aI' (26)

Substituting Eqs. (14) and (28) in Eq. (27), we find that
for t =0,

—cfG ( tL T
) (27)

where 6 is a scaling function. Since d =d, it follows
that gI is a constant (nonzero in general) at T = T, .

The finite-size scaling analysis of the Monte Carlo data
by Barber et ah. implies that indeed d —d*=0, with an
error of +0.04 due to the uncertainty in their determina-
tion of the critical temperature. This was interpreted by
them as evidence for the validity of hyperscaling, but we
have shown here that d =d even when hyperscaling is
violated.

For t ~ 0 and L, —+ Oc, XL and XL
' take their bulk values

XI ~t ~ and XL ~t ~ so that
jfc

gI o. (t L") ' for L » t (28)

where we have used y —26= —d*/yT. Baker and Freed-
man' evaluated gL for values of t & 0 such that the corre-
lation length g'L cL, where c is——a constant. After some
algebra, this yields

where co*, Eq. (5), is Fisher's anomalous dimension, and
is positive. For lattices of dimensions I, =3 to 60 they
find co =0.2. Note, however, that their result depends on
the assumption, Eq. (6), that the scaling function g in Eq.
(2) is not singular as uL ~0.

We now briefty turn our attention to the possibility that
g(x,y, z) is singular in the limit z~0. In analogy with Eq.
(3) we assume that

g(x,y,z)=z 'g(xz, yz 3),
which implies

(30)

2'('x,~) (32)

where v=(l+q, y~)/yT* and h**=yg/yT*. Since the
finite-size correlation length gL is bounded by L, w«e-
quire q&yU (0. Even if one adopts a plausible assumption
that for t =h =0, the correlation length increases up to
the linear dimensions of the lattice, which implies that
q& ——0 and v=1/yT*, yT* need not be equal to yT leading
to a new possible source for hyperscaling violation.

(31)

where y~* ——yT+qzyU and yH* ——yH+q3yU. Likewise in
the limit x~+oo andy Ix I

fixed,

Finally, we comment on the effect of boundary condi-
tions on our analysis. The predictions presented here are
unchanged in the thermodynamic limit (L —& oo ) if the re-
duced temperature t in Eq. (4) is replaced by a "shifted"
variable tL, , where

tL ——[T—T,(L)]/T, , (33)

ln which T, (L) is a "pseudo T," for the finite system.
This could, for example, be defined as the temperature
where the probability distribution of the magnetization
starts to develop a two-peak structure. One then defines a
shift exponent g by

[T,(L)—T, ]/T, =AL (34)

PL(s) ~exp[ Ld(ctls +us )], — (35)

where c and u are constants. By the substitution
P=(uL")' j s, one finds that

where 3 is a constant. For systems with a surface it is ex-
pected that g=v, because properties of the finite system
should differ from their bulk values when gl approaches
the system size. In this case the shift in T, is greater than
the range of the finite-size rounding if hyperscaling is
violated, becaose yT ~ —,'. However, we shall argue below
that /= 1/yT for periodic boundary conditions.

A well-known example which violates hyperscaling is
the Ising model (more generally the n-component vector
model) for d &4, where critical exponents stick at their
mean field values. It is straightforward to show that the
free energy of a finite system scales as in Eq. (4) with
yT =d/2, yH ——d/4 compared with yT ——1/v=2, and
y~ ——(d +.2)/2. However, these renormalization-group
arguments do not give information on the size of the shift
in T„ for which an explicit calculation must be per-
formed. This is possible for the n-component model with
periodic boundary conditions in the limit n —+(x). By a
straightforward extension of the work of Brezin one can
evaluate the scaling function 8'(x, 0) for the susceptibili-
ty, and see that the scaling form of Eq. (4) is valid, so the
coefficient of the L '~" term in Eq. (34) must vanish for
this model. We observe that this is a general result for
periodic boundary conditions provided that tI is the
only temperature variable which enters thermodynamic
scaling, and then /=1/yT follows by a standard argu-
ment. '

We have tested our claim that d =d by Monte Carlo
simulations on the five-dimensional Ising model on a cu-
bic lattice with nearest-neighbor interaction, J, for sizes
between I.=3 and 7. Figure 1 shows that the data for gL
intersect at T/J=8. 77, gL ——1.00. A nonzero value of
gL is just what is expected from Eq. (27) with d*=d.
Furthermore, the temperature agrees precisely with the es-
timate of T, from high-temperature series by Fisher and
Cxaunt. " En Fig. 2 we show that the data scale well with
the predicted exponent yT ———', instead of yT ——1/v=2. It
is possible to evaluate the scaling function G(x) in Eq.
(27) exactly for d &4 because, in the critical region, the
probability distribution for the magnetization per spin s
has the mean-field form
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FIG. 1. Monte Carlo results for gL as a function of T/J for
sizes L =3 to 7, where 16000 iterations per spin have been per-
formed for each data point. The arrow marks the value
T;/J =8.77 from Ref. 11.

FIG. 2. The data for gL shown in Fig. 1 plotted vs the scal-
ing variable ( T/T, —1)L,where T, =8.77J. The solid line is
obtained from the mean-field form of the free energy, as
described in the text.

G(x)= —3, (36)

where the averages are obtained by integrating P from
—oo to + ao with the weight

PL (P) ~ exp[ —a (x b)P —P],— (37)

where a =clu'~ and ab =A is the coefficient of the
shift relation, Eq. (34) (with P '=yT=d/2). The solid
curve in Fig. 2 is obtained from Eqs. (36) and (37) with
b =0.37, a =0.56, and fits the data very well.

To conclude, we propose that the free energy of a finite
system with periodic boundary conditions scales as in Eq.

(4) with yT and yH given by Eqs. (9) and (10) and d*=d.
For other boundary conditions, where the system has a
surface, it is probably necessary to use both tI and
tL, '~ for a complete asymptotic description. When
hyperscaling is violated it is not possible to determine the
correlation length exponent v from the free energy, and its
derivatives, and it is necessary to carry out a separate cal-
culation, using either repormalization-group techniques or
explicitly looking at the spatial dependence of the correla-
tions.
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