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Off-axis correlation functions in the isotropic d=2 Ising model
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We present exact explicit expressions for the spin-spin correlation functions (ao,oa{"," ) for
(m,n)=(2,1), (3,1), (3,2), (4,1), (4,2), and (4,3) in the isotropic d=2 Ising model. We also infer a gen-
eral structural formula for arbitrary (0,00, ) in terms of complete elliptic integrals K and E.

The two-dimensional Ising model remains of great im-
portance as one of the very few interacting many-body
systems which is exactly soluble.!~® The spin-spin corre-
lation functions S, ,=(0000m,) are of particular in-
terest, because they express in a precise way the effect of
the interactions on the dynamical variables and because,
in principle, at least, they can be calculated exactly. A
general method for computing these correlation functions
in terms of Pfaffians was developed by Montroll, Potts,
and Ward* for the square lattice, following previous work
by Kaufmann and Onsager.? This method was extended
to a lattice with an additional diagonal coupling by
Stephenson.” However, rather surprisingly, the only ex-
plicit calculations of specific S,,, which were performed
using this or any other method were for the nearest-
neighbor row (or, equivalently, column) and diagonal
correlation functions S;, and S;;. Accordingly, we re-
cently calculated S, , in the general anisotropic Ising
model and S, in the isotropic model, for n up to 6.78
We also discovered general structural formulas for diago-
nal and row and column correlation functions.”® These
results show a number of interesting features, such as a
striking hierarchical structure involving levels composed
of homogeneous polynomials in the complete elliptic in-
tegrals K and E.

The present paper presents exact explicit expressions,
calculated via the Pfaffian method, for the off-axis corre-
lation functions S, , with (m,n)=(2,1), (3,1), (3,2), (4,1),
(4,2), and (4,3) in the isotropic d=2 Ising model. In com-
bination with our previous results for diagonal and row
correlation functions, these yield a complete, explicit
determination of S, , for max(|m |,|n |)<4 and, in
addition, of S, , for |n| <6 and of S, for |n | <6.
We also infer a general structural formula for arbitrary
S, in this model.

The Hamiltonian for the isotropic d=2 Ising model is

H=— 3

(i,)ez?

(Jla,-,jai_,_lyj+J20,~,jo,~,j+1), (1)

with o-i,jzi_lEZZ\ and J,

=J,=J. Define the elliptic
moduli .

o (B)=sinh®(2BJ) , (2a)

applicable for T > T,, and
k.=k3', (2b)

applicable for T <T,, with B=(kzT)~! and T, defined
by

[ks (B)P=[k_(B.)PP=1. (3)

As indicated in the notation, because of the homogeneity
of the lattice, (0;;0; m,jin)={00,00m,n); furthermore,
(00,00 _m,—n?=C00,00m.n > sO that, with no loss of gen-
erality, m and n may be taken to be positive. In addition,
the isotropy property J;=J, implies that S,, , =Sy, SO
that one may take m >n with no loss of generallty If one
uses the square-lattice Pfaffian method of Ref. 4, the cal-
culation of S, , requires the evaluation of the Pfaffian of
a 2(m +n)X2(m +n) (antisymmetric) matrix. A useful
simplification is obtained if one first calculates the corre-
lation function for a more complicated Hamiltonian with
the diagonal interaction term J,0; ;o jOi+1,j+1 added to the
row and column spin-spin interaction terms in (1), and
then lets J;=0.° The reason for this is that with the
more complicated Hamiltonian one can take advantage of
diagonal steps to achieve a shorter route linking the two
spins at the points (0,0) and (m,n). With the conventions
m,n >0, m >n chosen above, a minimal route is to travel
from (0,0) by min(m,n) steps up along the diagonal and
then to go out m —n steps in a horizontal direction to
(m,n). This path contains max(m,n) steps in all, with the
result that the corresponding Pfaffian involves a
2max(m,n) X 2 max(m,n) antisymmetric matrix. Thus
with this method the path length and resultant size of the
Pfaffian are less than or equal to the values which they
would have if one used the square-lattice method, and are
strictly less if min(m,n)=n-£0. This reduction in the
size of the Pfaffian is important for both theoretical
analysis and actual calculations, since the number of
terms in a 27 X 2r Pfaffian, (27 — 1)!, rapidly becomes un-
manageably large as r increases.

We find that S, , has a structure which depends on
whether m —n is even or odd. ‘Thus the generic form of
the correlation functions is similar along diagonals paral-
lel to the line m =n. From our explicit results and some
inductive analysis of the Pfaffians involved, we infer the
following general structural formula for the S, , [where
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Swm,n,+=Sm,n for T >T, and T <T,, respectively)]. For
m —n even,

—P, + IU
Sm,n,i=Dm,nk = 2

=1,

1+(—1)' 7
2

r=0
and, for m —n odd,

Sm,n,+ —p, +
5. [=lsgnlD]" D,k Pmnt x

(1+k3H2
(l+k<)1/2

Iy

X ¥ 7%

1=1,

1
(—1)

r=0

where the upper and lower values of [ are, respectively,

ly =max(m,n) , (6a)
and

l; =min(m,n) , (6b)
and

Jmmir=r~+{[(m —n)[lmod(2)}8, . (7)

Further, k =k, (k=k_) for T>T, (T <T,); D

m,n 1S

an inverse integer denominator extracted for convenience;.

pm,n,i is a positive semidefinite integer; and K (k) and
E (k) are the complete elliptic integrals of the first and
second kinds, respectlvely As indicated in the notation,
for m —n even, Z{™" (k. ) and 2™k _) are dis-
tinct polynomials in thelr respectlve variables, whereas for
m —n odd, Z{™".(k) is the same function of k =k, and

k =k _. Several features of these general formulas (4)
and (5) with (6) and (7) are easy to see from the properties
of the relevant Pfaffians. For example, the fact that the
|

Pk =22, PV =2(k +3),

P k)= —2[3(k2+6k +1)], PEP(k)=23(—

1
7S PmEE k) k—1)

]
X 3 Pimnk)k —1

PEHVk)=2(k +1),

31 OFF-AXIS CORRELATION FUNCTIONS IN THE ISOTROPIC. . . . 1487

[E(R)) " [KK)Y, (4)

)jm,n,l,r[E(k)]I——r [K(k)]r , (5)

-

maximum degree of the homogeneous polynomials in
K (k) and E (k) is max(m,n) follows, since this is precise-
ly the length of the minimal path linking the two spins in
the optimal method discussed above. If one used the orig-
inal method* involving only horizontal and vertical steps
across the lattice, one would naively and erroneously ex-
pect that the maximum degree of the homogeneous poly-
nomials in K(k) and E(k) in S, , would be (m +n)
rather than max(m,n), and in explicit calculations, this
result would appear only after massive (and, within the
context of the method, apparently miraculous) cancella-
tions of terms from the 2(m +n)
X 2(m +n) Pfaffians.

We proceed to list our explicit results for the correla-
tion functions. The D, , are D,;=1, Dj (=371
D3,=D; =372 Dy,=(3x5"}, D43_(3“><52)—1
and the powers p,, , + are py 1.+ =1, p3 2+ =3, p4s1,+ =%
Pap,+ =5, P43+ =6, P31~ =P3,1,+ —1=2.

The polynomials Z;™ ,,(k) m=2,3,4, for m —n odd,
are listed below:

9"2 Vk)=—1, 2H k) =k +1.

k*—15k3+ k2439 +8) ,

Pk)= =23k +1(—3k>+k2+27k +7), PHP ) =2%k +1)X3k +1),

P55 )=
PP k)=

— 22k 4 1)(k2—6k +1), 2P (k)
22(k +1)%(3k —1) .

Pk = — 2%k — 18k +1)(5k2 46k +5) ,
PV k)=2%

(4 1)(k)

PV =28k +1)’(3k2+6k —1),
9”‘2‘,‘1"(k)=23(k +1)(26k*+59Kk3—
P4V (k)=23(k +1)}(3k3+9k2— 89k —3)
PV(k)=—23(k + 1)X(15k2+24k +1),

‘@(4 1)(k)

‘@(41)

— k34 81k* 4294k 3 +434k% 235k —19) ,

P k) =24k +1)(29k*+ 148k 3+ 358k 2+ 260k —27) ,

2%k +1*(3k*+24k34- 118k 24128k —17) ,
23(k*+48k3+110k2+48k +1) ,
127k%—115k —3) ,

k)=2%k +1)(3k3—2k>4+9k —2),

—22(3k)(k +1)2(k*+6k +1) ,
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PEV k)= —223k)(k + DK +3k2+ 11k +1), 2iH0 (k)= —2°Ck)(k +1)°,
PNk = —203K)(k +1)2k2+6k +1), PGHD(k)=2(3k)(k +1)%(5k +1) .

0(k)=—28k*+15k*—16k>+15k +1)(11k*—86k>+11) ,
Nk)=—253k°+114k® — 67k — 1939k ® 4267k ° + 825k * — 3609k > —321k %+ 590k +41) ,
(k)= —2°[3(k +1)](6k®—6k" —315k €4 16k> 4295k *— 1150k > — 133k24-244k +19) ,
P(k) =25k +1)X(153k 6+ 18k > —405k*+ 1468k > +223k*>—398k —35) ,

k)= —2°(k +1)*(3k2—1)(3k*— 10k — 1) ,
N(k)=25[3(k*+14k2+1)1(k*—15k3 —16k>— 15k +1) ,

H(k)=—2%[3%k +1)](2k®—3k7 4 64k®—16k>— 13k*— 159k >+ 10k? — 14k +1) ,
k)= —25[3%(k +1)2](13k®—8k>—21k*— 108k >+ Tk2— 12k +1) ,

9}23 PR =2°[3(k + 17Tk +1)(3k2+ 10k —1) .

. ;I‘he polynomials .@5’22,‘” ) (for T >T,) and .@(""}' _”(k ) for T <T,), for m —n even and m=3,4, are listed
elow:

PPk )=2(11k2 + 6k, —1), Pk, )=2%k, +1)(TkL +12k, —3),
POk )=y + Dk, +3)K2 +2k, —1), PGPk, )=2%k, =Dk, +1),
Pk ) =2k (ko + DY 43k, —2), ok, )=2%, (k, +1)7.

PPk )=2(—k% 6k  +11), PT0 Tk =24k  +1)3k_+13),
PPk =24k .+ 1k +9k _+10), 2G4k )=2%k  + 1Bk +5),
PNk =2k . +1)2k% =3k —1), Pk )=—2k_ +17Ck_+1).

s FUk, )=2%2kS —57k5 —699k*% —258k3 +324k% +123k . +53),

(4,2,
(4,0)
PEH Tk, )=—293(k, +1)1(Tk% +140k3 +242k% +92k . +31),
PEH Nk, )=—2[3(k, +D](3kS +102k3 +225k% —116k3 —435k% —210k, —81),
PEH k)= —2Tky + 19k +27k% —36k, —144k% —T7k, —35),
PEB Nk )=2[3(k, +1)°13k% +15k% + 9k, +5),
PEH Pk, )= —2[3(k, +D]I3KkE —22k3 —47k% +22k3 —13k3 +8k, +1),
PE3 Tk, ) =23k, +12)(6k% +15k3 +k3 +9k, +1),
PEH k)= —22[3k 5 +1°1(6k3 3Kk +8k, +1) .
Py Nk )=2%53kS 4123k, +324k* —258k> —699k% —57k _ +2),
PEB Tk )=25k . +1)(13kS, +63k>, +198k*, —210k, —999k% —93k _ +4),
PER Tk =23k . + Dk, +10k® +63k> —40k* —729k3. —774k% —T1k _ +4),
PG4k ) =28k _ +1X3k>, —6k*, —105k% —135k2 — 14k _ +1),
Pioh Nk )=—2%k .+ 15Tk, +93k% +11k . —1),
PEE Nk )=—2[3k _(k .+ D]k, +8Kk> —13k*% +22k3 —47k% —22k _+3),

PNk )=2"3k _(k . +1?](5k* —8k>. +38k%: +16k . —3),
&2k _)=2%[3k _(k _ +1)°](29k% +10k _ —3) .
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The critical behavior of these correlation functions is interesting to note. First, as is clear from the general formulas
(4)—(7), no terms involving K (k) contribute as T— T, or equivalently, as k—1 (where k is understood to denote &
for T>T, and k_ for T <T,). This is necessary, since K (k) diverges (logarithmically) as kK — 1, and, since, because of
the different powers of 7', no cancellations of these divergences could occur among different terms involving K (k). In
contrast, since E(k=1)=1, the finiteness of the correlations function by itself would allow any terms of the form
[E (k)Y to remain as k—1. However, as can be seen from (4)—(7), only a certain subset of these terms actually con-
tributes. For m —n even, the alternate [ levels in the hierarchy of the form I —IU~—1 Iy =3 3, ., Iy + 1 are completely
absent. For m —n odd and max(m,n) odd, the pure [E(k)]’” [E (k)] fu= . [E(k)] L+ terms are annihilated as
k—1 by (k —1) factors. Finally, for m —n odd and max(m,n) even, the pure [E (k)] fv= , [E(k)] fv= ey [E(k)]I’“
terms are annihilated by (k —1) factors. Thus formulas (4)—(7) imply that the general structure of the correlation func-

tions at T =T, is

—IL
oy T [(m =n)/2]
Spun(T=T,)= {ﬂ_mﬁ”m ]

r=0

where the ¢, ,, are calculable constants, and [v] denotes
the integral part of v. All of the cases of m —n and
max(m,n) noted above are illustrated by the correlation
functions which have been given here.

In conclusion, this paper presents exact, explicit expres-
sions for. the off-axis correlation functions S,,, with
(m,n)=(2,1), (3,1), (3,2), (4,1), (4,2), and (4,3) in the iso-
tropic d=2 Ising model. It is valuable to know these
functions since, together with the diagonal and row
column correlation functions, they constitute a precise

€ven

Cmn,m Y form —n odd @)

description of the short- to intermediate-range spin-spin
interactions in the model. Furthermore, through these
studies, we have discovered the general structural formula
(4)—(7) for S,, , with m and n arbitrary.
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