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Sliding charge-density waves as a dynamic critical phenomenon
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The dynamic properties of sliding charge-density waves are discussed in terms of a classical
description of impurity pinning, with emphasis on the behavior near threshold considered as a
dynamic critical phenomenon. A mean-field model introduced previously [Phys. Rev. Lett. 50, 1486
(1983)] is analyzed in detail, including ac response above and below threshold and hysteretic
behavior below threshold. For short-range interactions, the weak-pinning limit is discussed and
scaling behavior is predicted near threshold. The earlier prediction of ac noise with intensity in-
versely proportional to the square root of the volume with a diverging amplitude near threshold
caused by a diverging correlation length is analyzed in terms of the scaling behavior; this interpreta-
tion of the noise is semiquantitatively confirmed by recent experiments of Mozurkewich and Gruner
[Phys. Rev. Lett. 51, 2206 (1983)]. Many of the ideas presented here may be applicable to other sys-
tems, especially weakly pinned flux flow in type-II superconductors.

'

I. INTRODUCTION

There are currently about half a dozen experimental
systems' [the best known being NbSe3 (Ref. 1)] which
exhibit a charge-. density wave at low temperatures and
concomitant nonlinear conductivity characterized by
non-Ohmic behavior above a small threshold electric
field. ' ' It is commonly believed that in these materials
the non-Ohmic conduction is caused by sliding of the
charge-density wave which is prevented from moving
below the threshold field by pinning to impurities and
other lattice defects. Yet despite considerable theoretical
activity, a quantitative understanding of the phenomena is
lacking, especially near threshold. Some of the notable
features which are common to most of the systems-are the
following.

(1) A charge-density wave (CDW) which is low-order
commensurate along two of the directions and incom-
mensurate or high-order (typically fourth-order) com-
mensurate along the third direction; the CD%' is thus ef-
fectively a one-dimensional modulation of a low-order
commensurate structure. All of the nonlinear effects
(below) occur only for electric fields in the third direction. —

(2) Ohmic conductivity at low fields E. '""

(3) A relatively sharp threshold field ET, typically on
the order of 10—100 mV/cm (which is very small on
scales of microscopic electric fields). ' '

(4) Nonlinear conductivity for E&ET with the excess
current growing near threshold between quadratically and
linearly in E—ET, and linearly in E far above threshold.

(5) Coherent ac noise in many small samples for
E &E7 with (a) the principal frequency linear in the ex-
cess current and (b) an amplitude which grows rapidly
relative to the dc excess current as E~ET+. '

(6) Hysteretic behavior, on time scales much longer than
characteristic microscopic times.

(7) Interference effects between ac and dc.
While there is no direct evidence that the charge-density

waves move, strong indirect support for the sliding

charge-density-wave picture is given by (a) in (5) above.
Naively, if the CDW coherently moves one wavelength at
a time in a periodic manner, it will produce an ac current
with a frequency v~ ——v/A, , where U is the average CDW
velocity and A, its wavelength. The effective charge densi-
ty n, deduced from the ratio of the noise frequency to the
excess current by assuming that the CDW carries a
current density jco~ ——neU, is quite reasonable. '

A drastically oversimplified "model" of the CDW con-
sisting of a single overdamped particle (representing some
effective collective coordinate of the CDW) moving in a
sinusoidal potential with spatial period A, (representing the
effective potential due to the impurities) and a superim-
posed linear ramp with slope proportional to the applied
electric field has been extensively used to attempt fits to
the data. " While this single-particle model gives a
threshold field, ac current in response to a dc field with
frequency proportional to the dc current, and some of th' e
ac effects qualitatively similar to those in the experi-
ments, " it suffers from obvious theoretical drawbacks and
in fact fails badly quantitatively and sometimes qualita-
tively. In particular, (i) the single-particle model (or other
similar models) yields a square-root dependence of the ex-
cess current on E—ET, in striking contrast to the concave
upwards experimental data; (ii) the ratio of the rms ac
current at the fundamental frequency to the dc current
does not depend critically on E ET (except that it de--

creases well above threshold); (iii) there is only one time
scale in the model (inversely proportional to U, the dc
velocity), thus hysteretic effects on long time scales can-
not exist.

A realistic microscopic model which probably contains
the features necessary to explain most of the experimental
data was proposed some time ago by Fukuyama and
Lee z It consists of an incommensurate single-Q CDW
with wave vector Q =2m/A, and a slowly varying phase
P(r), interacting weakly with impurities at random posi-
tions RJ in the underlying lattice. The (slightly modified)
classical Hamiltonian is
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A = J dr —(VP)2 —Vt +5(r—Rj)cos[Q r+P(r)]
2

(1.1)

where X is the phase stiffness of the CDW and Vt the im-
purity pinning strength. Since the CDW is assumed to be
incommensurate, the preferred phase at impurity j, Q RJ,
is pseudorandomly between 0 and 2m. In the strongly
damped limit, the inertia of the CDW can be neglected
and the equation of motion for the phase becomes

r

dP(r) 5'' neE
dt 5$(r) Q

where n is the effective charge density carried by the
CDW and I is a dissipative coefficient parametrizing the
drag due to electron-phonon interactions, etc.

The important features of this model, in addition to an
infinite number of degrees of freedom, are the following:
a short-range CDW stiffness, random preferred phases
(mod2~) at impurity positions, a dissipative equation of
motion with linear coupling to the applied electric field,
and neglect of thermal fluctuations. Lee and Rice' ar-
gued, through what is essentially a scaling argument (see
Sec. VII) that for arbitrarily weak pinning this model has
a threshold field in three dimensions below which the
CDW distorts but does not move and above which it
slides —they did not, however, make any predictions about
the dynamic behavior.

Recently, a perturbative treatment of the dynamics far
above threshold (for a model similar to that of Fukuyama
and Lee' ) was shown to yield quantitative agreement
with several aspects of the experiments, in particular, the
high-field I- V curve. ' ' However, for reasons discussed
in Sec. III, the perturbation expansion breaks down near
threshold and is thus not useful for investigating the
behavior in that regime.

The remainder of the theoretical work on sliding
charge-density waves falls roughly into four categories.

(i) Calculations with the single-particle model or at-
tempted rationalizations' of it from the Fukuyama-Lee
model, yielding the drawbacks' mentioned above.

(ii) Treating the CDW as a rigid array of discommen-
surations to try to explain the noise along with other
drawbacks this leaves out the internal degrees of freedom
of the CDW.

(iii) Microscopic or semimicroscopic quantum-
mechanical calculations which are unlikely to yield the
macroscopic effects of the collectiue motion of the
CDW 21—23

(iv) Numerical simulations on one-dimensional sys-
tems which (except for recent work on incommensurate,
rather than randomly pinned systems which is discussed
in a separate paper ) have been rather inconclusive both
as far as the behavior near threshold and the existence (or
absence) of coherent ac noise.

The numerical calculations are, however, the only non-
perturbative treatments of the problem which involve the
essential feature of a large number of nonlinearly interact-
ing degrees of' freedom.

In this paper we will primarily be interested in the

behavior relatively near threshold, in particular, the dc I-
V curves, ac noise, ac response, and hysteresis. We will
assume throughout most of this paper that all of the phys-
ics necessary to describe long-wavelength, low-frequency
behavior of the system is contained in the Fukuyama-Lee
model' and in particular that (A) the CDW stiffness is
short range, (8) the local preferred phases at the impuri-
ties are uncorrelated, (C) the phase of the CDW is a single
valued function of position, i.e., there are no dislocations
in the CDW, (D) thermal fluctuations can be ignored so
that the only effects of temperature are to modify the pa-
rameters of the model, and (E) the inertia of the CDW is
negligible.

In this paper we will introduce a discrete, somewhat
simplified version of the Fukuyama-Lee' model in which
the stiffness of the CDW is represented by interactions be-
tween phases of the CDW at different impurity sites and
the electric field by a force F which tries to continuously
increase the phase at each site. These phases each
represent a region of the CDW. The current carried by
the CDW is just proportional to its velocity U, which is
the time derivative of the spatially averaged phase P(t)

It will be argued'that the threshold behavior is a critical
phenomenon and thus has all the difficulties and features
of conventional critical phenomena, in particular, the

.breakdown of perturbation theory and the existence of
scaling laws and critical exponents near threshold. (There
are, of course, additional complications due to the dynam-
ical aspects of the problem. ) A mean-field treatment,
which is valid in the limit of infinite-range stiffness of the
CDW, is carried out and its consequences explored.
Some conclusions about systems with short-range interac-
tions are derived or speculated.

The paper is organized as follows. The main results are
summarized in the remainder of this section. The simpli-
fied model is introduced in Sec. II and the single-particle
approximation" and its failure are discussed. In Sec. III
perturbation theory in the disorder'"' is briefly analyzed
and it is argued that there is a diverging correlation length
as threshold is approached from above. The bulk of the
paper, Secs. IV—VI, contains the mean-field treatment
and its consequences. The dc I- V curve is analyzed in
Sec. IV, while Secs. V and VI deal with the ac response
above and below threshold, respectively. Section VI also
contains a discussion of hysteretic behavior. The proper-
ties of sliding CDWs with short-range interactions, in
particular, the existence of a threshold' and crossover
from weak to strong pinning, are discussed in Sec. VII.
Section VIII, which is somewhat speculative, is concerned
with scaling behavior and the properties of ac noise in fi-
nite systems with intensity inversely proportional to the
square root of the volume. Assumptions (C), (D), and (E)
above concerning the effects of thermal fluctuations, iner-
tia, and defects are analyzed in Sec. IX. Finally, Sec. X
contains preliminary comparison with experiments on
CD%'s, discussion of other experimental systems and
some conclusions. Various technical details of the mean-
field calculations are relegated to Appendixes A and B.

The discussion in Secs. II and III motivates the con-
sideration of the threshold behavior as a critical
phenomenon and analyzes difficulties with simple ap-
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proaches. Except for the introduction of the general
model at the beginning of Sec. II, the later sections are not
strongly dependent on these two. The rest of the paper re-
lies heavily on the results in Sec. IV. The analysis of the
ac behavior above threshold is dependent on the results of
Sec. V, while discussion of the response below threshold
depends on those results in Sec. VI. Section IX can be
omitted by the reader who accepts the assumptions men-
tioned above.

Most of the quantitative results of this paper are ob-
tained from a mean-field approximation which is strictly
valid in the limit of infinite-range interactions, but should,
nevertheless, yield considerable qualitative insight into the
behavior of, for example, three-dimensional systems with
short-range interactions. We first summarize the main re-
sults of the mean-field theory and then discuss the more
speculative conclusions about short-range interactions.

A. Summary of mean-field results

Providing that the pinning is sufficiently strong, there
exists a unique threshold field I' T, below which the CDW
will always be stationary in steady state. Above threshold
the CDW will move and there will be a unique steady
state in which the average phase advances uniformly:

P(t)=vt .

Far above threshold, the effects of the pinning can be
neglected and the velocity U will just be proportional to E.
In this limit the phase at each impurity site will advance
quite smoothly. However, as the field is lowered towards
threshold, the motion of the phases will become more and
more jerky and near threshold the average velocity will
behave as

where we have defined the reduced field

f—(Q FT )/QT

which measures the deviation from threshold. In mean-
field theory the exponent g is given by

3
MFT

Because of the jerky motion of individual phases, there
are two diverging time scales near threshold. The first of
these is just the period of the motion, which is inversely
proportional to the velocity and hence behaves as f
The second time scale measures the amount of time
within each period during which a typical phase is mov-
ing much. faster than the spatially averaged velocity v.
This time scale is much shorter than the period near
threshold and behaves as f " with pMFT ———,

' . This
second characteristic time scale and the corresponding
frequency

current. Surprisingly, however, this behavior will persist
up to frequencies on the order of 0 which is much larger
than the frequency v, which characterizes the periodic
motion.

Below the threshold field, the behavior of the system is
rather complicated and depends on the past history:
There are many metastable stationary states and consider-
able hysteresis. For a range of fields below threshold,
there will be some phases which are almost unstable and
will jurnp forward as the field is increased slightly. Be-
cause of these jumps, the linear ac response will be singu-
lar of low frequencies for a whole range of fields. In par-
ticular, the real part of the ac polarizability,
X(co)=sr(co)/( i co—) will have a cusp at low frequencies:

ReX(co)-X(co=a) —C
~

co
~

.

Furthermore, its zero-frequency limit will differ from the
dc polarizability Xo——dgldF which will depend on the
direction of change of I'. The dc polarizability will exhib-
it a critical singularity as threshold is approached, howev-
er, the behavior is nonuniversal and history dependent.

B. Summary of results for short-range interactions

Most of the qualitative features of the infinite-range
mean-field theory should persist if the CDW stiffness is
short range. The primary qualitative difference will be
that, in contrast to mean-field theory, there will be a
nonzero threshold for arbitrarily weak pinning in any di-
mension.

For weak pinning there will be a characteristic length
scale go, which is the smallest distance over which the
CDW phase will vary appreciably. This length scale,
which was first discussed for three-dimensional CDW s

by I.ee and Rice, ' diverges in the limit of weak pinning.
It plays a role quite analogous to the BCS bare-coherence
length go in superconductivity and is the relevant micro-
scopic (or semimicroscopic) length scale for the threshold
phenomena. However, just as for superconductors and
conventional critical phenomena, there is another length
scale, g, which diverges at threshold.

Above threshold the correlation length g measures the
decay rate of the local CDW velocity-velocity correlation
function. At a factor of 2 or so above threshold, g will be
comparable to go. However, as the field is decreased and
the CDW slows down, larger and larger regions of the
CDW will spend most of their time relatively stationary
with the phases near to where they will get stuck below
threshold. Once each period, the phases will jump quickly
forward in a time -Q ' to a new position at which the
pinning forces will again roughly balance the applied
field. The linear dimension of these semicoherent regions
is a measure of the correlation length which diverges near
threshold as

will show up in a measurement of the linear response to a
uniform ac field with frequency co applied in addition to
the dc field. The differential ac conductivity cr(co) will be
given at low frequencies by the derivative dv/dI of the dc

The exponent v is only known in the mean-field limit; cal-
culations (which are not discussed in detail here) of linear
fluctuations about mean-field theory yield vMFT ———,'.

The existence of anomalously large coherent regions
near threshold suggests that in a finite system of volume
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2 )1/2

jdc

' 1/2

f(v/2)(d —4+g)
V

(1.10)

The exponent ri is 0 in the mean-field limit. Near thresh-
old, there will be many harmonics of the fundamental
noise frequency v up to a frequency of order 0-f".

The exponents g, v, p, and ri which characterize the
critical behavior above threshold are not known for
short-range interactions. However, they should attain
their mean-field values above an (at this state unknown)
upper critical dimension, d, . Two exponent inequalities
can be derived, which will be valid in any dixnension:
p&g and d —4+q)0. The second inequality implies
that d, is at least 4.

Below threshold, we expect hysteretic behavior analo-
gous to that in mean-field theory although the possibility
of very slow long-wavelength distortions of the CDW
causes additional comphcations As th. e field is slowly in-
creased from zero, regions of the CDW initially of typical
linear dimension gp will become unstable and jumP for-
ward only to be stopped by other regions. As threshold is
approached, the size of these regions is expected to
diverge. Although it will depend on the past history and
perhaps on the details of the pinning, the typical size, g,
of the regions is likely to diverge with an exponent v'
which is the same as the exponent v above threshold.

The presence of regions which are about to go unstable
will, as in mean-field theory, give rise to a cusp in the real
part of the polarizability at low frequencies. We conjec-
ture that this cusp will be of the same form as in mean-

A discussion of the experiments in the light of these
somewhat speculative results about the short-range model
is contained in the last section.

II. MODEL AND PROBLEMS
WITH THE SINGLE-PARTICLE PICTURE

The simplest model which retains all of the important
physics consists of a set of impurities labeled by an index
j, each of which tries to pin the local phase, p~, of the
CDW at a value Pi (mod2n ) with positive pinning
strength hj independently distributed with probability
p(hi). The elasticity of the CDW is represented by effec-
tive interactions JJ between the phases at the impurity
sites R; and Rj. The Hamiltonian is then simply taken to
be

V there might be considerable noise at the characteristic
frequency of the motion which is just the average velocity
U. Naively, the relative magnitude of the ac current, j„,
at frequency u to the dc current, jd, -U —f~, would be ex-
pected to scale as the square root of the number of corre-
lation volumes in the sample. However, a more careful
analysis of the decay of velocity correlations within a re-

gion of volume g yields the result,

tional to the electric field),

dP, 5A ()

dt 5/i
(2.2)

(the effects of inertial terms will be discussed in Sec. IX).
The dimensionality of the CDW is reflected in the in-

teractions JJ. In a d-dimensional system the impurities
will be distributed at positions Rj in d-dimensional space,
and the effective interactions will fall off rapidly with the
distance R; —RJ between the impurities. All of the essen-
tial features will be preserved if the RJ are taken to be
points of a d-dimensional lattice with Jz ——J for [ij j
nearest neighbors and zero otherwise. For reasons that we
will discuss in detail below, even this apparently simple
model is likely to be impossible to solve in any nonzero di-
mension except asymptotically in the limit F»J, Ihz},
where perturbation theory is useful. It is thus instructive
to consider first the simple case of one impurity (i.e., a
zero-dimensional problem) in some detail.

The equation of motion for one phase is (dropping the
subscripts and choosing P=O for convenience)

= —h sinP+F,
dt

(2.3)

which is just the "single-particle" model. " For purpose
of illustration we rederive here the results of Ref. 11 for
this model.

It is clear by inspection that the solutions of this equa-
tion are of two types, depending on whether F is less than
or greater than h. For E &h, the long-time behavior (for
almost all initial conditions) is simply that P decays ex-
ponentially to a constant )))p it long times with

Pp ——sin '(E/h )+2mn (2.4)

and n integral. Linearizing the equation about any of
these minima of the total potential A (P)=A p(P) —FP,
we obtain with P =go+ f:

(h 2 E2)1/2q+ ~(q2)
dt

(2.5)

The solution thus becomes less and less stable as F ap-
proaches the threshold value Fz- ——h with the characteris-
tic relaxational frequency A,(F)-(FT F)' —

i f i

' —for
F +FT where the —reduced field f=(F FT)/FT. At ex--

actly the threshold field, the linear term in 1)'j about
po ——m/2 vanishes and for E&Fz there is no static solu-
tion. As F~FT the position of the static solution ))) p ap-
proaches its value at threshold with a cusp:
No(ET )—Po(E)-

I f i

' and the polarizability X(E)
=dPp/dEthus diverges as

i f i

For fields greater than threshold, there is a unique solu-
tion (up to a trivial shift of the origin of time) which can
easily be obtained analytically:

4 p
———g hjcos(QJ —P/)+ —g J~(f; Pi)—

j fijt
(2.1)

y=2 tan —'

We take purely relaxational equations of motion and in-
clude the effects of the uniform applied field F (propor- (2.6)



DANIEL S. FISHER

This solution is periodic with period P =2~/(F h—)'
and hence the average velocity is u =(F —h )'~, which
goes to zero at threshold as f» with g= —,'. This critical
behavior of the velocity can be simply derived by noting
that on physical grounds (and in the actual solution), the
phase spends most of each period near a sticking point at
P, =(n./2)+2mn at which the potential A (P) is very flat.
Near these sticking points, the equation of motion is

=(F—h)+ —(P —P, )'+0((P —P, )') .
2

This equation can be scaled to yield

(2.7)

dl~A 4.)/vf—l

d(thv f ) 2 v f (2.8)

and we thus simply see that the phase will remain within
v f of P, for a transit time, tr-1/hv f. The solution to
Eq. (2.8) diverges at a finite time corresponding to P —P,
becoming of order 1 where the higher-order terms in Eq.
(2.7) become important. During the remainder of each
period, when P is not near any sticking point the velocity
is of order 1. The average velocity in the critical region
near threshold thus scales simply as the inverse of the
time tT, to get. through the region near the sticking point,
whence u —f '/

For this simple single-phase model, we see that several
quantities exhibit critical behavior below threshold: The
characteristic relaxation frequency A, (F) goes to zero at
threshold as

~ f ~" with p = —,
' and the polarizability X(F)

diverges as
~ f ~

r with y= —,'. Above threshold the
mean velocity u goes to zero as f» with g= —,'. Further-
more, it is clear from the above discussion that these ex-
ponents will not depend on the details of the potential.

One of the primary questions we will address in this pa-
per is how the critical behavior near threshold, in particu-
lar, the exponents, differ for systems with an infinite
number of degrees of freedom from those of the simple
one-phase model.

Before going on to infinite systems, we first consider ar-
bitrary finite collections of N coupled phases. For suffi-
ciently small values of the field F, the total potential

~I N~ I =~o I P~ I Fg 0, —
J

will always have at least some local minima. These Inini-
ma will form a finite number of infinite classes of
equivalent minima. Equivalent minima will differ only
by an ouerall phase which is an integral multiple of 2m.
We can thus restrict our attention to the finite set of in-
equivalent minima with the overall phase P=N
lying between, say, —~ and +m.

For small fields there will generally be a number of in-
equivalent metastable states that are static, locally stable
solutions of the equations of motion. As the field is in-
creased some of these states will disappear until there is
only one left which will itself disappear at a finite thresh-
old field. For determining properties of the system suffi-
ciently near threshold we can focus attention on this last
minimum.

The principal curvatures of the potential, X, about this

minimum, are just the spectrum of relaxational frequen-
cies. They will all be positive for I' &FT and, generically,
exactly one of them, say, A, &, will go to zero as F~Fr .
Sufficiently close to threshold the long-time behavior will
be dominated by the last minimum and its lowest frequen-
cy A, ~. These properties can be obtained by an expansion
of the equations of motion about the state IP,J I which is
the limiting position of the last minimum as F~FT . If
we diagonalize the linearized equations of motion about
this point, we will find relaxational frequencies A,, with
one, I,» for example, zero, and the others positive. Thus,
there is one special slow direction at threshold. Straight-
forward analysis of the nonlinear terms shows that the
motion in this direction dominates, and the system
behaves similarly to the single-particle case. As F~Fz:
the polarizability thus diverges with y= —, and the lowest
relaxational frequency goes to zero with p= —,'. Above
threshold the transit time tT through the slow sticking
point IP,& I behaves as f ' and hence the velocity again
goes to zero with g = —,.

The exponents for any finite collection of N coupled
phases are generically the same as for one phase; they
represent zero-dimensional behavior. However, it is
natural to expect that when N increases, the size of the
zero-dimensional critical region will decrease. (Note that
this will not always be the case. For example, if all the
PJ. 's are equal, the size of the d =0 critical region will
remain of order 1 as N~ oo.) This will occur in several
ways. First, the neglect of the motion transverse to the
slow direction in determining the transit time through the
sticking point is only justified if tz «A, ,z. In the limit
N~oo, A,,2 (and some other higher A,,~'s) will tend to
zero, restricting the d =0 critical regime. In addition, the
solution may pass through other slow regions during each
period. The contributions to the total period of the transit
times through these regions can only be neglected if they
are much less than tT. As N grows this will also restrict
the d =0 critical region.

In this paper we will not be primarily concerned with
the crossover from infinite N to finite N, d =0 behavior.
(A detailed discussion of this question will be given else-
where. ) However, it should be clear from the above dis-
cussion that an infinite system is unlikely to exhibit the
same critical behavior as a small finite one.

III. PERTURBATION THEORY

We have argued in the preceding section that, for a
large system, the asymptotic behavior near threshold can-
not be obtained from a simple analysis since it involves
crucially a large number of degrees of free'dom. The prob-
lems created by these large number of degrees of freedom
can also be seen, as in conventional critical phenomena, by
examining perturbation theory in the nonlinearities —in
this case the Ih& I.

Let us consider the model given by Eqs. (2.1) and (2.2)
with the RJ (for definiteness) a d-dimensional hypercubic
lattice with lattice spacing 1 and the JJ constant nearest-
neighbor interactions J. The static properties of the sys-
tem in zero field are similar to those of a zero-
temperature X- Y magnet in a random magnetic field (hi)
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u=F 1 ——,(h )
q F'+ J2b.'(q)

(3.2)

The integral in Eq. (3.2) is cut off at long wavelengths by
time averaging of the long-wavelength components of the
pinning potential. This is due to the inability of the long-
wavelength components of the deviations, gi, of the
phases from P to adjust to the potential on the time scale
on which P, and hence the effective force on QJ, is vary-
ing. To lowest order (quadratic in h) the equal-time fluc-
tuations of the phases away from their average are given
by

(h2) iq (R; —R )

(;(t) (t)) =
q F2+J2g2( )

(3.3)

and hence ( pi~ ) appears to be finite at this order.
Higher-order corrections will, however, yield divergent
contributions to the static part of the Fourier-transform
correlation function yielding, along with the dynamic
parts, a correlation function of the form

& g(q, a) )g(q', a)') &

=5(q+ q') 5(a) +a)') g a„,(3.4)
co +J 5 (q)

with a constraint that there are no vortices [i.e., the phase
is a single-valued function of position on (—ao, oo)].

We can attempt perturbation theory about the trivial
ordered ground state $1

——P for all j in powers of the
mean-square random field (h ) =fp(h)h dh T. o lowest
order, the mean-square deviation of a given phase from
the average P is

&y,')=-,'&h'& f
where we have defined QJ ——Pi —P and h(q) is the Fourier
transform of the lattice Laplacian: h(q)= —2q d for
small q. The integral in Eq. (3.1) is thus divergent at long
wavelengths in less than four dimensions. This diver-
gence is generally believed to destroy the long-range order
of an X-I' magnet in a random field for d &4. Except
perhaps for d near 4, little can be learned about the static
properties of the system for d &4 from perturbation
theory, except, as will be seen later, the characteristic
magnitude of the threshold field for weak pinning, i.e.,
(h ) «J . For d )4, the integral in Eq. (3.1) (and all
others occurring in perturbation theory) is perfectly finite
which suggests that the ground state of the system at
I: =0 will have long-range phase order if the pinning
strength is sufficiently weak.

If we concern ourselves instead with mouing solutions
with average phase P =ut, then it is straightforward to ex-
pand in powers of the pinning strength. With no pinning,
we have u =F. If at each order the velocity u is adjusted
appropriately as a function of F, this expansion can be
made uniformly valid at all times. The first correction
due to the pinning' ' is

r

dimensions. Thus, while the time averaging suppresses
somewhat the effect of the long-wavelength components
of the disorder, there are still divergent contributions to
static correlation functions when the CDW is moving (in
contrast to the speculation in Ref. 26). These divergences
apparently do not show up in the dynamic (i.e., co&0)
correlation functions or in the perturbation expansion for
the velocity, at least not in dimensions greater than two.
(A detailed analysis of the high-field perturbation theory
is beyond the scope of this paper —a more detailed discus-
sion will be contained in a future paper. ) From Eq. (3.3)
and examination of the higher-order terms it can be seen
that the local velocity —local velocity correlation function
[which is not affected by the n =0 terms of Eq. (3.4)]
falls off exponentially at high fields with a correlation
length which to leading order is just

(=2Jd/F . (3.5)

Thus, the local velocities exhibit long-range order although
the phases do not. Since the finite velocity correlation
length in the moving state is caused by temporal averag-
ing of the disorder, it is likely to diverge as the average
velocity goes to zero at the threshold field. Higher-order
terms in perturbation theory will also contain integrals
over momenta cutoff at g '. The threshold behavior
should thus exhibit many of the features of conventional
critical phenomena and hence exact calculations of the
behavior near threshold are unlikely to be feasible, except
in certain limits. In the following sections we discuss a
mean-field approximation which, by analogy with critical
phenomena, might be expected to be valid in sufficiently
high dimensions.

The behavior in low dimensions, in particular, d (4,
will be discussed in Secs. VII and VIII and some of the is-
sues raised here concerning perturbation theory, correla-
tion lengths, etc., will be discussed further.

IV. MEAN-FIELD THEORY

P'=(J/2X) $ (p; QJ ) —$ hj cos(—pl. p~ ) F$QJ. ——
fV]

J=—g (Pf—P) —g hjcos(P —Pi) Fg P. , —
J

(4.1)

where each phase is only coupled to the mean field

In the presence of long-range interactions, the fluctua-
tions due to the disorder of the force on one phase from
the others is expected to be small. Mean-field theory is
formally valid in the limit of infinite-range interactions
with the total interaction strength Q.Ji held fixed. In
this liinit, the effects of all the other phases can be con-
sidered as just a nonfluctuating mean field which can be
determined self-consistently.

We thus consider a large number, X, of phases each
coupled to all the others with a strength JJ ——J/X (where
the normalization is chosen to keep the total coupling fi-
nite). The total energy is given by

where a+ ~ shows up at first order in perturbation theory
and the other a„shows up at higher order. The static
part, n =0, will cause (QJ(t) ) to diverge in less than four

p(t)= —gp, .(t) . (4.2)



DANIEL S. FISHER

The equation of motion for a single phase is simply

d J
dt hJ—sin(QJ p~

—)+J[$(t) QJ.—]+F . (4.3)

In the thermodynamic, infinite-range limit N~ Do, P(t)
will not fluctuate and we can impose a given P(t), find
solutions to Eqs. (4.3) for all the PJ(t), and then require
that the self-consistency condition, Eq. (4.2), be satisfied
at all times. It is convenient to measure all fields, fre-
quencies, and pinning strengths in units of the coupling J,
which we henceforth set equal to 1.

As N~ ac all P~ will occur with equal probability and
the hj with probability p(hJ) which we take to be zero for

hj larger than a maximum value h. We can thus label
each P~ by its associated PJ and hj (since the j dependence
of the equation of motion is entirely through PJ and hj)
and replace (I/N)g. by (1/2m) fdP fp(h)dh dropping
the j subscripts for the time being.

We will particularly be concerned with two types of
steady-state solutions of the mean-field equations of
motion: static with /=constant, and uniformly moving
with P=ut. The possible existence of other solutions is
discussed at the end of this section.

The equation of motion for a single phase PJ ~P(Pi, hj. )
can be written usefully as the gradient of an effective
time-dependent potential:
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FIG. 1. Local effective potential W(P;P) as a function of P
for a strongly-pinned phase with pinning strength h & 1 for vari-
ous values of qV incremented by amounts of p/3. In a moving
state with velocity u, P advances as ut so the various curves
represent 8' after successive time intervals m/3U. In steady
state the phase will lag slightly behind (to the left) of the left-
most minimum of 8' and at time t, between (e) and (f) it will

quickly jump out of the disappearing minimum to the next one.

(4.4)

where

W= —,
'
[P—P(t)] —h cos(P —P) —FP . (4.5)

A. Weak pinning:

Two regimes can now be distinguished. 8'eak pinning,
h & 1: If the maximum value of Itj is less than 1, then W
will have a unique minimum as a function of P for all
P, h, and all times. Strong pinning, h & 1: If some h~ are
greater than 1, 8' will have several minima for at least
some P, h for a given P,F. The local potential W is plot-
ted in Fig. 1 for the strong-pinning case. We first discuss

' the simpler weak-pinning case in detail.

P(/3, h, t) =Pp(P, h, F, P=ut) =Pq(P,—h, t), (4.7)

where we have defined the adiabatic solution, Pz (P,h, t) to
be at the minimum of the local potential at all times.
This adiabatic approximate solution satisfies the equation
of motion for a single phase

There are thus no self-consistent static solutions to the
mean-field equations for any F except for F=0. In zero-
field, static solutions exist for any P; these can be adiabat-
ically changed into one another as P is increased without
any phases "jumping:" i e , dip(P, .h., F=0, $)/dP is fi-
nite for all P, lt.

In the presence of a small field, F, it is natural to ex-
pect from the above discussion, that there will be a uni-
formly moving solution P= ut with u small in which each
phase follows almost adiabatically the minimum in its lo-
cal time-dependent effective potential,

d = —h sin(P P)+ut P+F— —
dt

(4.8)

with the left-hand side equal to zero. As will be the full
steady-state solution, Pz(t) —ut is periodic in time with
period P =2m/v.

It is useful to consider a mean-field solution with a
given velocity and calculate the field needed to make it
satisfy the self-consistency condition. We can find the
steady-state solution with a given small u by perturbation
theory in powers of U about the adiabatic approximation

(4.9)P(t)=Pz(t)+v8t(t)+v 82(t)+

Since for this case W always has a unique minimum, a
unique static solution, Pp(P, It), to the equations of motion
Eq. (4.4) exists for each P and F. The effective potential
8 is the sum of a parabolic part from the elastic plus
field energies and a cosine part from the pinning. It fol-
lows that the displacement of the minimum of W from
the minimum (P+F) of the parabolic part by itself de-
pends only on the relative positions of the minima of the
parabolic and the cosine parts. Therefore, Pp(P, h) —P —F
is an odd 2m periodic function of P+P+F. It fol-—
lows that ( I/2m) f Pp(P, h)dP=P+F for each h,
whence

(Pp):—( I/2m) f dP f Pp(P, It)p(It)dh =P+E . (4.6) where the 8;(t) are of order 1 and periodic in time with
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period P.
Since dgo/dP is bounded, diaz/dt is of order u at all

times and we can thus substitute Eq. (4.9) for P into the
equation of motion and, by collecting terms of each order
in u, can solve iteratively for 8i, 82, etc. From terms of
order U, we have

= —hu8&cos(gz —P) —u8i
dt

(4.10)

from which 8i can be obtained in terms of the implicitly
defined Pz. At this point it is convenient to note that the
solutions to Eq. (4.8) have a trivial dependence on the
phase P,

P(P, h, t) =P+P(13=0, h, t P—/u) (4.11)

and hence the deviations P=P ut of —the phases from P
only depend on P through a temporal phase shift

P(P, h, t) =g(P=O, h, t —f3/v) . (4.12)

i.e., we require that the average over one period and over
h of g(P=O, h, t) (or equivalently any other 13) must be
zero. In addition, the field F enters the single-phase equa-
tion of motion in a simple way, so that with v fixed, the
average of the phase deviation over one period satisfies

(g(F, t) )p,„~——F+ (P(F =O, t) )p,„,d .

Similarly,

(4.14)

(eA(F t) ~ 'od (0A(F t) vt ~ 'od

and since P=gz+u8i+O(u ) . it follows that the self-
consistency. condition will be satisfied with

u =crF+O(F ), (4.15)

i.e., response to the field is linear. A detailed calculation
(see Appendix A) yields the linear conductivity

ph
o (1 h2)1/2

(4.16)

which is generally less than 1. At high fields, as for the
finite-dimensional case, u =F so that the response u(F)
will be linear in both the high- and low-field limits (but
with different slopes) as shown in Fig. 2.

From Eq. (4.16) we see that as the maximum pinning
strength h approaches 1, o. tends to zero. As h increases
past 1, the local effective potentials 8' for h ~h have
several minima and the adiabatic approximation for the
solutions breaks down. This brings us to the strong-
pinning case.

This is a consequence of the fact that the motion of all the
phases with the same h relative to their preferred values,
P, is the same up to temporal shifts which depend only on
P. The self-consistency condition can thus be rewritten in
terms of averaging over time for one period:

ut=g(t)=(1/2n. ) f d13 f p(h)P(P, h, t)dh

=ut+(1/2m) f dP f p(h)g(P=O, h, t P/v)dh-

=ut+ f dh p(h) f dt' g(P= ,O,ht'), (4.13)

FIG. 2. Schematic plots of the velocity u, as a function of the
applied field F, for weak and strong pinning in mean-field
theory. The dashed line, U =F, is the asymptotic high-field limit
for both curves. Note the linear response at small fields for
weak pinning and the threshold F~ for strong pinning.

B. Strong pinning: h &1

—h sin(Y+a) —Y=O . (4.17)

As F increases the number of possible self-consistent
metastable states decreases until at a maximum value of
F, which is the threshold field FT, there is a unique self-
consistent solution (up to the overall phase P) correspond-
ing to Y and for F &FT no self-consistent solutions exist.
From the above discussion, it follows that the threshold
field will be given by

FT — f da f—dh p(h)Y(a, h) (4.18)

which will be strictly positive as long as h ~ 1. In Sec.
VI we will discuss some of the properties of the system in
the pinned phase when F ~ FT. However, we first consid-
er uniformly moving solutions for the strong-pinning case
with F ~ET.

We note that, in contrast to the weak-pinning case, the
solution at F=FT does not vary smoothly as P is in-

We first examine static solutions which we require to be
locally stable. This implies that each phase lies at a local
minimum of its local potential. Since for h ~ 1, S' can
have several minima, there will generally be a large num-
ber of metastable solutions for each P. Thus, in contrast
to the weak-pinning case, the solution function P(13,h, P,F)
will be a multivalued function of its arguments. However,
it will still have the property that for a given h,
Po P F=Y —is a—periodic (although multivalued) func-
tion only of a= P+P+F. —This function is plotted for
h =2 in Fig. 3. The self-consistency condition is just that
the average over a and h of the chosen branches of
Y(a,h) is equal to —F.

For small F, this condition can clearly be satisfied with
several choices of the branch of Y for many a, h. Howev-
er, as F increases, it becomes imperative that for most a
the lowest branch of Y (for each h) is chosen; we denote
this branch, represented by a heavy solid line in the figure,
Y(a,h). The function Y is the smallest solution of
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FIG. 3. Multivalued function r(a) (solid line) which
represents the difference between the minima of the local effec-
tive potential W and the average phase, P, as a function of
a= f3+/+—F for a strongly-pinned phase with h & 1, aud pre-
ferred phase P. The dashed line represents the maxima in W
and the heavy solid line the special branch Y which is important
at threshold and ends at the singular point a, .

creased. In particular, because of the discontinuity in Y
as a function of a, there will always be some phase which
will jump as P is increased adiabatically. This is due to
the disappearance of a minimum of the local potential,
W(P) for these phases, as P is increased. For small veloc-
ities, u, it is still reasonable to expect that the motion of
each phase will almost follow a minimum in its W and
move rapidly to the next one when that minimum disap-
pears. We thus expect that for small v, the solution will
be approximately given by the adiabatic solution
which satisfies the equation of motion, Eq. (4.8), with the
dgldt term ignored:

=h smPq+P~ vt F, — —(4.22)

the condition that Pz a minimum of the potential is just
that

d' 8
, (P&(t), t) o0,

d 2 (4.23)

average of 0. Anomalous contributions will come from
the h's which are greater than I; we thus focus our atten-
tion on a particular h & 1. For most of the period, P will
lag only slightly behind the slowly moving minimum of
the potential W(P) (see Fig. 1) at P~ and 9 will be of or-
der u as in the weak-pinning case. However, when the
minimum of 8' near which the phase is disappears at
time t„the phase will take some time to catch up with
the next minimum and will lag behind Pz by an amount
of order 1 until it does so. Far away from t„wecan solve
the equation of motion perturbatively; 0(t) will be of order
u. However, near t, this is clearly not possible and we
must examine the nonlinear behavior in detail. The de-
tailed asymptotic analysis is presented in Appendix A; the
method and results are outlined here.

We first examine the behavior of the position of the
lowest P minimum of W(P) (i.e., Pz). Since Pz(t) (for
P=0) is a solution to the equation

dW
(P~(t), t) =0

P„(P,h, t) =vt+F+Y(vt /3+F, h) .— (4.19). 1.e.,

P(t) =P&(t)+()(t), (4.20)

we will encounter difficulties' due to the discontinuities in

Pz for h & 1. The self-consistency condition can be sim-
ply expressed in terms of 8(h, t). We require that

0= (P(P,h, t) —vt )
P= I dh p(h) —I dt[P(f3=0, h, t) —vt]

The preferred phase, P, again enters this expression in a
simple way; P~ ——P~(P, h, t) —vt is a function of the com-
bination t —Plv rather than P and t independently. By
inspection of the equation of motion, it is clear that the
actual solution will have this same property. We will thus
focus our attention on a single P (for simplicity P=O) and
replace averages over P of g(P, h, t) by temporal averages.
We will drop the p's and just consider p=O.

Since the steady-state P will be periodic we need consid-
er only one period. If, as in the weak-pinning case, we try
to expand the actual solution with small velocity, u, about
the adiabatic solution,

h cosPz + 1 & 0 . (4.24)

The m1nimum will disappear at a time t, and position
P, (h ) =—P~ ( t„h), where

h cosP, +1=0 . (4.25)

From the plot of P„in Fig. 4, it can be seen that the point
at which the lowest P minimum disappears (as against
when a new minimum appears) is given by the solution to
Eq. (4.25) with

sing, &0. (4.26)

The behavior near to P, can be found by expanding Eq.
(4.22) about the singular point P„t,:

2v (t, t)—
h sing,

i.e., Pz has an upward square-root cusp as is evident from
the figure. The time derivative of Pz can be obtained by
differentiating Eq. (4.22), yielding

P= J dhp(h) —f dt[F+Y(vt+Fh)+8(h, t)]
&0,

dt 1+h cosP~(t)
(4.28)

=F FT +(8( th) ) „t,„,—d, (4.21)

where the last equality follows from Eq. (4.18) for the
threshold field Thus, we .are particularly interested in the

where the positivity follows from condition Eq. (4.24).
The time derivative of Pz is of order v except near t, At.
t„pzjumps from p, to a value p„.

Away from t„wecan obtain 6 perturbatively by substi-
tuting Eq. (4.20) in the equation of motion Eq. (4.8) and
keeping the lowest-order terms in powers of u. This yields
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which can be scaled by

t Vts

t —t, =CI, v
—1/3

with

Ci, = —sing, (h)
2

—1/3

(4.33)

(4.34)

I

0
vt

—- 27r
27r

independent of v to give

(4.35)
FICx. 4. Adiabatic approximation Pz(t) to a steady-state soln

tion for strong pinning P(t), moving with a small average veloci-
ty u. The actual solution lies below Pz by an amount of order u

except near the jump in Pq. The expanded region in the inset
shows Pq (solid line) and P (dashed line) near the singular time
t, at which pq jumps from p, to p„.Note that the time scale
td —t, for the jump of the phase out of a disappearing minimum
of its local potential into a new one is of order U

In these scaled variables the (P —P, ) terms become of or-
der v '~, their neglect can thus be justified for small v.

The nonlinear equation [Eq. (4.35)] can be solved
analytically and a uniform approximation to P obtained
by matching asymptotic expansions; the details are con-
tained in Appendix A. It is straightforward, however, to
obtain the asymptotic form of the desired (8(t)). From
the characteristic scales near P„t,given by Eq. (4.33) we
expect P to remain within order v' of P, for a time of
order v . However, at a fixed positive value of r='Td
corresponding to a time td, the desired solution to the
scaled equation [with X(r~ —Oo )=—V' —r] will diverge.
Near to this point P —P, will become of order 1 and we
can no longer neglect terms of order (P —P, ) . However,
by this time the instantaneous velocity dgldt will also be
of order 1 and we can then neglect the explicit time
dependence in the equation of motion. The solution will
then relax to a value near Pz(td ) =P„in a time of order 1.

The dominant contribution to (8) will come from the
time from t, to td when 8 will be of order 1. Since this
occurs for a fraction of the period of order v ~, this will
yield from each h &1, a v ~ contribution to (8) which
will dominate the v and v lnv contributions from t(t,
(and from h & 1). From the form of the self-consistency
condition Eq. (4.21) we conclude that near threshold

8(t)= 2+O(v )
[1+h cosPq(t)]

1 diaz
v dt

(4.29)

which is strictly negative, ' i.e., the phase lags behind the
minimum in W as expected physically. In deriving Eq.
(4.29) we have ignored terms of order 8 and d8/dt Near.
to t„

(4.30)

It can be seen (see Appendix A) that 8 and d 8/dt will be-
come non-negligible only when t, —t-v ' &~P. In the
limit v~0, the perturbative result Eq. (4.29) for 8 will
thus be valid closer and closer to t, on the scale of the
period P. The contribution to (8) from the region far
from t, will be of order v but there will be an anomalous
contribution from times t, t small but positive—. This re-
gion yields a contribution to (8) of the form

v =8(F Fr) i— (4.36)

i.e., g= —,. The coefficient 8 will depend on the distribu-
tion p(h) of the pinning strengths; it is given by Eq. (A43).

For strong pinning, we have found that below a
nonzero threshold field FT there are only static solutions
while above the threshold field there are uniformly mov-
ing solutions but no static solutions. Furthermore, the
velocity appears to be a unique function of the field F and
goes to zero continuously at threshold with an exponent

It is plotted schematically in Fig. 2. At the bor-

derline between weak and strong pinning, h =bshe
——1 there

is a multicritical point at F=0. As mentioned already, as
h~l the linear conductivity in the weak-pinning re-

gime goes to zero. Similarly, as h —+1+, the threshold
field will go to zero and the coefficient 8 of the
(F Fr) ~ dependence of th—e velocity [Eq. (4.36)] will
diverge. The detailed behavior near this multicritica1
point, which is nonuniversal, is easy to derive from the re-
sults in Appendix A.

In the next section, we will show that the uniformly

I i/" l
, , —d t-v lnv,

~
—1/3

(4.31)

where t =t, —t and the lower and upper cutoffs come,
respectively, from where the 8 and d8/dt terms in the
equation of motion cannot be neglected and from where

Pq(t) d—eviates from its asymptotic form near t„Eq.
(4.27).

Within a time of order v '~ of t„the equation of
motion becomes fully nonlinear. However, an expansion
can. be made of the nonlinear equation about the pdint
P„t,at which the right-hand side of Eq. (4.8) and its
derivative with respect to P vanish (corresponding to the
potential W'being cubic at t„P,) Ignoring terms . of order
(P —P, ) we have

(4.32}dP h—sing, (P P, } +v(t t,)— —
dt 2
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V. STABILITY AND ac RESPONSE
IN MEAN-FIELD THEORY

In the preceding section, static and uniformly moving
solutions of the mean-field equations of motion were dis-
cussed. The static solutions were stable by construction,
but it is necessary to show that the uniformly moving
solutions are stable, at least locally. In this section we
consider linear response of the mean-field system to a
small uniform ac applied field, A (t) (in particular,
Aoe ' ') in addition to the dc field, F. We consider self-
consistent solutions to the equations of motion for
P(P, h, t):

d
dt

= —h sin(p p) p+ p(t)+—F+—A (t) (5.1)

and expand about the uniformly moving solution

pv(p, h, t) with A(t)=0 and pv(t)=vt discussed in the
preceding section. We thus write

moving mean-field solution is stable to small perturba-
tions. However, it has not so far been possible to rule out
either above or below I'T the existence of solutions to the
mean-field equations of motion which, even at long times,
are neither uniformly moving nor stationary. It appears
unlikely that such solutions exist since, if we assume a
solution P(t) exists with a nonuniform but periodic
dgldt, the resulting d(P(t))p, &ldt will generally have
less harmonic content than dgldt because the different
p(p, t) will tend to be out of phase, and hence the self-
consistency condition cannot be satisfied. We will there-
fore assume for the remainder of this paper, that below
thresho1d only stationary solutions exist at long times and
above the same threshold only uniformly mouing solutions
exist at long times. For the mean-field case, it can be
shown that the uniformly moving solution discussed here
is unique up to an overall shift in the temporal origin.
The finite-dimensional case is discussed in Sec. VII.

discussion in the preceding section. Since A contains all

frequencies which are harmonics of v, if A (t)=Aoe

g will contain all frequencies of the form co+nv. We can
thus write

(p t) g + (p)e( i—co iv—n)t (5.8)

However, from the p dependence of Eq. (5.5), it can be
seen that

g„(p)=e'"~ri„, (5.9)

=e '"'(g( P=O, t)e'"'), (5.10)

so that rl(t) will (as should be expected) contain only the
driving frequency cu. We define the "local" response
function K(h, co) by

7)0(h, co) =K(h, co)A (co) . (5.11)

The self-consistency condition then gives for the total po-
larizability g(co ) defined by

g(~) =X(co)A (~),

y( )
K(co )

1 —K(co)

with

K(co)= f dh p(h)K(h, co) .

(5.12)

(5.13)

(5.14)

From the equation of motion Eq. (5.5) for g it can be
readily shown that

K(h, co)= f dte'"' f exp —f A h, t' —dt'—

where q„=g„(p=O).Thus, as before the behavior for all

P can be obtained from a single P=O. From Eqs. (5.8)
and (5.9) it follows that

(1/2m. ) f dpi(p, t) =goe

p(p, h, t) =p, (p, h, t)+ri(p, h, t) (5.2)
(5.15)

and

P(t) =ut+q(t) (5.3)

with

ri(t)=(ri(P, h, t))pg . (5.4)

As before, it is convenient to focus on a given h. The
linearized equations of motion for the perturbations
g(P, t) for a given h are

dvi toX(co)=— (5.16)

Note that the response, K(co=0), of ri to a zero frequency
A can be immediately obtained since it is equivalent to a
change of time t —at+AD/u. This results in P(t) chang-
ing from ut to u(t+Ao/v) and'hence yields q=AO. This
translation mode in time implies that K(co =0)= l. In the
limit of low frequency, we expect that

dt
= —A(h, t —p/u)ri+A (t),

where

A(h, t —p/u) =h cos[p„(p,t) —p]+1
is a periodic function of t —p/u and

(5.5)

(5.6)

dv
K(co)=1+ital +O(tv ) . (5.17)

A. Stability

i.e., the differential conductivity. This yields for small co,

A (t) = rT(t) +A (t) (5.7)

is the total time-dependent force on g. The fact that A
depends on only the combination t —p/u follows from the

Stability of the uniformly moving solution is equivalent
to the absence of poles in X(co) in the upper half-plane.
Poles in X could come either from K being equal to 1 (as
at co=0) or from poles in K. Both possibilities can be ex-
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eluded by examining Eq. (5.15) for E(h, co). If co is in the
upper half-plane then

I

e' 'I &1 for all t &0. This im-
plies that for all co in the upper half-plane (and also on the
real axis away from co=0) that

I
&(h ~)

I
&

I
sc(h, ~=0 (5.18) =X'+~+a e

—'"
dT

(5.23)

rescale the equations of motion by Eq. (4.33}to give [with
X in Eq. (4.33) here called X to avoid confusion with the
polarizability]

I
K(co)

I & I
IC(0)

I
=1 . (5.19)

where the (h-dependent) scaled total ac force ao and fre-
quency Q are given by

To prove that Ic: has no poles in the upper half-plane, we
need only show that (A(t) ) is positive since this implies
that the time integral in Eq. (5.15) is convergent for all co

with positive imaginary part In . fact, since the pinning
potential on one phase is —h cos(P —P) one expects that
(h cos(P„—P) ), will be positive and hence that
(A(t) ), ~ 1 for all P,h. This can be proven in a few lines
from the equation of motion. Hence I7(co) has no poles
with Im~ & —1 and a single disturbed phase will decay to
its steady-state solution with an average rate faster than in
the absence of pinning.

Thus far we have strictly only shown. that the uniform-
ly moving solution is stable to uniform perturbations.
However, it is straightforward to extend the conclusion to
all small perturbations. Consider a perturbation of field
AJ on the jth phase. Then, with the local response de-
fined by

l cot 2/3e 'Ao ——U CI ao (5.24)

(5.25)

[Uo(h }]singular

Cp co

U

given by Eq. (4.34). The dominant effect of a
small ao in Eq. (5.23) is to shift the scaled time at which
X diverges, from zd by an amount proportional to ao.
This will give rise to a contribution to go proportional to
ao. From the scale of the variables, this will be of the
form

KJ(co) = I dt e'"'exp —J A hj, t'—

the total response function is

(5.20)

dP;(co)

dAJ (co)

K;(co)KJ (co)
+K~(co)6,J . (5.21)

N [1 E(co)]—
The Fourier transform of X,J(co) cannot have any parts
growing with time by the arguments given above. There-
fore, the uniformly moving solution is locally stable to all
perturbations.

—lMt
Oe

r}(t)= +O(co, u) .At (5.22)

As in the case of dc response, this adiabatic approxima-
tion breaks down near to t, . In this regime we cgn again

B. Critical behavior of polarizability

We now consider the form of the uniform polarizability
X(co) in the critical region at low frequencies near to
threshold. It is convenient, as above, to focus on the
response, g(t) =ri(P=O, h, t) of a single phase to the com-
bined force, Aoe '"', of the applied field and the mean
field. As long as the frequency is small compared to 1,
for most of each period the dr)/dt term in the linearized
equation of motion for ri will be small, and an adiabatic
approximation can be made as in the preceding section.
When the time is far from the singular point t„A(t)will
be of order 1 and varying on a time scale u '. Thus, for
most of each period, ri can be approximated by an adia-
batic term plus corrections of order m and U:

where the factor of u/2m comes from averaging ri over
one period and 1' is a function only of Q (see detailed
derivation in Appendix 8). This singular part of the
response will dominate at low frequencies near threshold
(except for a term equal to Ao from the adiabatic part)
and yield a scaling form for the polarizability

X(,f)=f~ (5.27)fIs

where u —f~ with g= —,
' has been used. In terms of f, the

characteristic frequency scale is f', i.e., p = —,
' .

The scaling function = depends on the distribution
p(h), of pinning strengths and has a simple form in the
limit of small values of its argument:

:-(y)=

since —icoX(co) =du/dF for small frequencies.
The behavior of the scaling function for large values of

its argument is more subtle. At sufficiently high frequen-
cies (i.e., large compared to 1), the time derivative term in
Eq. (5.5) will dominate and hence IC(h, co) and X(co) will
behave as 1/ —ico independent of f. It is clear that this is
not consistent with the scaling form Eq. (5.27). For very
large co, the singular part of X(co) thus does not dominate.
A discussion of the large y dependence of:"(y) and a
derivation of the scaling form is contained in Appendix B.

The results of this Appendix 8 Eq. (810), imply that
the scaling function = is extremely nonuniversal, depend-
ing on the details of the pinning strength distribution,
p(h). This surprising lack of universality is discussed
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briefly at the end of the next section.
From the scaled form of Ao in Eq. (5.24), it is apparent

that the total response will be linear only if
Ao «u -f . This is equivalent to the condition that
the applied ac field Ao be much smaller than the distance
of the dc field from threshold, F FT.—It is important to
note that the linear ac response near threshold has fre-
quency dependence on a scale 0—f'~ which is much
larger than the intrinsic frequency of the motion which ls
just U -f . This appearance of two singular frequency
scales near threshold is in striking contrast to the behavior
for the single-phase case discussed in Sec. II.

Far above threshold, it can be seen from perturbation
theory that the characteristic frequency scale of the ac
response will become of order U since the motion at high
velocities involves only a few harmonics of U.

aM m+p——(F).+F . (6.4)

For the constant-h case, this will be true all the way up to
the threshold field at which point aM will be equal to the
singular point a, at which this branch of Y disappears [at
this point the chosen branch will be exactly Y(a) as de-
fined in Sec. IV; see the heavy solid line in Fig. 3].

The polarizability Xo dP/d——F can be obtained straight-
forwardly by differentiating the expression

of a on (aM —2m, aM ) =(—n. ,n. ). The phase po(p) in this
state will be a continuous function of P on ( —m, m). As
the field is increased adiabatically, we expect that at least
initially Po will be a smooth function on this same domain
since a small field will not cause what were the absolute
minima of 8' to disappear. The relevant branch of Y in a
small field is thus the same branch as at E=0 but with a
now in the range (aM —2m, aM ) with

VI. RESPONSE BELOW THRESHOLD
IN MEAN-FIELD THEGRY 4o(p 4 F)=4+F+Y(4+F p)— (6.5)

In Sec. IV, it was shown that in the strong-pinning case
below threshold there exist a large number of metastable
states. Thus, one should expect that many properties of
the system below threshold will be dependent on the past
history of the system. In this section we study some ex-
amples of this hysteretic behavior and the concomitant
breakdown of naive linear-response theory In p. articular,
we show that there will generally be regimes in which the
zero-frequency limit of the ac polarizability, X(co) will not
equal the dc polarizability Xo dgldF——

A. dc response

Since many of the results will depend on details of the
distribution, p(h), of pinning strengths, we will, for defin-
iteness, concentrate on two examples which exhibit most
of the interesting features.
Case 7:

p(h')=5(h' —h), h &1 (6.1)

and case 2:

(h —ho) ' for ho&h &h
'0 otherwise (6.2)

with h & ho & 1. In addition, we will primarily restrict the
discussion to states which can be reached by adiabatically
increasing or decreasing the field from the absolute
ground state at E=0 which is unique up to the overall
phase P.

Case 1. Constant h. We first discuss the single h case.
As introduced in Sec. IV, there will be a multivalued
function Y of a= p+p+F which d—escribes the possible
static locally stable solutions po(P, Q, F) =Y(a)+p+F.
The absolute ground state at E=O can be found for a
given p (which we take to be zero) by choosing for each p,
Po equal to the absolute minimum of the local potential
8'(p) since the total energy is just given by

~=+ ~g(ko(p, ,h; );0,F) (6.3)
J

This ground state corresponds to the choice of the branch
of Y shown in Fig. 3 which is a continuous odd function

Ep —— 1++g 2~ a~ —m de

= 1+ [Y(aM ) —Y(aM —2m. )]
2&

(6.6)

with the branch of Y chosen as in the above discussion.
Even at threshold, when aM ——a„(1/2m.)[Y(aM )

—Y(a, )] will be strictly negative and hence Xo(F +FT)is-
a finite constant. There will be a singularity, however, in
the second derivative of P,

d'y d&o ( I+&o)' dY
dE 2a d a aM(F) —2n.

(6.7)

coming from the upper limit of the integral in Eq. (6.6).
Near to a, and Y, =Y(a, ) & 0, Y behaves as

1/22(a —a, )
Y(a) —Y =—

Y
(6.8)

aM(F) aM(FT) (FT F)l~o(FT)+ 1]

so that

(6.9)

d&o
if i

—1/2

dE (6.10)

as E~FT.
As F is decreased, the phases will follow the same

branch as for F increasing. Thus, for case 1, while there
are many metastable states, a particular special state (up
to overall P) can be reached from any of them by first in-
creasing F to FT, which forces the system into the unique
state which exists at threshold and then decreasing E to
the desired value. Once this has been done, none of the
other metastable states can be reached by adiabatically
changing F (they can of course be reached by introducing
a nonuniform field) and all phases with the same p will

with respect to F and then averaging with respect to p or,
equivalently, a:
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= 1+ [Y(aM, h ) —Y(aM —2m. , h ) ]2K
(6.11)

can again be obtained by differentiating Eq. (6.5) and the
full static response from

Ko
X{)—

1 —Ko

with

(6.12)

have the same Pp. This property and the finiteness of
Xp(FT ) are both pathologies of the system with all pinning
strengths the same, essentially arising from the fact that
the local threshold field at which a single phase first
jumps out of a disappearing minimum into another is the
same for all of the phases.

Case 2. Flat distribution of h's. More generic behavior
is found by considering a distribution of pinning
strengths. In this case there will be a series of functions
Y(u, h) yielding the static phases for each h. The impor-
tant lowest branch Y(a, h) of each Y will have a singulari-
ty at a point a, (h) which is an increasing function of h.

We again consider states which can be adiabatically
reached from the ground state at F=0. As F increases
from zero, the relevant branches will be the same as for
the single h case except that now a~ can be larger than
a, (h). The P averaged local static response:

Differentiating Eq. (6.15) with respect to F, using Eqs.
(6.14) and (6.18) and noting that da, (h)/dh goes to a con-
stant at h =h, we obtain

dhi
dF h —h i(F)

(6.19)

which can be integrated to yield that

[(It —Iti(F)] -(FT—F)

and hence from Eq. (6.18),

X fff

(6.20)

(6.21)

It is tempting to associate a critical exponent y with the
singular part of the polarizability near threshold:

Xsinguiar
~ f ~

—y (6.22)

As threshold is approached from the F =0 ground state,
y=0 for case 1 (Ref. 31) and y=+ —,

' for case 2. It can
be shown that for this past history, y can be any value be-

tween 0 and 1 for h & oc and any value from 1 to ao for
h = oo. For all cases the behavior near threshold is con-
trolled by the form of p(h) for h ~h. Thus, the singulari
ty in Xp as F~FT is nonuniversal in contrast to the
behavior in the preceding section above but near thresh-
old. We note, however, that the nonuniversality of the
scaling function for the frequency- and field-dependent
polarizability aboue threshold may be related to the in-
herent nonuniversality below threshold.

Kp ——J dh p(h)Kp(h) . (6.13)

However, we now have Kp(h)=1 for all h, F satisfying
a~(F) =P+n+F &a, (h). The threshold is determined
by

a»t(FT ) =a, (It ), (6.14)

u. [~1(F)]=aM(F) . (6.15)

Near to threshold, hi(F) will approach h. The only h's

contributing nonzero amounts to 1 —Kp are hi &h &h.
For h,

1 —Kp= I» ( )dh p(h)h»,
h

(6.16)

where we have defined the jump, iI(,» in Y(fi) at u (Q) by

4»= Y(a,+)—Y(u, ) . (6.17)

For the case 2 under consideration, Eq. (6.16) yields (since
b.- &0)

h
A.=1—Kp(F)-h —Ii i(E) .

1+Xp(F)
(6.18)

i.e., when the branch of Y(a,h) exactly corresponds to
Y(a,h) for all h's for which p(h) &0.

Once al(F) is greater than u, (h) for a particular h, as
F is increased some of the phases with this h will jump
by an amount Y(u, 2') Y(a,—) and —the local response
averaged over P will be equal to 1. The pinning strength
h i (F) for which the phases are just about to start jumping
as F is increased, is given implicitly by

B. Hysteretic behavior

We now briefly discuss some of the possible hysteretic
behavior. For case 1, almost all choices of the initial dis-
tribution of the phases in the possible minima of their lo-
cal potentials for F&FT will result in Xp~const at Fz.
However, the magnitude of the singularity, i.e., Xp(FT)
will depend on the past history, although only for the first
approach to threshold as mentioned above. For case 2,
and in general, the behavior will be much more strongly
history dependent.

For definiteness, we consider decreasing F slightly from
FT. The phases (for a given h) with a & a, (h) will not go
back to the lower branch of Y from which they came as F
was increased to FT from the F=0 ground state. Since
we have chosen the smallest h, ho, to be greater than 1, Y
will have at least two branches for each h. For a finite
range of F, Fi &F&Fz about Fz, the field can thus be de-
creased without any phases jumping to the lower branch:
i.e., the lower limit of the range of a, aM 2' will be-
greater than —a, (h) for all the h's. From Eq. (6.11) it
follows that Kp(h) (where the arrow denotes the direction
of charge of F) will be less than 1 for each h and hence
that Xp(F) will be finite in this range of E as F is de-

, creased from FT. If F is increased back to FT again, Xp
will remain finite, in contrast to the divergence of Xp
when coming from the F=0 ground state. With this past
history Xo will not depend on whether F is being increased
or decreased. Another history for which Xo is reversible
in some range will occur for case 2 for F increasing and
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decreasing starting from the E =0 ground state but
remaining less than some value F„.The relevant criteria
for reversibility at agiven value of F and with a given
past history is that d Y(h, a)/da has no 5-function contri-
butions (for any h or a) for the branches on which the
phases lie. This is just the statement that no phases jump
on either increasing or decreasing E.

If in case 2 the field is decreased from threshold below
F~ or increased from the F=0 ground state above F„,
then Xo will depend on the direction of change of F but
will always be finite, i.e., there will be a Xo and Xo which
are different (they may be accidentally equal at isolated
points). From Eq. (6.11) it can be seen that the increasing
(decreasing) polarizability Xi'l (Xo) will only diverge if al/
the phases with a=a, (h) [a= —a, (h)] lie on the Y( —Y)
branch of Y. This will occur only right at threshold and
+0 will only diverge as F—+FT with certain special past

. histories. In particular, if F follows the path
FT~F;„~Fzit will diverge only if E;„=—FT. The
divergence of Xl'l on this path with F;„=Fz. wil—l have
the same exponent but generally a larger amplitude than
the divergence of Xl'l as F +Fr fro—m the F=0 ground
state. The behavior for case 2 with E increasing to ET
from the F=0 ground state and then decreasing below Fl
and back to E~ is sketched in Fig. 5.

The hysteretic behavior for case 2 is reasonably generic,
however, if the minimum value of the field ho, had been
smaller than 1, then there would be hysteresis at all fields
with all past histories and Xl'l(F) and Xo(F) would general-
ly be different everywhere.

C. ac response

We now turn to the linear ac response below threshold.
In contrast to the dc response discussed above, at finite-
frequency phases cannot jump back and forth from one
minimum to another. Thus, the ac response will not in-
clude 5-function contributions to dgldt.

The linearized equation of motion for a deviation of the
phases ri(P, h, t) about Po(P, h) driven by an ac field A (t)
are

1+h cos[Y(a)+a]=
I+dY/da

we have

(6.25)

K(h, co=0)= J 1+ (6.26)

Naively, this looks like it will immediately yield the result
Ko(h) from Eq. (6.11). However, if the range of integra-
tion of a on the chosen branch of Y includes a point a,
(or similarly —as ) at which the branch changes, then the
5-function contribution to dY/da at that point should
not be included, in contrast to the dc case. The integral
over a in Eq. (6.26) will yield

K(h, co=0)=1+Y(aM)—Y(as+)+Y(as ) —Y(aM —2m) .
(6.27)

If the branches of Y corresponding to the state under con-
sideration change at a„then Y(a,+)—Y(a, ) =b, t, &0 and
K (h, co=0) &Ko(h').

For any state, K(h, co=0) will be less than 1 for all
h & 1. The zero frequency -limit of the ac polarizability
X(co=0) will then always be finite. For case 1, X(co=0)
will be equal to the static Xo along the paths coming from
FT or the E=0 ground state, since Eo in that case did
not include contributions from phase jumps. For case 2
(and generically) Xo will equal X(co=0) only along paths
with no hysteresis. Generally, K(h, al =0) (Ko(h), Kl'l(h)
and since all K's are between 0 and 1, it follows that

where A(t)=A(t)+g(t) as in Sec. V. The P-averaged
response K (hi, co) to A(co) is given by

K(h, co)= I i—co+ I 1+h cos[Y(a,h)+a]I
(6.24)

where we have again parametrized P by a (with maximum
value an't) and assumed for simplicity that all of the
phases with the same P and h have equal values. We can
take the zero-frequency limit immediately, and using the
equilibrium condition which gives

dt
= [—1 hcos(Po —/3) ]g+A—( t), (6.23)

(6.28)

Even though X(co—+0) is finite, it is nevertheless singular
near threshold and at any point at which there is hysteret-
ic behavior.

We first examine case 1 near threshold, at low frequen-
cies. The maximum o., a~, will be near to n, :

(6.29)

1+h cos[Y(a)+a]-(as —a)' (6.30)

I

FT
F

FKr. 5. possible hysteretic behavior for the average phase p
as the field I is increased adiabatically from the I' =0 ground'

state to Fz and then down and back up again as indicated by the
arrows.

Thus, the form of the singular part of the integral in Eq.
(6.24) will be for

~

co ~, ~ f [ &&1,
1 I

K singular(

If I ico+va'—
where cx'=cx, —a. This integral will yield a scaling func-
tion for K (ignoring all constants):



SLIDING CHARGE-DENSITY %'AVES AS A DYNAMIC CRITICAL PHENOMENON

Xsingular( f) g singular( f)
~ f ~

I /2 ln(
/ f )

'/2 i—co) (6.32)

Since the nonsingular part of K goes to a constant as
co,f~0, the singular part of X will be a constant multiple
of X""g ". From Eq. (6.32) we conclude that for case 1,

Xsingular(~ () f)
~ f ~

l/2 (6.33)

and (dX/dE)(co=0, f)-
~ f ~

'/ [which should be ex-
pected since for this case X(co=0)=Xo]. Exactly at
threshold,

g(a, co'=0)

g2
(a a)1/2 —ico+(a, —a)'/2 i~+(a, —a)'/'

(6.37)

Integration of this over a up to a, will yield the form of
ri(co'=0):

X""gula'(co, f=0)——ico ln( i co)— (6.34)

so that the conductivity at threshold has the form

cr(co) = —co ImX""g"'"-co ln
(

co
~

(6.35)

a(co) -co ln
)

co
(

V

(6.36)

and the real part of X will have a
~

co
~

cusp.
For case 2, if we increase I' from the I' =0 ground

state, the conductivity will be analytic at co=0 [i.e.,
o(co)-co and XO=Xo —X(co=0)] until F reaches a criti-
cal value F„atwhich a~ ——a, (ho). As F is further in-
creased, cr will behave nonanalytically as in Eq. (6.36) and
Xo&XO ——. X(co=0). The equality of Xo and X(co=0) along
this path is simply due to the absence of phase jumps as F
is decreased. As threshold is approached Xo will diverge
while Xo and X(0) remain finite

D. Nonlinear response

In regimes in which the low-frequency linear response
is pathological (as discussed above) one should expect that
the nonlinear response will also be singular at low fre-
quencies. This will arise physically from the large
response of phases which lie in very flat minima of their
potentials, i.e., those that would jump if I' were changed
slightly. For definiteness we consider the quadratic dc
response to a uniform 3 cosset force at low frequencies.

From the leading nonlinear terms in the equation of
motion Eq. (6.23) for the phase deviations g, it can be
readily shown that the quadratic dc response of a phase
with a (a, (h ) on the lowest branch of Y has the schemat-
ic form

[Note that the nonsingular part of o.(co) will go as
0+Cco2, hence the singular part dominates. ] The real
part of X will have a

I
co

I
cusp.

We now consider what happens more generally when
there is a range of Ii's as in case 2. At any point, with

~

F
~
&Er at which there is hysteresis, i.e., Xo&XO, there

will be phases which are just about to jump to another
minimum as F is increased or decreased. Thus, for some
finite fraction of Ii's there will be~hases distributed up to
as(h) {or —a, ) on the branch of Y(a,h) which ends at a, .
For these h, Ki, (co) will behave the same way at low fre-
quencies as in case 1 at threshold. We can therefore con-
clude after averaging over h that in any state with hys-
teresis, the conductivity will be singular as co & 0 with

i.e., a divergent nonlinear polarizability.
In a regime with nonsingular linear response [i.e.,

Xo——Xo——X(co=0)], the quadratic response at zero fre-
quency will just be proportional to dXO/dF. We see, how-
ever, that in the hysteretic regime, the quadratic response
is infinite as co~0 and hence definitely larger than the
finite, although history and definition dependent dXoldE.

E. Two-sided scaling and universality

In conventional critical phenomena, scaling functions
can usually be found which describe the behavior on both
sides of the transition. This is primarily due to the ex-
istence of ordering fields (e.g., the magnetic field in a fer-
romagnet) which destroy the transition. An exception is
spin glasses for which, because of the existence of many
order parameters, scaling functions above and below T,
behave quite differently.

The threshold problem of interest here has some
features in common with mean-field theory of spin
glasses —universal exponents on one side of the transition
and hysteresis and nonuniversa1 behavior on the other. In
our case, however, there is an "ordering field" which des-
troys the pinned phase at least in mean-field theory. This
is just the temperature, the effects of which will be dis-
cussed briefly in Sec. IX. It is possible that some two-
sided scahng functions can be found by considering the
effects of small but nonzero temperature near threshold.
This possibility merits future study.

An additional unusual feature of the scaling near
threshold, is the apparent complete lack of universality of
scaling functions such as =. Although the fundamental
reason for this is not clear, it may be related to the ab-
sence of two-sided scaling and the large degeneracy on the
pinned side. However, the presence of two different criti-
cal frequency scales seems to play a role. Both this and
the nonuniversality arise in mean-field theory from the
presence of two singularities in the functions T(a,h)
which determine the local response: they have jumps and
square-root cusps with independent magnitudes.

VIE. SHORT-RANGE INTERACTIONS:
THRESHOLD FIELD AND %'EAK PINNING

Until now, all of the detailed discussion has concerned
the mean-field limit in which we have seen that analytic
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calculations can be performed. In the next two sections
we attempt to use the intuition gleaned from the mean-
field results along with scaling arguments to draw some
conclusions about the behavior of systems with short-
range interactions. The discussion will be much more
qualitative, and in some parts, quite speculative.

Some of the features of mean-field theory, in particular
the existence of a threshold field with nontrivial critical
behavior for sufficiently strong pinning, should persist
with short-range interactions. In this section we discuss
the behavior of the threshold field in various dimensions
as a function of the strength of the pinning. As men-
tioned previously, we will assume that below a threshold
field (when it is nonzero) there exist only stationary solu-
tions at long times and above the same threshold field
there exist only uniformly moving solutions at long times
(in an infinite system). In contrast to mean-field theory,
the coexistence of uniformly moving and stationary solu-
tions has not been explicitly ruled out.

There are two main issues concerning the extent to
which mean-field theory can be carried over to systems
with short-range interactions. The first, and eventually
perhaps the most interesting, concerns the upper critical
dimension, d„above which, by analogy with critical phe-
nomena, the exponents (e.g. , g) describing the threshold
will obtain their mean-field va1ues which should be valid
in the limit of infinite dimensionality. Unfortunately, we
will have little to say about this issue here except to note
that it is independent of the second important issue,
which is the question of how much the phase diagram in
various dimensions as a function of F and. h resembles the
mean-field phase diagram. This latter issue primarily
concerns the lower critical dimension of the multicritical
point which separates the regimes with and without a
threshold in mean-field theory.

We thus return to the short-range model introduced in
Sec. III. It is convenient to work with a continuum ver-
sion of the model with a length cutoff of order 1 which is
the microscopic length scale—roughly the distance be-
tween impurities. The equation of motion is

Bt
h(r ) sin[/(r) ——P(r) ]+F, (7 1)

where we have normalized the stiffness to 1. We are in-
terested in the limit of weak pinning, i.e., where the
characteristic h (r) is small.

From the weak-pinning perturbation theory discussed
in Sec. III, it appears that four dimensions plays a special
role. In particular, the infrared singularities that make
the zero-field perturbation theory divergent [Eq. (3.1)] do
not appear in d ~4. Moreover, the perturbative correc-
tions to the high-field behavior of the velocity given by
Eq. (3.2) are not dominated by long wavelengths in d )4.
By examining the high-field perturbation theory, it can be
seen that the general form of an rith-order term for the
velocity will be schematically

nonzero integers, and the h " includes various combina-
tions of moments of p(h) of total order 2n .(Note, the
terms with any mj =0 cancel each other. This can be
shown by methods similar to those of Efetov and Lar-
kin. ) Because of the imaginary part, each term will be F
times an even function of F I. n more than four dimen-
sions, all the integrals should be convergent by power
counting and, at least naively, the limit F—+0 should be
nonsingular. This suggests that for d & 4, a critical
strength of the pinning is needed before perturbation
theory breaks down, even as F~O. This would imply
linear response (i.e., v-oF) for weak pinning in accor-
dance with mean-field theory. As we will see later, how-
ever, this naive argument is almost certainly incorrect.

In less than four dimensions, the integrals' appearing in
nth-order perturbation theory will generally diverge for
small F as F

~

F
~

"'" ' and the velocity in this limit
will have a power series of the form

v=F 1+pa„(h ~F ~~~ )" (7.3)
h

F h 4/(4 —d) (7.4)

for weak pinning in d ~4 in agreement with the argu-
ments of Lee and Rice' and Larkin and Ovchinikov.
Since F appears in perturbation theory as an inverse
length squared, there will be a characteristic length associ-
ated with this threshold field

h 2/(d —4)
50 (7.5)

which is just the Lee-Rice pinning length. ' From the
zero-field perturbation theory, this will be the characteris-
tic length over which the phase deviations vary by order
1, and in a sense to be made more precise below, is the
relevant microscopic (or semimicroscopic) length for the
threshold behavior. Arguments based on perturbation
theory are potentially dangerous, so ittis useful to consider
more general arguments which lead to Eq. (7.5).

We now show how the weak-pinning behavior discussed
above for both d &4 and d ~4 can be derived from a
renormalization-group argument. We are interested in the
behavior of the model, Eq. (7.1), for weak pinning at
small fields. Thus, it is natural to consider the behavior
under rescaling of lengths by a factor L near to the trivial
zero-pinning static fixed point at h =0 and F=0. If we
rescale so that the form of the equation of motion remains
the same then we find that time scales as L and the re-
normalized field and pinning strength scale as

with h, a characteristic value of the h(r). The term in
large parentheses, which is the natural expansion parame-
ter, can be written in terms of F over a characteristic field
h ' ', which is small for h small. Since the velocity
will presumably go to zero at a finite value of the expan-
sion parameter, this suggests that the threshold field will
scale as

2n —1h" Im (7.2)
Fg (L)-FL (7 6)

where the pj are linear combinations of the q;, the mj are (7.7)
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while the stiffness is kept fixed. The pinning strength re-
scaling comes from the fact that typically the h(r) will
act incoherently over a volume L yielding an effective h
reduced by the square root of the volume.

Equation (7.7) implies that in d &4, the pinning is ir-
relevant, i.e., becomes weaker and weaker on long length
scales relative to the stiffness, suggesting that the zero-
pinning behavior (with U-F) will be valid for weak pin-
ning in agreement with the above discussion.

In d & 4, on the other hand, the pinning is relevant and
will scale to be of the order of the stiffness at a length
scale, go, which is given by Eq. (7.5). At this scale, where
both the pinning strength 'and the stiffness are of order 1,
the threshold field, if there is one, will also be of order 1,
hence the bare threshold field will be related to the bare
pinning strength by I&-h ' ' in agreement with Eq.
(7.4). The scaling behavior near the trivial zero-pinning
fixed point, implies that as a function of the strength of
the disorder and the field, the velocity for weak pinning
and small fields will, in d &4, have a crossouer scaling
form:

0 /'x

0 F
I' N

co

FIG. 6. Schematic renormalization-group flow diagram for
short-range interactions as a function of the typical pinning
strength h and applied field F. The thick line represents the
threshold field FT(h). Note at its lower end the weak-pinning
fixed point at h =0, F=0 which determines the threshold field
for small h, at the other end the uncoupled single-phase fixed
point at A = op, and in between the threshold fixed point with
h and f* both finite.

U -FD(F/h ' "') . (7.8)

The full scaling function D(Z) in principle contains the
behavior both above (Z large), below (Z small), and near
(Z-1) to the threshold field if it exists. However, no in
formation on the scaling function can be obtained by
studying the behavior near the triuial fixed point The.
properties of this fixed point only give the form of the
scaling'function in Eq. (7.8) not the scaling function itself.
In particular, the existence of a threshold does not follow
from such a scaling argument, other arguments need to be
given for the limits of the scaling function.

Qne limit of the scaling function, Z »1 corresponding
to F»FT, can be derived from the perturbation theory
discussed above. However, the behavior near threshold,
which we assume occurs, will depend on the properties of
the threshold fixed point with F*,h* both of order 1. A
schematic renormalization-group flow diagram is shown
in Fig. 6. Note the crossover away from the trivial fixed
point and the separatrix which determines Fz (h) running
from the trivial to the threshold fixed point. The thresh-
old critical behavior for any h, in particular, the exponent
g, will be determined by the properties of the threshold
fixed point. The pinning length go is just the length scale
above which the behavior will be dominated by this fixed
point. Thus, it serves as the appropriate microscope
length (analogous to the BCS superconducting coherence
length go) for analyzing the threshold behavior, in partic-
ular, for determination of the upper critical dimension d,
above which the threshold fixed point yields mean-field
critical behavior.

Since it is easy to convince oneself that for sufficiently
strong pinning there will exist a nonzero threshold, and
since the pinning in d & 4 tends to grow with increasing
length scale, the conclusions from the naive
renormalization-group arguments given above are prob-
ably valid: there always exists a threshold in d &4 with
FT scaling as h ~' ' for weak pinning. (This is in con-
trast to the incommensurate pinning problem discussed in
Ref. 25, for which there is no threshold for weak pinning. )

It might be expected that the existence of a long charac-
teristic length scale, go, would imply that by analogy with
critical phenomena (e.g., superconductivity), the critical
region near I'T would be very small. However, this is
probably not the case here, since, in a certain sense, the
threshold field itself'is a fluctuation effect controlled by
the same parameter as the crossover. This is in contrast
to the usual case in critical phenomena where one parame-
ter determines the transition temperature, T„andanother
(sma'll) parameter the crossover from the noncritical to the
critical regime, with T, finite even when the crossover pa-
rameter is arbitrarily small.

From the form of the crossover scaling, Eq. (7.8), it is
apparent that the weakness of the pinmng, lt, only sets the
overall scale for the threshold. Physically, the absence of
a narrow critical region for g'o large can be understood by
observing that the threshold fields of isolated regions of
size go will deviate from their average by amounts of the
same order as their average. It is plausible that there may
be more subtle crossover effects which do tend to reduce
the c6tical region, however, it is clear that, a priori, one
should not expect it to be particularly small.

In d & 4, we must examine the above arguments on the
irrelevancy of the pinning for small li rather more careful-
ly. (Note, these arguments were the basis of the claim
made by the author in Ref. 26 for the absence of a thresh-
old in d &4 for weak pinning. I now believe these argu-
ments to be invalid for the reasons discussed below. ) As
long as the renormalized probability distribution of the
li (r) is well behaved, it is probably reasonable to charac-
terize p(h) by a typical value h and consider the
renormalization-group flows for p(h) to be roughly deter-
mined by those for h. However, if the behavior of p(h)
for h »h becomes important, then this approximation
may become invalid. To see if this occurs, we consider a
bounded distribution of h with maximum value h -h and
examine the effects of the rare configurations of h(r)
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which result in large values of the renormalized h~ at
some length scale. In particular, we consider a region, R,
of volume l" in which all of the preferred phases are close
to a particular value, for example —m/4 &P(r) &m/4 for
all rCR, and all the h (r) are of order of the characteris-
tic value h. A region of this type will occur with proba-

(dbility, p, of order e (we ignore all constants). At F=0
in the ground state (and other low-energy metastable
states), the phase P(r) will be near zero in all of R. If the
phase at the boundary of R is pulled away from zero by a
small amount by an applied field (or the effects of other
regions), the effects of the boundary will decay exponen-
tially inside R with a characteristic length A, -h ' . If I
is of order of a few times A, , this region will act as a
strong-pinning site, i.e., if there is a finite concentration of
such regions, then for sufficiently small fields there will
be static solutions with the phase in the interior of R near
its preferred value (here zero) in zero field. [If the distri-
bution of h is unbounded, then the rare large h's will also
act as strong-pinning sites although the estimate for the
threshold given below will change if p(h) falls off more

y
d/2

slowly than e " .] The existence of static solutions for
small F can be seen as follows.

The typical spacing between regions like R will be
L-p 'r". If we assume that between these regions the
pinning has a negligible effect, then the phase in a static
solution will obey

VP= F— (7.9)

g
—d/2

FT ~e (7.11)

i.e., that, in contrast to the naive arguments given above
(and to mean-field theory) there will be a threshold field
for all strengths of the pinning, even if the pinning
strengths are bounded. This finite threshold is caused by
rare regions with anomalously coherent pinning, with

g
—d/2

spacing L-e which we again identify as a semimi-
croscopic length go. Since the threshold field is essentially
singular at h~0, it will never show up in perturbation
theory in h. [We note that effects of such rare coherent
regions in random thermodynamic systems are believed to
cause essential singularities in the free energy, originally

between these regions. By considering a surface integral
of ds VP over a region of size -L surrounding Rwe ,can
conclude that at the surface of R, M,

VP I az —l„,. (7.10)

Provided VP
~ sz is small compared to 1/A, , which we take

to be the same order as 1/l, a static solution can be con-
structed with P —0 in the interior of R and

P ~ sz -A,VP
~ sz with P and VP continuous across the sur-

face BR (similarly for the other regions like R). This im-
plies that static solutions will exist up to a field of order
L "l" . For fields larger than this, the phase on the
surface M would have to be of order 2m and a 2m phase
wall of width -X would be nucleated and propagate into
R destroying the static solution.

If we pick k-h '~, the above argument implies that
in d & 4 the threshold field will be at least

shown to exist by Griffiths. However, this may be the
first example of Griffiths s singularities crucially affect-
ing the presence (or absence) of a transition at which some
quantities have power-law singularities. ]

It is unclear, a priori, whether the bound Eq. (7.11) on
the threshold field is reasonably close to the actual thresh-
old for d & 4; it clearly cannot be for d & 4, where typical
configurations of the pinning will determine the thresh-
old. To see if a better bound is possible, we consider a
less-atypical region, R, of size l" with a total effective
field

d"r h(r)e'~"
R

of size h~l" with

(7.12)

There is again a characteristic length A,,—h, ',r for varia-
tion of distortions of the phase within a typical R satisfy-
ing Eq. (7.12). If we again estimate the threshold field by
the point at which V8

~ sz —1/A, , and we again choose
l-i.

„

then we find that Fz &L "l",where again the
separation between regions like R is given by -p
with the probability p given by

h, l~
p -exp

h 2

g2 —d j2
(7.13)

A

-exp

VIII. SHORT-RANGE INTERACTIONS:
THRESHOLD BEHAVIOR, LINEAR RESPONSE,

AND SCALING

In the preceding section, it was argued that with short-
range interactions in any dimension, there will always be a

Since the bound on the threshold field scales as p, the best
estimate is from the largest p. For d ~4, this will occur
for h, as large as possible. If the maximum h is of order
h, then the best estimate for FT is obtained for h, -h
yielding the same result as above, with the threshold con-
trolled by the most coherent regions and scaling as Eq.
(7.11). On the other hand, if the distribution of h is un-
bounded then the threshold can be controlled by individu-
al strong-pinning sites. In either case, for d &4, the pin-
ning will be dominated by rare, widely spaced regions,
which pin strongly. In less than four dimensions, by con-
trast, the probability p in Eq. (7.13) will be largest for h,
small. In this case, p can become of order 1 for
h~-h ', i.e;, l-h ' ~ which is just the I.ee-Rice
length go. At this point, the arguments given clearly
break down since L, and l will be the same order and the
renormalization-group argument given earlier is certainly
better —however, the latter is now supported by the ab-
sence in d &4, of domination by rare configurations of the
pinning. It is comforting to note that the domination of
the pinning in d &4 by typical rather than atypical con-
figurations can be justified by an argument based on con-
sidering the atypical configurations.
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nonzero threshold field which goes to zero for weak pin-
ning. In this section we speculate on the critical behavior
near threshold and discuss the appearance of ac noise in
finite systems.

We first consider the role of the length scale go dis-
cussed above. In the strong-pinning limit, the characteris-
tic microscopic scale for phase deviations will be on the
order of the separation between the impurities, and within
a region containing a few impurities there will generally
be several metastable configurations of the phases in zero
field. For weak pinning, on the other hand, the phase de-
viations will only become of order 1 on a length scale go
and in regions larger than g 0, there will generally be meta-
stable configurations of the phases. However, in regions
smaller than go, there will typically be a unique (modulo
an overall 2m' phase shift) metastable configuration. At
fields a few times the threshold field, the high-field per-
turbation theory should be qualitatively valid, and the
velocity will be on the order of Fr implying that the
velocity-velocity correlation functions decay with a corre-
lation length on the order of go. It is thus apparent that
the essential effects of the infinite number of degrees of
freedom show up only on length scales larger than go. Ex-
cept for far above threshold, the time dependence of the
phases in a region of size less than go will follow the time
dependence of the average phase in that region relatively
closely. It is thus useful to renormalize the system up to a
scale go and treat each Lee-Rice domain as a single
phase —this picture should preserve all of the universal
features near to threshold. (In contrast to hopes in the
literature, calculations' for one Lee-Rice domain' of size

go cannot possibly yield appreciable hysteretic behavior
and are unlikely even to give a reasonable approximation
to the velocity at fields closer than a factor of 2 or so to
threshold. ' Note that the typical threshold field of an
isolated region of size go will be comparable to the thresh-
old field of an infinite system, although the fluctuations
in the threshold field from sample to sample will be large;
probably the same order of magnitude as Fr.)

In many ways, the Lee-Rice length go is analogous to
the BCS coherence length go in superconductors. It deter-
mines the characteristic length scale for correlations far
(i.e., a factor of 2) from threshold and is the scale above
which collective effects start to manifest themselves in an
essential way. '

In this section we will discuss scaling behavior near
threshold; we first consider the moving state above thresh-
old. While in mean-field theory there is a unique state
above threshold (up to a shift in the origin of time), it is
not clear whether this is true with short-range interac-
tions. Perturbative arguments suggest that it is true at
least at very high velocities. Motivated by this, we will
assume for the remainder of this paper that aboue thresh-
old there is a unique mouing state (up to an overall tem-
poral shift) in any dimension. In addition, we will assume
that, as in mean-field theory, mouing and static states can-
not coexist, i.e., for a given field, the steady-state solutions
are either always moving or always static, independent of
the initial conditions. Since there is no apparent reason
why different moving states, if they could exist, would
have the same threshold field as E is decreased, it is likely

that the two assumptions above are either both true or
both false. If they are false, then much of the following
discussion is unfortunately moot.

A. Moving state

Above threshold, the local velocities, although not the
phases themselves, will have long-range order. As sug-
gested by arguments in earlier sections, there will be a
correlation length g(F) in the moving state whose "bare"
value at the order of twice threshold is go and which
diverges at threshold. By analogy with conventional criti-
cal phenomena it is natural to expect that g diverges as

NF)-40f "~ (8.1)

This correlation length will determine the long-distance
falloff of the velocity-velocity correlation function to its
long-range value of U . It will be shown in a future pa-
per by considering small fluctuations about the mean-
field solution in high dimensions, that the mean-field
value of v is —,'.

There is a simple (although rough) physical interpreta-
tion of the correlation length. If we let vL (t) be the velo-
city at time t averaged over a region of size L, then UL (t)
will be only weakly time dependent (i.e., small harmonic
content) for L much larger than g, but uL (t) will be jerky
(large harmonic content) for L & g. This interpretation is
important in considering ac noise (see below). A region of
size much smaller than g will spend most of each period
near local minima of the energy. The correlations in the
velocity may, however, fall off as a power law of distance
for r «g, but still large, (see below) implying that this
simple picture is not quite right.

By analogy with mean-field theory, it is natural to
speculate that the velocity in. a region of size -g will ex-
hibit harmonics at frequencies nu =nf ~ up to some cutoff
frequency Q above which the amplitude of the harmonics
will rapidly decrease. This frequency, 0, will also go to
zero at threshold as

with p & g. The linear ac response, X, to an extra uniform
ac field above threshold will behave as f~ '/( iso) out—to
a frequency of order 0 and exhibit a scaling form for co,
U ((1,

X(co,f)-f~ " ':-(cg/f&) . (8.3)

However, since the function = is nonuniversal in mean-
field theory, the degree of universality with short-range
interactions, or even whether such a scaling form will be
valid, is somewhat questionable.

It is not clear how nonuniversality of the form occur-
ring in mean-field theory could be understood in a
renormalization-group framework. It might perhaps be
expected that in low dimensions the threshold behavior
will be less controlled by local singularities than it is in
mean-field theory, and hence it will be more universal.
This question is left for future investigation and although
the answer may invalidate some of the results of this sec-
tion, will not be discussed further here.
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In addition to scaling for the unifor'm response, one can
also consider the spatially dependent polarizability,
X(q, co). At least in more than four dimensions, the
response at long wavelengths and low frequencies with f
fixed will be diffusive, i.e.,

g—1

X(q, co)——i~+Dq
(8.4)

with a phase diffusivity D which will go to zero at thresh-
old. By scaling, one expects that with co=v-f~ the
characteristic length scale of the response will be g, so
that

D fg —2v (8.5)

In d &4, the system in the moving state may still respond
diffusively, although it is harder to produce a convincing
argument for this because of divergences in the high-field
perturbation theory for the response at low frequencies.
If it does not respond diffusively, it is almost certainly
subdiffusive, i.e., at a given low frequency, the response
will fall off more rapidly than the

e
—( —i co/D) r

X(r,co)—
(d —] )/2 (8.6)

=5(co+co') g 5(co —vn)C„(r r') . —
n (&0)

(8.7)

In particular, the correlation function of the principal
harmonic co =v will fall off exponentially with the correla-
tion length g' (higher harmonics will be likely to fall off
with higher multiples of g). We hypothesize that for g
and r both large, Cl will obey a scaling form (with a fac-
tor of v pulled out for convenience)

f2/
C)(r,f)- d 4 I )(r/g) .

g
d —4+ 97

(8.8)

There will be similar scaling functions I"„for the higher
harmonics.

B. ac noise

The coherent ac noise in a finite system of volume V
can be. simply obtained from the velocity-velocity correla-
tion function. The mean-square ac current density at fre-
quency co =nU is just proportional to

P„=V ' f C„(r)d"r, (8.9)

where the volume is measured in units of go. By scaling
we have

fall off with distance given from Eq. (8.4) [e.g;, as
exp( —

~

co
~

~r) with A, & —,'].
The falloff of the response of one part of the system to

finite frequency-perturbations far away causes the finite-
frequency correlation functions to fall off exponentially.
[Note that in contrast, the static (zero-frequency) fluctua-
tions, will decay (or grow) as a power of the separation, as
discussed in Sec. III.] In steady state the local velocity
will be periodic in time so that the velocity-velocity corre-
lation function will contain only harmonics of v:

( [—i cog(r, co) —v][ ico'P(r—', co') v] )—

p V—lg 4—gf 2g V—lf 2$ v(4 q—) (8.10)
and so the magnitude of the rms noise at the principal fre-
quency co =v relative to the dc current, v —f~, will diverge
as

(" 2 )1/2

Jdc

' I/2

f(v/2)(d —4+q)
V

(8.11)

This enhancement of the square root of volume noise near
threshold is caused by the diverging correlation length.
The number of semicoherent domains in a volume V is
V/g" not V/go. ' In a volume of (linear) size the corre-
lation length, g', the ratio of the rms .ac velocity to the dc
velocity will be

( Ug(co =U) ) f(v/2)(d —4+g) (8.12)

d —4+g) 0 . (8.13)

Hence, the effective coherence volume determining the ac
noise in volume V is g

') which is generally less than or
equal to the correlation volume g . The harmonics of the
principal noise peak will persist out to frequencies of or-
der 0—the harmonic content thus diverges near thresh-
old.

It is possible that in low dimensions (possibly even any
d &4) some of these scaling relations break down or are
modified if the polarizability X(q, co) is not diffusive. This
and related subtle questions will be left for future investi-
gation.

C. Stationary states

There will generally be a large number of metastable
states for fields below threshold and the response of the
system will depend on the details of the past history.
Near threshojd (and possibly for all F &FT) the zero-
frequency limit of ac response functions will differ from
the static response and, for example, the real part of the
conductivity will be singular at low frequencies and the
real part of the polarizability will have a cusp at co=0.
Both of these effects arise from regions of the system
which are almost unstable, i.e., which will move by a fin-
ite amount if the field is increased infinitesimally.

~ Recall that in mean-field theory, the real part of the
conductivity behaves as co ln

~

co
~

and the real part of the
polarizability as const —

~

co
~

for low frequencies in the
regime below threshold with phase jumps. These singu-
larities arise from singularities in the local response: i.e.,
the almost flat regions in the local effective potentials,
and the form of the singularity is not changed by the
response of the mean field. One might thus expect that
the singularities in the response of a system with short-

The incoherence within a correlation volume thus intro-
duces a factor (g/go)( " '/ into the rms noise ampli-
tude. As long as the instantaneous time derivative of any
phase is positive, which it should be in steady state, the
co=U Fourier components of the local velocity will be
bounded by U and hence the co=U correlation function .

C)(r) remains bounded by v at all distances implying
that
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range interactions due to localized regions which are
about to become unstable will have the same form as in
mean-field theory. There are, however, several subtleties
which arise in a careful consideration of the response in
the regime of interest. We leave as an intriguing open
question whether or not the form of the singularities for
short-range interactions will be the same as in mean-field
theory.

By analogy to mean-field theory, one might expect that
in some sense the number of metastable states decreases as
F approaches Fz.. At low fields, g'0 (the Lee-Rice domain
size in d &4) is the typical smallest volume of a region
which can be moved to create a different metastable state
which only differs from the original one in that region
and its vicinity. As the field is increased, some regions of
size g'o will reach a "local threshold" and jump by a finite
amount only to be stopped by neighboring regions, leaving
the system in a new metastable state. However, as the
threshold field is approached, the neighboring regions will
themselves be close to instabilities and will often also
jump. The characteristic size of a region which must be
moved to create a different metastable state will thus
grow as F approaches F~. At threshold, there will no
longer be other metastable states if F is further increased,
hence one expects that the size of these regions will
diverge at F~.

A natural definition of the correlation length, g(F),
below threshold is thus a typical linear dimension of the
smallest regions which can be moved to create different
metastable states. The singular response of the system
below threshold will show up primarily on scales larger
than g, it is thus possible that g could be defined in terms
of wave-vector dependent response functions. A precise
definition of g is difficult because of the hysteretic
behavior; however, it is possible that for a typical ap-
proach to threshold (e.g., from the F=0 ground state) the
correlation length will diverge as go ~ f ~

' with v univer-
sal and equal to the exponent of the velocity-velocity
correlation' length above threshold.

Although there are many inherent ambiguities, the
behavior below threshold is definitely interesting and
should be pursued further especially since the hysteretic
behavior and singular response may be prototypical of
other more complicated systems which exhibit similar ef-
fects (e.g., spin glasses and random-field magnets). One
should note that most of the "glassy" behavior in the sys-
tem of interest here will disappear at finite temperatures;
this may, however, also be strictly true of three-
dimensional spin glasses.

IX. THERMAL FLUCTUATIONS, DEFECTS,
AND INERTIA

From the beginning of this paper, we have assumed [as-
sumptions (C), (D), and (E) of Sec. I] that thermal fluctua-
tions, defects, and inertia can all be ignored. In this sec-
tion we briefly discuss the effects which occur if they are
not ignored and the conditions under which they can be
neglected.

A. Thermal effects

(eJ (t)e;(t') ) =2'r5;J5(t —t') . (9.2)

We first discuss mean-field results for strong pinning.
Thermal fluctuations will provide a mechanism for

selecting between different metastable states which is ab-
sent at zero temperature. In particular, in zero applied
field, small thermal fluctuations will drive the system out
of the metastable states towards the overall ground state.
By examining the form of the metastable states discussed
in Sec. IV, it is apparent that the energy can always be
lowered by moving an individual phase from one .

minimum of its local potential 8'J to another lower one.
Thus, at long- times, the system will decay towards the
overall ground state (with small fluctuations around it)
with a rate, 1/~,

„

limited by activation over the highest
barriers

&max

—ch/T (9.3)

In the presence of a nonzero applied field below thresh-
old, all states are metastable. However, at finite tempera-
ture the system can always lower its total energy,
A =A o FP by jum—ping individual phases forward.
Thus, in any nonzero field the average phase, P will creep
forward and there will not be a sharp threshold field.

At a given low temperature, the small field behavior of
the average velocity can be obtained by a method analo-
gous to that for the weak-pinning limit at T=0. The
probability distribution PJ(gj, t) for each phase will be
strongly peaked at all times near minima of the local po-
tential Wz(gj, t) In the limi. t of zero velocity, PJ will ap-
proach an adiabatic form (analogous to the adiabatic solu-
tion at T =0)

(9.4)

where Z/(t) is a normalization factor. Once each period,
the position of the lowest minimum of Wz at which PJ. is
peaked will jump as the relative energy of two minima
changes sign. For a time interval of order T/v (ignoring
all coefficients of order 1 such as h's, etc.), the weight of
Pz will be shared between the two minima. By symme-
try, it is straightforward to show that the average over j
of QJ vt weighted by the—j PJ ) is just +F. The primary
effect of the nonadiabaticity is to shift to slightly. later
times the transfer of weight of PJ from one minimum to
the next. This shift will be by a hopping time of order

+E~ /T
e ' (where the barrier heights EJij are of order 1)
which is much less than the transition time T/v for v suf-

We first consider the effects of small thermal fluctua-
tions on the depinning transition. In order to take into ac-
count the effects of nonzero temperature, the equation of
motion for a phase PJ. must be modified to be

5~ +F+ej(t) (9.1)
dt 5J

with ej(t) a Gaussian correlated Langevin force with
correlations
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ficiently small. The effect of this delay is to make
(p U—t ) less than its adiabatic value by an amount of or-

E~ /T
der U(e ' )J. Thus, the self-consistency condition
(pj U—t ) =0 will be satisfied in the limit of small U by

F
),

(9.5)

i.e., linear response for small F.
As might be expected, the creep rate is dominated by

the large barriers, arising from large pinning strengths, hj.
As the field is increased at low temperatures, there will be
a rapid (but smooth) crossover near the T =0 threshold
field from slow creep dominated by thermal hopping over
barriers to rapid motion with the thermal fluctuations
playing a smaller role.

Near the T =0 threshold field the dominant effects of
small thermal fluctuations will be to speed up the rate at
which the phases move out of disappearing minima of
their local potentials. The equation of motion for a phase
near to the singular point P„t, at which the minimum in
which its probability is concentrated disappears is

d(P —P, )
=C& '(P P, )'+U(—t t, )+C(t) . — (9.6)

After rescaling by powers of U as in Eq. (4.32), it is ap-
parent that the effective temperature (given by the correla-
tion of the scaled noise as a function of the scaled time) is
just T/U. This suggests that the properties near thresh-
old, in particular, the velocity as a function of the field,
should exhibit scaling behavior, in particular,

U(F, T)-T~ 'B(f/T' ') (9.7)

with ~= —, the thermal crossover exponent and

f=F FT. The nonu—niversal (at least in mean-field
theory) scaling function, B(b), will be a monotonically in-
creasing function of b which is exponentially small for
b~ —cc, and proportional to b ~ for b~+ cc. At the
T =0 threshold field, the velocity will go as

U(FT T)—T~i'. (9.&)

As can be seen from this discussion, temperature acts in
many ways as a symmetry-breaking field for the depin-
ning transition, destroying the pinned phase.

We next consider the effects of thermal fluctuations on
depinning with short-range interactions. As in mean-field
theory, thermal fluctuations in zero field will drive the
system towards lower-energy states although the process
can be considerably slower due to the slowness of the
motion of long-wavelength distortions. For strong pin-
ning, the thermally activated phase jumps will consist of
motion of only a few phases, however, for weak pinning,
the jumps are likely to occur primarily on the scale go
with -go phases moving together (or in close succession).

At nonzero fields less than FT, the average phase will
gradually creep forwards by jumps of regions of size go.
The barrier heights determining the rate for this creep can
be estimated for weak pinning. The characteristic range
of the energy of a region of size g'o is of order go (with,
by definition of go, roughly equal portions coming from
gradient and pinning energies). Since in dimensions d ~ 4,

go-h ~' ', the typical barrier heights between local
minima of the energy will behave as

(9.9)

which implies that in three dimensions, the effects of tem-
perature will be suppressed for weak pinning by a factor of
b ccgo. This will, however, not be the case in one and
two dimensions.

At any nonzero temperature, we expect that, as in
mean-field theory, the velocity will be a linear function of
F for small fields and the sharp threshold will be des-
troyed. Near threshold a scaling form analogous to Eq.
(9.7) is likely to govern the effects of small thermal fluc-
tuations. However, in the limit of weak pinning in three
dimensions the thermal effects become negligible yielding
a sharp threshold as the pinning strength tends to zero.

B. Defects

Due to large defects in the underlying lattice (e.g., dislo-
cation lines), finite cooling rates, or the rare collective ef-
fects of many weak impurities, there are always likely to
be lines or loops of 2' phase dislocations in the CDW (for
the single wave-vector CDW's of interest here, the dislo-
cations are simply vortex lines). These dislocation lines
will tend to be pinned in space by the disorder. If they are
so strongly pinned that they do not move (except perhaps
for small bounded motion), then their effect is just to in-
troduce a fixed background (non-single-valued) phase con-
figuration about which single-valued phase distortions can
be defined. In this case, the effects of the phase disloca-
tions will be small: they will only slightly modify the en-
ergy of the single-valued phase distortions.

If the dislocations can be moved, on the other hand,
they may cause additional metastability and hysteresis. In
particular, at high fields when the phase is moving rapidly
the pinning of the dislocations will tend to be reduced by
tempora1 averaging and they may move and annihilate. If
this occurs, then when the field is reduced rapidly, the
dislocations may not be able to reform at low CDW veloc-
ities, and as a result there could be many possible steady-
state velocities at a given. field (and correspondingly a
nonunique threshold) each corresponding to a different
number or rnetastable configuration of the dislocations.

If the pinning is very weak (as appears to be the case in
the experiments) there are likely to be very few disloca-
tions and their effect will be small. However, it is possible
(as has been suggested by Ong et al. , that large electric
field gradients near contacts can create dislocations which
might then play an important role in some of the "phase
memory" effects observed as the field is increased and de-
creased through threshold. The possible effects of defects
on hysteretic behavior are clearly interesting and should
be pursued.

C. Inertia

We now turn to the effects of inertia. It is instructive
to first briefly consider the one-particle case discussed in
Sec. II. We add a mass, m, and consider the equation of
motion scaled for convenience to make h = 1,
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-+m = —sinP+F .
dt dt2

(9.10)

With m sufficiently large, it is apparent that stationary
and moving solutions can coexist for F &FT ——h where the
s denotes the static threshold field. On the other hand,
since the behavior near threshold is dominated by the slow
motion through the sticking points $, =2mn+~/2 a
small mass will be formally irrelevant near the critical
point at F=h. (The oscillations about a static solution
will be strongly overdamped as F~FT.) However, the in-
stantaneous velocity dgldt always attains a value of order
1 for P far from any P, . But it can be seen that the loss of
kinetic energy due to the damping will be sufficient so
that for m « 1, the velocity in the region near P, will be
small in any steady-state solution. In this limit the ir-
relevancy of m about P, near threshold and the rapid en-

ergy dissipation away from P, can be used to show that
for m less than a critical value of order 1, stationary and
steady-state moving solutions cannot coexist, as is the case
for m =0.

In mean-field theory, power counting from the equation
of motion Eq. (4.32) near to the important singular point
suggests that in this case also, a small mass will be ir-
relevant near threshold. A detailed argument is necessary
in order to show that for m sufficiently small, the velocity
of a phase just before the singular point when a minimum
of its potential disappears will retain only a negligible
inertial memory of the large velocity it had in falling from
one minima to the next after the previous minimum
disappeared. We speculate that the result will be that for
m less than a critical value, steady-state moving solutions
cannot coexist' with stationary solutions in mean-field
theory.

What about short-range interactions? Similar con-
siderations again suggest that the memory of the rapid lo-
cal velocity during a jump of one region will again be
negligible at the time of its next jump. We hence specu-
late. that quite generally, neither the cntical behavior nor
the lack of coexistence of steady state mouing an-d station
ary solutions will be affected by a sufficientiy sma/1 mass
A careful study of this question and the onset of hysteret-
ic nonunique behavior as the mass is increased should be
interesting.

X. EXPERIMENTS AND CONCLUSIONS

In this section the theoretical assumptions and predic-
tions discussed in this paper are briefly compared with ex-
perimental results on sliding CDW's along with sugges-
tions of future tests of the theory. At the end of this sec-
tion other experimental systems are discussed and general
open questions reviewed.

A. Experiments on sliding CD%"s

As discussed in the introduction, there are quite a few
experimental systems which appear to exhibit sliding
CDW motion with many features in common. Before
comparing the experimental results with the theory we
first consider how valid the assumptions (A)—(E) dis-
cussed in the introduction are likely to be for the experi-

mental systems.
Assumption (A), that the CDW stiffness is short range,

is reasonable as long as the number of uncondensed elec-
trons is sufficiently large so that their conductivity can
screen out charge buildup on the time and length scales
important for the threshold behavior; this is the case for
all of the systems at least in the range of temperatures
studied. (For a detailed discussion in the high velocity
limit, see Ref. 15.)

If the impurities are positioned on the underlying lattice
with only short-ranged correlations in their positions, then
as long as the CDW is incommensurate, the preferred
phases at the impurity sites will not be significantly corre-
lated [assumption (B)]. However, rather surprisingly, the
systems in which the CDW wave vector becomes locked
(in a range of temperature) to a commensurate value (e.g.,
TaS3) exhibit qualitatively very similar behavior to the in-
commensurate systems. Naively, a/l commensurate sys-
tems are expected to exhibit a much steeper break in the
I-V curve at threshold with the g= —, behavior charac-
teristic of a zero-dimensional system. A possible resolu-
tion of this puzzle is to argue that the commensurate pin-
ning potentials are very weak relative to the impurity pin-
ning potential (consistent with the apparent lack of depen-
dence of the threshold field on whether or not the CDW is
commensurate) and that the unit cells of the CDW are so
large that the number of possible impurity sites per cell is
very large. In this case, the number of possible values of
the preferred phases, Pz, while not infinite as in the in-
commensurate case, could be sufficiently large so that
there is a large region of effectively randomly pinned
behavior with only a narrow (and perhaps unobservable
due to thermal or other rounding of the threshold) com-
mensurate critical region very near to ET. This explana-
tion is not very satisfactory and this problem is potentially
rather serious; however, we will not discuss it further
here.

In all of the systems studied, the threshold fields are ex-
tremely small on scales of microscopic fields. ' This, and
the direct measurement of long-range coherence of the
CDW in some of the materials [greater than one micron
along the incommensurate direction in NbSe3 (Ref. 3)]
strongly suggest that all the CDW's so far investigated are
in the weak-pinning limit with go very large. From the
discussion in Sec. IX, this implies that there are probably
few dislocations in the bulk of the CDW (except perhaps
some iinmobile strongly-pinned ones which will not affect
the behavior much) justifying assumption (C). (We will
comment later on the possible effects of dislocations near
to the contacts. ) Similarly, since the CDWs all exhibit
three-dimensional coherence, the existence of a long Lee-
Rice length go implies that the effects of thermal depin-
ning are negligible [assumption (D)].

Lastly, direct measurement of the frequency-dependent
linear response at zero applied dc field shows strongly
overdamped behavior justifying the neglect of inertia
[assumption (E)]. Even if the speculation in Sec. IX that
there is a critical mass for onset of hysteresis is incorrect,
the inertial effects are likely to be sufficiently small in the
experiments to generate at worst a small amount of hys-
teresis in the I- V curve.



1420 DANIEL S. FISHER

Thus, we have at least tentatively justified all of the im-
portant assumptions, and we now turn to comparison with
the experiments. Observation (1) (Ref. 3) (the numbers in
parentheses refer to the experimental features discussed in
the introduction), yields no useful tests of theory unless
(as can hopefully be done via Mossbauer x rays or neu-
trons) the predicted moving CDW Bragg peaks can be
directly observed which would provide striking confirma-
tion of (at least) the general sliding CDW picture.

The ohmic conductivity below threshold (2) is believed
tg be due to the uricondensed electrons, the apparent ab-
sence of significant precursor nonlinearities near thresh-
old ' (3) is consistent with the predicted smallness of
thermal depinnirig effects.

As noted in the introduction, a dramatic failure of the
simple single-particle picture" is the dependence (4) of the
excess current, jcD~ on E —ET near threshold. ' The
mean-field theory predicts that jcDw —(E ET)~ —with

This mean-field value for the exponent g is unlike-

ly to be correct in three dimensions. However, it is quite
likely that g tends to increase from its zero-dimensional
value of —,

' towards its mean-field value as the dimension
is raised; by three dimensions g might be relatively near to

Experimentally, while power-law fits have not been
carried out, a value of g somewhere between 1 and 2 ap-
pears likely —certainly the upwards concavity of the I- V
curve is encouragingly (if perhaps fortuitously) similar to
the mean-field result. In addition, it should be recalled
that far above threshold the I- V curve is quantitatively fit
by the perturbation results discussed in Sec. III and Refs.
14 and 15.

The feature of the experiments which seems to have at-
tracted the most attention (although this author has al-
ways considered it to be a red herring) is the apparently
coherent ac noise in response to a dc applied field. As
mentioned previously, the linear dependence of the princi-
pal noise frequency, v~, on the nonlinear current jcD~
[(a) in (5)] arises naturally in most theories, including the
present one. However, the predictions in Sec. VIII of the
dependence of the rms noise intensity on the volume of
the system and the distance from threshold provide much
more stringest tests of the theory.

Unfortunately, the noise measurements have been rath-
er irreproducible with marked differences between experi-
ments even among those on the same material. There
does, however, seem to be a general tendency for small
samples to exhibit more noise (relative to the dc current)
than larger samples (which often exhibit none ) and
for the intensity of, for example, the principal harmonic
to grow near threshold [(b) of (5)]. ' In fact, some sam-
ples seem to have an almost completely pulsed response
extremely near to threshold.

Very recent experiments on very small samples of
NbSe3 lend some support to the suggestion (made initially
in Ref. 26) that the noise (at least in some of the experi-
ments) is a (volume) '~ finite-size effect with a diverging
amplitude near threshold. Mozurkewich and Gruner
observe noise with intensity consistent with a
(volume) '~ behavior over a range of sample lengths and
cross sectional areas, although the scatter in the data is
rather large. In addition, their data exhibit a dramatic in-

crease in the intensity of the first harmonic relative to the
dc nonlinear current as threshold is approached. Both
of these observations are consistent with the prediction in
Sec. VIII that (in the absence of large phase slip regions)
the rms noise should scale as (volume) '~ with a coeffi-
cient coming from the diverging correlation length; i.e., a
relative intensity of the principal harmonic growing as

—(v/2)(4 —g) . I /2
koE—ETJ (CO =27TV~ )

~ dc
jcDw (volume)

(10.1)

Furthermore, far above threshold the absolute noise inten-
sity appears to go to a constant, i.e., its relative Inagni-
tude decreases inversely with the CDW dc velocity U.

This is in agreement with the theoretically expected
behavior which can easily be deduced from the perturba-
tive correlation function Eq. (3.4). A detailed study of the
behavior in small samples near to threshold would be very
interesting.

After this apparent verification of same of the theareti-
cal predictions concerning the noise intensity, it is impor-
tant to make several observations. Firstly, there has been
no viable mechanism proposed for establishing ac phase
coherence of the CDW current density over truly macro-
scopic regions (except for the behavior close to threshold
discussed here where g can be very large). Thus, any
mechanism for the noise should be expected to yield an in-
tensity decreasing at least as (volume) '~ (in striking con-
trast to a one-particle picture). Secondly, it is quite possi-
ble that several different mechanisms for noise generation
appear under different experimental conditions. An in-
teresting suggestion has been made by Ong et al. that
large electric field inhomogeneities near contacts could
muse tearing of the CDW with an array of moving dislo-
cation lines present near threshold. Although there are
considerable difficulties with their picture involving
coherence of and barriers to dislocation motion, it certain-
ly merits further study, in particular, as there are experi-
mental indications that the sources of the noise are local-
ized at least in some samples. ' ' Lastly, we note that
(volume) ' noise cannot yield a completely pulsed
response. Even sufficiently close to threshold so that g
becomes of order of the size of the system, L, and the
CDW current behaves as the single-phase result
(F FT)', the nois—e amplitude of the principal harmonic
will (by scaling) be reduced relative to the dc current by
(L yg )

—(d —4+ g) /2

The existence of many metastable states, some of them
differing in large regions, can naturally give rise to many
hysteretic and phase memory effects. While there are
many experiments showing various forms of hysteretic
behavior, detailed comparison with theoretical predic-
tions are not particularly instructive at this stage, at least
in part because the mean-field model may exhibit only
some of the phenomena. This is because the extremely
slow long-wavelength distortions which might be expected
to play a role in finite dimensions do not have a natural
counterpart in an infinite-range mean-field theory. Pro-
gress in analyzing fluctuations about mean-field theory in
high dimensions should be helpful. In addition, it is pos-
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sible that dislocations in the CDW may play an important
part in hysteretic behavior; this also bears investigating.

At this stage, one definite prediction of mean-field
theory, which we have speculated is true also with short-
range interactions, is the lack of hysteresis in the dc I-V
curve. This is consistent with almost all the experiments
and suggests that dislocations do not play too large a role.

Lastly, we recall that the interference effects between
ac and dc currents (7), in particular, the quadratic
response of the dc current to an applied ac voltage, have
been quantitatively fitted at high velocities to perturbative
results however, there has not been a detailed analysis
of the behavior near threshold. It is important to note
that the existence of ac-dc interference effects only de-
pends on the local ac motion; in contrast to the noise,
large scale ac coherence is not necessary. Detailed calcu-
lations can be made in the mean-field approximation.

After this paper was completed, two works were made
available which reported measurements of the ac polariza-
bility, X(to), below threshold. The data of Cava et al. 2

on Ko 3MO3 appear to exhibit a downward cusp in the
real part of X at zero frequency, perhaps slightly sharper
than the

~

co
~

behavior found in mean-field theory, which
might have been expected to be valid with short-range in-
teractions (see discussion in Sec. VIII). Since the data are
not very extensive, it is not clear whether they are incon-
sistent with an

~
co

~
cusp, but we note that the presence of

a divergent nonlinear response at low frequencies could
make the cusp appear sharper. These data do, however,
provide at least qualitative support for the picture of local
regions becoming unstable as the field is increased below
threshold. In a recent theoretical work, Littlewood and
Varma have predicted from a mode-coupling-like
analysis a sharper

~

to
~

'~ cusp in the real part of X below
threshold.

The other experimental paper, by Wu et al. , reports
conductivity measurements on TaS3 which yield a power-
law diUergent polarizability at low frequencies in striking
contrast to the work of Cava et al. However, it is possi-
ble that the relevant frequency scales for the two systems
are sufficiently different that the experiments are in very
different regimes. Clearly, more theoretical and experi-
mental work on this question should be done.

So far we have seen that many of the features of the ex-
periments can be semiquantitatively explained in terms of
the current theoretical analysis. However, there are more
stringent tests of the theory which should be possible;
some of these are discussed in the conclusions.

B. Other experimental systems

While the CDW systems provide a fruitful testing
ground for general questions of the behavior of dynamic
depinning transitions (and, of course, are interesting in
their own right), it is worth considering other more easily
controllable systems which might have advantages. The
most likely candidate is the workhorse for investigations
of collective effects; a superconductor, in particular, a
type-II superconductor in a magnetic field between the
lower and upper critical fields. In the absence of disorder,
the flux lines will form a hexagonal Abrikosov lattice

which can be moved by application of a current perpen-
dicular to the magnetic field. However, in the presence of
inhomogeneities, the flux lattice will deform and will not
move unless the applied current density, j, exceeds a criti-
cal current density j,. For obvious technological reasons,
inost of the experimental and theoretical work has been
concerned with the strong-pinning limit where j, is large.
However, in the opposite weak-pinning limit collective ef-
fects are important (Larkin and Qvchinikov, in this con-
text, produced the first version of the weak-pinning scal-
ing argument for the threshold force). This limit is
perhaps best achieved in amorphous materials such as
a-In, thin films of which have recently proved very useful
in testing Kosterlitz-Thouless theories. The choices of
materials, the understanding of the underlying forces, and
the controllability of a large number of parameters (pin-
ning strength, flux line separation, temperature, etc.)

might make these materials ideal for careful studies of
collective depinning near to the critical current.

There are, however, several (hopefully minor) draw-
backs. Interpretation of experiments on truly three-
dimensional systems will be hindered by inhomogeneities
in the current (which provides the force on the flux lines)
which will tend to flow primarily near the edges. Experi-
ments on two-dimensional films, for which H, i is zero,
may thus be favorable. However, in contrast to three di-
mensions, the neglect of temperature in the weak-pinning
limit in two dimensions is not justified: the effects of
thermal depinning will be roughly independent of the pin-
ning strength for weak pinning. This drawback can be
partially avoided either indirectly by making the films
sufficiently thick so that thermal effects are reduced or
directly by working at very low temperatures.

Note that in flux lattice films, the critical behavior will
be different from three-dimensional CDW's for two
reasons: The first, and presumably the dominant, is the
difference in dimensionality and the second is the fact
that the flux lattice order parameter is more complicated
than a single wave-vector CDW, i.e., the flux lines can
move transverse to their average direction of motion. An
additional complication is the presence of only weakly
screened long-range forces in flux lattice films which
suppress longitudinal distortions, although these should
not have a drastic effect since the shear modulus is fi-
nite. 47

The last drawback we will mention is the potential dif-
ficulty relative to the CDW's of dislocation annihilation
due to the suppression of climb by conservation of flux
lines. Problems caused by this can most likely be avoided
by appropriate annealing.

After some amount of consideration of the best materi-
als and parameter ranges, studies of weakly-pinned flux
lattice motion in films should prove to be extremely in-
teresting especially since thermal and defect effects can
probably be investigated as well as more ideal systems of
almost perfect lattices at very low temperatures.

G. Conclusions and questions

In this paper we have shown that much of the data on
sliding charge density waves can be understood semiquan-



1422 DANIEL S. FISHER

titatively in terms of a model in which an infinite number
of internal degrees of freedom collectively cause a sharp
threshold with entirely new nontrivial critical behavior.
In particular, the I-V curve, the ac noise, ac-dc interfer-
ence effects and some of the hysteretic effects appear to be
consistent with the theory. However, the scaling behavior
near threshold, in particular, the existence of a second
critical frequency scale which goes to zero at threshold
more slowly than the noise frequency, has not yet been ob-
served. Detailed studies of the low-frequency response
near to threshold on both sides should provide tests of
some of the theoretical calculations and speculations
presented here.

As discussed above, flux lattices in type-II supercon-
ductors may also provide a promising testing ground. In
addition, some of the ideas here may be useful for under-
standing other phenomena, such as dynamic friction,
which exhibit similar features.

Finally, there are many open theoretical questions of a
critical phenomena nature alluded to in the text, for ex-
ample, the upper critical dimension for mean-field theory
(if any), and the apparent nonuniversality of scaling func-
tions. Formulating a renormalization-group analysis of
the threshold behavior should be a challenging task which
may bear fruit in other dynamic problems.

Note added in proof. A recent paper [L. Sneddon, Phys.
Rev. B 30, 2974 (1984)] on an incommensurate model
with infinite-range interactions which is equivalent to the
mean-field model discussed here with fixed pinning
strengths, rederives the critical behavior of the velocity
and presents results on the ac conductivity below thresh-
old similar to those of Sec. VI for case l.
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APPENDIX A:
MEAN-FIELD THEORY ASYMPTOTICS

This appendix contains a detailed derivation of the
dominant and subdominant critical behavior for strong-
pinning mean-field theory near to threshold and, at the
end, a brief derivation of the weak-pinning low-velocity
conductivity.

1. Strong pinning

the adiabatic approximation Pz (r) to the equation of
motion for a single phase with 13=0,

= —h sing Q—+I'+ut =R—o(P)+ut .

To obtain the leading and subdominant behavior near
threshold, we will require the average (8), to order vlnu
for v small. The properties of Ro which determine the
critical behavior are (a) Ro($) —P is a smooth 2m periodic
function of P; (b) the adiabatic approximation P~(t)
which is the smallest P solution to Ro(P) = ut is—smooth
except for one discontinuity each period occurring at a
time t, where Pz jumps from P, =Pq(t, ) to a larger
value P, =Pz(t,+); and (c) [dRo(P)Id/]~ &

——0 but

[d Ro(P)Id/ ]~ ~ =2M&0 and fdRO($)Id/]~ ~ &0.
It is convenient to immediately change variables to

x =p —p, and measure time from r, so that we have

dx
dt

=R(x)+ut

with for x small,

R(x)=Mx +M3x +. . .

and h=P„—P, so that for (x —6) small,

R(x)=+r(~ —x)~O((~ —x)') .

(A 1)

(A2)

(A3)

v =R(X)+TdX
(A4)

and we have

X( &) =X/(T)+VX'(T)+u X (T),
where Xz(T) is the adiabatic solution, i.e., the minimum
X solution to

R(X)= —T .
By expanding in powers of v we obtain

2deX)(T)=-
dT

(A5)

(A6)

(A7)

As will be shown below, the dominant and leading sub-
dominant critical behavior for (8(t) ), will depend only on
I, M, M3, and h.

In the small u limit of interest, there are three possible
approximations to Eq. (A1) each of which will be valid in
a certain regime. These are (i) the adiabatic approxima-
tion in which dx/dt is neglected. This will be valid for
all times far from 0. (ii) The leading nonlinear behavior
near x =t=0 where R(x) is approximated by Mx . (iii)
The time-independent force approximation in which the
ut [or u(t tp) for —some to] is neglected, which is valid
provided the phase is moving fast compared to v.

The full asymptotic solution for small u will be ob-
tained by matching asymptotic expansions in three re-
gimes.

(i) Adiabatic regime For the ad. iabatic approximation
the natural scaled variables are X=x and T=vt in terms
of which

We are interested in the difference 8(t) (and particularly
its integral) between the actual periodic solution P(t) and

deX2(T)=—
2 dT

d 2+

dT2
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This expansion in powers of U will be unifortnly valid ex-
cept when dX&/dT becomes large which will happen as
T~O for which

1(Z) =Z 1/ e
—(2/3)z3/2 5 1 +0(z )

(-, Z )

1/2
T 1 M3T

2 ~2
Near to T=O we thus have

~, -(—T)1/2,

Xi -(—T)

(AS)

(A9)

(A17)

Using this form, the integral in Eq. (A16) can be evaluat-
ed asymptotically for large negative ~ yielding

Xi(r)=
2

(A18)

X2-( —T)-'/2,
etc., so that the expansion Eq. (A5) is valid only so long as
( —T)»1)' '.

(ii) Singular regime. For T near zero, we expect Eq.
(A5) to be a very bad expansion. It will only become valid
again once dXld T becomes « 1/v, i.e., dx /dt « 1.
Near to the singular point at x=t=O we can rescale the
x, t by «( —t) «U (A19)

for r—+ —ap which, with the rescalings taken into account
exactly agrees with the second term in Eq. (A8). Since for
r~ —ao, Xp-v' r, an—d Xi-r, the expansion in regime
(ii) will be uniformly valid only as long as ( —r) «U
Comparing this with the condition for validity for expan-
sion (i), we conclude that both expansions will be valid
provided that

and
U

—1/3~ —1/3

to yield

dX =X +r+(M3M )O' X +O(U X ) . (All)

and hence the asymptotic expansions Eqs. (A5) and (A12)
can be matched at any t~(( '"' satisfying Eq. (A19), say,

t(1),(ii) f d —1/2
7Pl

We now consider the behavior of the solution in region
(ii) as r increases. The zeroth-order solution Xp(r) will
diverge at a scaled time 7d such that —'Td is the least neg-
ative zero of Ai(z), rd =2.338. Near to this point,

We can then expand the solution X(r) as

X(r) =Xp(r)+U Xi(r)+U X2(r)+ ~ ~ ~

1
Xp(r) = (A20)

with Xp(r) satisfying the nonlinear Riccati equation

dip 2—Xp+ +
dv.

which has the general solution

Ai'( —r) +b 1
Bi'( —r)

Xp(r) =
Ai( r) +b—,Bi( r)—

(A13)

(A14)

From Eq. (A16) it can be seen that the leading correction
will diverge as

M3M 1n ( Qe —'r )
Xi(r) =

(re r)'— (A21)

for r +ed, since —the integral taken up to r &rd diverges
logarithmically. Thus the region (ii) expansion in Eq.
(A12) will be uniformly valid only if

Ai'( r)—
Xp(r) =

Ai( —r) (A15)

where Ai (Bi) and Ai' (Bi') are Airy functions and their
derivatives and bi is a constant of integration. Since for
large negative r, Bi(—r) »Ai( r), Xp(r~ —o—o) will be
dominated by the Bi terms unless b1 ——0. For b1 nonzero
we have Xp(r) —+&—r, corresponding to the solution
which comes from the unstable maximum of the potential
at large negative times. We thus must clearly choose
b1 ——0 whence

x(t) =xp(t)+ux, (t)+. . . ,

where xp(t) satisfies

(A23)

'(r„—r)»U'/3 (lnU (
.

However, by this time, dX/dr will be of order u

hence dxldt will be of order 1 (both up to logarithmic
corrections) and approxin1ation (iii) should be valid.

(iii) Fast regime. In regime (iii), the scaled variables are
just the original variables x and t and we may write

for r~ —oo as desired. The first correction Xi to Xp can
be readily shown to be

dxp

dt
=&(xp) (A24)

7

Xi(7)=M3M f d 'Xpr( ')ex' f, dr"2Xp(r")

M3M ~ [A ( r'))
d7

[Ai( —r)]' ~ Ai( —r')

with an as yet undetermined constant of integration ~1.
We can fix r, by requiring that at large negative r, the
solution match the solution from Eq. (A5). The correct
choice is ~1———Oo so that g1 is independent of v.1. The
large positive z form of the Airy function is

which upon integrating yields up to a constant of integra-
t1011 X =Xp(t ),

—-= f.',". (A25)

with the matching time t to be chosen for convenience
and x determined by matching to the solution in region
(ii) x(;;)(t ).

To match to region (ii), we wquld like to choose t so
that t is small compared to 1. In that case, for xp also
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small we can expand the integral in Eq. (A25) in powers
of 1/x' and determine xp(t) T. he leading behavior in the
limit of xo small is

(A25) we can see that for large times,

xp(t)=h —O(e '
) . (A34)

(8),= f dk[x(t) x—„(t)]. (A27)

The contribution to this integral from t )G involves

( v/2n. ) f [ b. +x(t)—]dt (A28)

where t, is the time at which x(t) becomes of order 1 and
is hence very close to td (uM——) ' rd We t. hus need to
know t, to lnu accuracy in addition to the behavior of x
as it becomes of order 1 in order to extract the u lnv con-
tribution to (8) discussed in the text. For this purpose it
is thus not sufficient to just match the leading behavior of
xp fi'om Eq. (A26) to the leading behavior of Xp in region
(ii); we need to calculate x(tm) more accurately. We first
examine the region (iii) side. The leading correction to
x (t) in this regime can be straightforwardly shown to be

1
x()(t)=

M[1/Mxm+(M3/M )1nxm+O(xm )+tm t]—
(A26)

which can be made to agree with the r~rq behavior of x
in region (ii) by choosing xm appropriately. However, we
Inust now be careful. The quantity we are eventually in-
terested in is

The first correction x I is given by Eq. (A29) with ti -t„
xi(t)= —— +O(e ' ),1 —I(t—t, )

(A35)

yielding for t t, »—1,

x(t)=b, + Ut

r z +O(e ' )+O(u ) . (A36)

The first two terms are seen to be exactly the small t ex-
pansion of Xz(vt) in this region, while the third is the
first term of vXI(ut) [from Eq. (A6)]. Expansion (iii) will
be valid provided (t t, ) «v— while expansion (i) in this
region will be valid as long as (t t, ) »—u (for any—~(&—~~ ~a&0) so that exponential terms of the form e
which do not show up in expansion (i) are small compared
to all terms which do. This matching of expansion (iii) to
(i) is thus trivial; for convenience we pick the matching
point to be 2t, =O(u ' ).

The contribution of the uxi terms in x to (8), from
the time interval from t to 2t, will be of order u"~ or
smaller (since uxI'"-u ~ ) and can hence be neglected.
The contribution from the region from 2t, to 2m. /u (i.e., 0)
is of order u except for a u lnu term from t & 0 which can
straightforwardly [from either XI(T) or Xp(r)] be seen to
be

R [x()(t)]
x, (t) = f dt' t'

R x() t' (A29) .

Here, t
&

is a constant of integration which would need it-
self to be determined by matching in order to perform a
full asymptotic expansion, but for our purposes we can
just consider tI -t, and match expansions to the desired
order, for which x, (t) turns out to be unimportant. For
t —t [or generally xp(t) « 1],

f 8(t)dt = ln(u )~3/u ')+O(v)
2t,

+O(u) . (A37)

The contribution to (8), from the rest of region (ii) is
also straightforwardly obtained:

Otdt

x, (t)=O(t, (t t, ))+O((t t—, )') . — (A30)

From the general form of the expansion (iii) we can con-
clude that it is valid if t, —t«u ' . Since It, —t~

~

will turn out to be «U '/, there is an overlapping re-
gime of validity of (ii) and (iii) when

U

2m

~m

atm+ fp dr[—Xp(r)+u' ~X)(r)]

1+I — lil( rd —r ) +O ( 1 )

. u
' « t~ —t&& (lnu

~

(A31)

t =td —V
—1/6 (A32)

and the corresponding rm. At time tm, vx)(t)-v'~ while
u ~ XI((vM)'~ tm)-u'~ lnv; the former can thus be ig-
nored in determining x(t ) while the latter cannot. From
region (ii) we obtain

M3 u' 'lnu+O(u' '),
6M

(A33)

We may thus choose any tm satisfying this condition; it is
convenient to pick

1 I—lnv+ O(1)M 6
(A38)

"o(' ) —++xp
dxo

"m R(x() )

277

where the XI(r) term yields only a negligible O(v ~ lnv).
We are thus left with only the integral from tm to 2t,

This can be conveniently rewritten as an integral over xo,
2t 2t

f, 8(t)dt= f, ( b, +xp)dh—
xo(2t ) ( Q+xp)

Xo
"m R (xp)

where we have ignored ux i(tm ) in the first equality.
Before computing (8), to order ulnv, we need to

match expansion (iii) to expansion (i) as x —&b,. From Eq.

~o(z' ) —g+
xo((, ) R(x )

(A39)
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AM3
lax

M

"O'"' —5+xf dx =—
"m R (x) Mx

1nx~
+O(xmlnxm )+O(1)

AM3= —AU — lnv
3M

Since both xp(te ) and xp(2t& ) are of order 1 and
R(xp) I(5—xp) for xp~b„ the second integral is of
order 1 and hence it only contributes O(u) to (8),. The
dominant behavior of the first integral in Eq. (A39) will
come from the lower limit. By expanding R(x) for small
x and integrating we obtain

3[2(h —1) (A50)

From this limit, the behavior near the multicritical point
can be derived straightforwardly.

dt
=Rp(P)+ vt, (A51)

however, the function Rp(P)= —h sing —P now has a
unique inverse. The desired (8) can be immediately ex-
panded in powers of u analogously to regime (i) above.
We have

2. %eak pinning

For weak pinnning, the asymptotic evaluation of (8),
is much more straightforward. For h ~ j we again have

lnu+O(1), (A40)
4=4~+8 (A52)

(8) gM —1/3 v2/3
2&

j AM3+»nu +, +O(u)
3M (A41)

whence by averaging over the contributing h's (those & 1)
we can obtain u(F) via FT F= (8), t, . W—e conclude that

where the upper limit contributes O(1) and the last line is
obtained by substituting for xm from Eq. (A33). By com-
bining the results from Eqs. (A37), (A38), and (A40) and
using (A32) and (A10), we obtain

where

Rp(P~ )+ut =0
and to leading order in U,

dP~ jdt
t9=

Ro(4~)

and hence
t

(8),= I . ,8(t)dt

2m dP
2m' P Rp(P) (1 h 2)1/2

(A53)

(A54)

(A55)

v =Bf / Cf lnf +O(f—2),

where

B=FT dh p(h)b. „Mp,
'

2m'

—3/2

(A42)

(A43)

where the change of integration variable from t to P is
possible in this case since the function Pz (t) has no singu-
lar parts. From the last equality Eqs. (4.15) and (4.16) fol-
low by averaging Eq. (A55) over h and using Eq. (4.21)
with FT ——0.

and

C=-, B
1 2

(A44)

APPENDIX B: SCALING FUNCTION
FOR THE ac POLARIZABILITY

NEAR THRESHOLD

In terms of h,

M3g ———
6

independent of h,

Mt, = —,
'

(h —1)'/

and AI, is the smallest positive solution to

ht, +h sin[/, (h)+b. ]=h sing, (h)

with

(A45)

(A46)

(A47) dX
e

—iQ~ (Bl)

In this appendix, we derive the scaling function for the
low-frequency ac polarizability near threshold. By an
asymptotic analysis for small to and u which extends the
results of Appendix A, it can be shown that, as claimed in
the text, the most singular frequency-dependent parts of
the response can be found from the change in the scaled
divergence time, 5&d, of the solution to .

—~ P, (h) =cosS
j

Q 7T' ~

h
(A48)

where we consider initially a single h so that, e.g.,
Q=QI, ——C~u ' co. For ao ——0 the unperturbed solution
1s

For h&j,

y, (h) =~—[2(h —1)]'"
and

(A49)

Ai'( —~)
Ai( r)— (B2)

which diverges at scaled time v~ —2.338. The linearized
deviation 5X =X—Pp from this solution obeys
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—EQ1

O'7
(83)

which can be solved, with the boundary condition (at this
order in v) 5X(r= —oo)=0, yielding

5X(s.) = f dr'e ' [Ai( —s.')] . (84)
[Ai( —r)]

Since Xp(r) diverges near rd as (rd —r) ', 5X will diverge
as

aoe
—i Qr& —i A~d

5X(r) = f dr'e [Ai( —s.')]3:—
~ Y(Q),

(r rd)—' [Ai'( —r„)]' (r rd )— (85)

where we have defined the scaled integral Y(Q). For
small ap the solution to Eq. (Bl) will thus diverge at a
scaled time ~d —&d, where

5s.d =ape "Y(Q)+O(o p) (86)

corresponding, for a given h, to a change in time of

fp 1, Yp————1,
1 2fl = Trd& Yl Trd r

1 2 4f2= st»= ls~~
3 1 3 1 8 3f3 T 7'~ Y3 t4+ &osrd ~

(814)

5td ——Cp u 5~ (87)

A reduction of the divergence time by Std implies that for
an extra time 5td the perturbed phase will be near p„(h)
rather than P, (h ) hence the singular contribution to
(sl(t, h)e™)r=gp(h) [from Eq. (5.10)] will be

[sip(h)]„„g„l„=bp, e 5td(h )
2m

(88)

which after substituting for the scaled ap from Eq. (5.24)
and 5td from Eqs. (86) and (87) yields with

&l, =p„(h)—p, {Il) the result in Eq. (5.26) in the text:

[rip(h)]„„g„l„—— Ap Y(Cl, co/U'~3) .
2m Cg

(89)

Y(Q)= g Y„(iQ)".
n=0

After defining

f„= f ( —r)"[Ai( —~')] ds'
[Ai'( rd )]-

one can derive the recursive formula

(811)

f (2n+1) =( rd )"+ (n——2)(n —1)n,n

whence

(813)

Since the local response Ir:l, (co) has a nonsingular part
which makes Kl, (co=0)=1, the leading behavior for the
polarizability at small u and u is given by

1 —f p(h)(bp, /2n. )[Y(0) Y(Q),—)]dh
Xsingnlnr(

p(h )(hl, /2sr)[ Y'(0) —Y(Ql, )]dh
(810)

from which:- can be obtained by changing variables via
gf 3/2

The limiting behavior of the singular part of X can be
straightforwardly found from the Q dependence of Y(Q).
We can expand Y(Q) about Q =0 as

eic.
The small Q form of Y yields the differential ac con-

ductivity as low frequencies o(co)= —icoX(co). This is
given by

o(co) =— 1 +O(Pl')
((&P/2n. )YlCl, u '~3)„ (815)

which from Eqs. (4.43) and (4.35) is equal to the dc dif-
ferential conductivity du/dI as expected. The high
frequency (relative to the scale v'~3) limit of the scaling
form of X""""is obtained simply by noting that for
Q»1, the integral Eq. (85) determining Y(Q) is dom
inated by the upper cutoff yleldlng

, +O(Q ') . -2

( —iQ)
(816)

Thus, the real pa~ of g will be dominated by the constant
nonsingular part at high Q and hence for u '~ ~&co &~ u,

1 —(a„/2~)
„

U ((&l, /2sr)(2/Cl, ) )p,+
( —l pl) (b, p, /2sr)„2

(817)

Note that for 1 »co »Ql, this implies that colmX(co) &0.
For an equilibrium thermodynamic system, this would
violate the usual stability criterion as it would imply that
the system does work on the perturbing source. However,
for a moving state which is far from equilibrium and al-
ready dissipating energy, there is no reason why the per-
turbed system should dissipate more energy than the un-
perturbed system and hence colmX(ps) &0 is not incon-
sistent with stability. This does suggest, however, that
"maximum entropy production" principles cannot be
valid for this system since presumably they would predict
that the system would try to maximize the energy dissipa-
tion rate.
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