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Energy spectrum for a fracta1 lattice in a magnetic field
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To simulate a kind of magnetic field in a fractal environment we study the tight-binding
Schrodinger equation on a Sierpinski gasket. The magnetic field is represented by the introduction
of a phase onto each hopping matrix element. The energy levels can then be determined by either
direct diagonalization or recursive methods. The introduction of a phase breaks all the degeneracies
which exist in and dominate the zero-field solution. The spectrum in the field may be viewed as
considerably broader than the spectrum with no field. A novel feature of the recursion relations is
that it leads to a power-law behavior of the escape rate. Green's-function arguments suggest that a
majority of the eigenstates are truly extended despite the finite order of ramification of the fractal
lattice.

I. INTRODUCTION

Hamiltonians defined on fractal surfaces have been the
subject of many papers lately. ' In particular, Domany
et al. ' have given a detailed analysis of the spectrum of
eigehstates of the Schrodinger equation defined on a two-
dimensional (2D) Sierpinski gasket. This calculation is
based upon exact decimination techniques which provide
a powerful semianalytical method of finding detailed
properties of the Hamiltonian.

Problems of fractal lattices are reminiscent of (but very
much simpler than) those which are conventionally stud-
ied for electron localization. For this situation the locali-
zation. can be rather fully understood. One learns, for ex-
ample, that, although there are a few extended states,
most states are very highly localized, on finitely ramified
fractals. Furthermore, almost all the states have a very
high degree of degeneracy. Of course, the observed locali-
zation phenomena on these systems are fundamentally
different from Anderson localization. For one thing,
these lattices give a finite order of ramification. For
another, if one chooses to describe the self-similar struc-
ture by configurational disorder (e.g., by cutting some
bonds) then the resulting "disorder" is highly correlated.
Nonetheless, these systems form interesting test cases
which are worth studying.

In this paper we study magnetic field effects on elec-
tronic motion through a 2D Sierpinski gasket (Fig. 1).
Following Alexander, we describe the motion by giving
an electronic wave function at each mode of the lattice,

The tight-binding Hamiltonian fixes the hopping ma-
trix element between neighboring sites to have a magni-
tude

~ f ~

which is the same for all nearest-neighbor sites
and zero otherwise. A magnetic field is defined by giving
the value of the phase on each bond so that the sum of
phases along a closed path is the magnetic flux enclosed

by the path.
The very simplest model is chosen by taking all bonds

to have exactly the same phase. We make this choice by
allowing all bonds in the direction of the arrows in Fig. 1

to have a matrix element f= foe'~, and all bonds opposite
to the arrows to have f=foe '~, with fo real and posi-
tive. Although this choice gives a natural bond pattern,
the magnetic flux pattern is far less natural. All the ele-
mentary upward-pointing triangles, like those labeled 3 in
the figure, have the very same flux, N+ ——3P. However,
using the same convention for the sign of the flux, the
smallest downward-pointing triangles labeled 8 have flux
@~———3tb, while larger downward-pointing triangles have
larger negative flux, for example, Nc ———6P. Hence, the
magnetic field pattern studied is quite nontrivial.

I C II
FIG. 1. Fragment of the Sierpinski gasket. The phase of the

hopping matrix is equal to P in the direction of the arrow and
—P otherwise.
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Alexander has studied more general flux patterns. We
choose the pattern described above because it gives the
simplest recursion equations and a maximum spatia1
homogeneity in f. Since the most interesting real magnet-
ic field problem (the one in two dimensions) can be
described as having a similarly spatially uniform f, we
hope that our choice might lead to particularly interesting
and perhaps extendable results.

This paper is organized as follows. In Sec. II we derive
the recursion relations for the problem using a functional
integral method. In Sec. III we study this map in a
phenomenological manner. It turns out that the concept
of "escape" ' can be successfully employed in order to
reveal the nature of the spectrum of eigenstates. A novel
aspect is a power-law behavior of the escape, something
which has not been observed before. This behavior is
closely related to the occurrence of marginal behavior in
the recursion relations in the neighborhood of a fixed line.
On that fixed line the recursion relations reduce to a logis-
tic map" ' with May-Feigenbaum parameter A, =, 4.
From these notions the qualitative nature of the spectrum
and of the eigenstates can be derived. The latter will be
subject of Sec. IV (numerical studies).

In Sec. V we present arguments, using Green's func-
tions, that a majority of the eigenstates are, indeed, truly
extended. This is a quantum-mechanical result which is
contrary to the "intuition" gained by studying classical
problems on the gasket. Classically, the finite order of
ramification of the gasket enables one to construct
domains of arbitrary size having a constant domain-wall
energy. As a result, for example, an Ising model on a gas-
ket' has a T, of zero. In contrast, in our quantum prob-
-lem, resonance effects permit a few links to produce a
large coherence length.

II. FORMULATION

A. Decimation

Consider the partition function

Z(e) = JD[1(t]D[g]exp[/(el —H)g] =det(el —H),

tion function. The partition function itself is simply a
product of e —e .For example, in the case of a trivial
gasket with three sites (Fig. 2), we have

Zo(e) =det(el —Ho), (2)

where Ho is given by
T

and 1 is a 3 && 3 unit matrix. This result is easily evaluated
as

Zo(e) =e —3Fff * f (—f*)— (4)

In our actual work we shall measure e in units of the
magnitude of the hopping, choosing as our variables P
and x =e/

~ f ~

. In terms of these variables, the basic par-
tition function (4) becomes

D(x,g) =x 3x —2 c—os3$ .

On the trivial lattice, the eigenenergies are given in units
of

~ f ~
by the zeros of D(x, g).

To elucidate the behavior of the nontrivial lattice, one
performs a decimation procedure on it to eliminate sites
until the trivial problem is reached. However, the cou-
pling to the outside corners of the largest triangle may
have to be handled separately since these sites are likely to
have a special environment. We return to this point
below, after the recursion relation for the other bonds is
established.

The decimation is easily obtained as follows (see Fig. 3).
The right-hand side of the figure is obtained from the
left-hand side by eliminating sites a, b, and c, i.e., the
fields P on sites a, b, and c are simply integrated out.
The part of the Lagrangian corresponding to the left-hand
side of Fig. 3 can be written as

e—Ho —Ho
~b1ock [Wi~ Po] (6)

(1) where

where P=iP and the integration is over complex
Grassmann fields. In Eq. (1), e denotes a trial value of the
energy. Each actual eigenenergy e is a zero of the parti-

[4. Col=[0 fbP Vlf''3]
and Ho is given by Eq. (3). The decimation, i.e., the in-
tegration over f;, is easily performed, leading to a
transformed Lagrangian for the block

FIG. 2. The trivial lattice.

FIG. 3. Decimation consists of integration over Grassmann
fields at sites a, b, and c, leading to effective hopping matrix
elements between sites 1, 2, and 3.
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2Hp~ block 4p Pp+ln det(x —Hp ),
2 x —Hp

' —2(f 'A f '*A*)=
e fA f—*A*—

Equation (9) represents three algebraic equations, ob-
tained, respectively, by substituting for A one of the three
cube roots of unity. We solve these equations for
x' =e'/

~ f '
~

and P' to find the recursion relations

x(x —7x —6 cos3$)
r'~'sg~

N=x cos2$+3x cosP+cos2$+cos4$, (10)

I =x"+6x cos3$+x (11+2cos6$)

+ 12x cos3$+2+2 cos6$,

tang'= —T/N, T=x sing —3x sinP+sin2$ —sin4$ .

There are two apparent ambiguities in these recursion
equations: The sign of x' is undetermined, and P' can be
displaced by 180 without affecting Eq. (11). Recursion
relation (9) indicates that the correct choice is to let P lie
in the interval [—90',90'], while the sgn of the denomina-
tor in x is always chosen to be the sgn of X, as in Eq.
(10). We formally summarize recursion relations (10) and
(11) by writing the result as a two-component function of
two variables,

(x', P')=R(x, g) . (12)

B. Boundary conditions

One can visualize several different ways in which trian-
gles like the one in Fig. 1 might be tied together. From
the analytical point of view the simplest case is the one in
which two triangles identical to the one shown in Fig. 1

touch at the three outside vertices, I, II, and III. These
two large triangles are linked because the wave functions
at I, II, and III are identical. This kind of boundary con-
dition was introduced in Ref. 1.

For this situation the entire recursion procedure is sim-
ple. Start on a lattice with (3"+3)/2 sites (counting both
large triangles). For example, Fig. 1 depicts a case in
which one major triangle of the n =3 problem is shown.
Let the initial couplings be given by x„,P„. One then uses
Eq. (12) to calculate effective couplings for the decimated
system, i.e.,

(xj, QJ &)=R(xJ,QJ), j=n, n —1, . . . , 2. (13)

In this ease all sites and bonds are equivalent so no special

where a 3&&3 unit matrix is contained in x. Thus, if Hp
represents a matrix just like Hp of Eq. (3), except that f is
replaced by f ', we have generated new couplings e' and
Hp given by

E'/2 Hp —e/2 ——Hp(—e Hp) —'Hp .

By using the eigenstates of Hp one can reduce these
statements to the algebraic equations

handling of the corner sites is necessary. Finally, the
n = 1 problem has two identical triangles put together and
three possible eigenvalues,

xi 4——cos(gi+2ml/3), 1=0,1,2 . (14)

xi ——4(costi)(cos2ml/3), 1=0,1,2 . (16)

Next consider the situation in which there is only the one
main triangle shown in Fig. 1. The outside corners, la-
beled I, II, and III, each have only two nearest neighbors,
while all other sites have four. Hence the on-site energies
on these special sites behave differently. To describe this
difference, let yj. /xJ be the ratio of the on-site energy at
the special sites to the on-site energy on the other sites for
a large triangle with (31+3)/2 sites. As before,
(xJ ~, P~ &) for j =n, n —1, . . . , 2 are given by Eq. (13).
In addition, one has the determination of yJ, namely

(17a)

with

y (x —3x —2 cos3$) —2x (x +cos3$)
x (x —7x —6 cos3$)

and with the initial condition y„=x„. Finally, once one
has found P&, x&, and y&, one determines whether or not
the original e=fpx is an eigenvalue by asking whether the
level-1 triangle is at an eigenvalue, namely whether

y, =2 cos(P&+2ml/3), 1=0,1,2 (17c)

corresponding to free boundary conditions.
The special symmetry of this gasket with free boundary

conditions allows one to explicitly determine the eigen-
values and functions of the stage-n gasket from those of a
stage-(n —1) gasket with three different boundary condi-
tions. These different boundary conditions ean be visual-
ized in Fig. 1. The gasket is invariant under a rotation of
2m/3. Therefore, all the eigenfunctions g can be classi-
fied into three categories: They transform under such a
rotation as g—+e'sp with 0=—2ml/3, 1=0,1,2. Hence, one
can construct the states of the gasket shown in Fig. 1 and
those of the smaller gasket having I, a, and c as its
corners as follows: We let I be "free," and require that
the wave functions at a and c be identical except for a

We describe this situation as obeying the "doubling"
boundary condition. Ciiven an initial value of magnetic
field (hence P) and the coupling strength f, e will be an
eigenvalue of the gasket problem if

(x(,P() =R" '(e/f p, P)

obeys one of the three equations (14).
Alternatively, it is possible to fit the two largest trian-

gles together in another way. Let the triangles not be
identical but instead parity images of one another. Thus
where one triangle has the bond fpe'&, the other has
fQe '~. We describe this situation as the "flipped dou-
bling" boundary condition since it can be obtained from
the previous one by flipping over one of the largest trian-
gles. The same calculational method works, except that to
describe the behavior of the n =1 triangles one has, in-
stead of Eq. (14),
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phase difference of 2~1/3, l =0, 1,2. The eigenvalues thus
obtained are exactly those for the larger gasket. In Sec.
IV we exploit this property to obtain eigenenergies and
functions for a gasket containing 1095 sites by diagonaliz-
ing the Hamiltonian on gaskets containing 366 sites.

One more boundary condition is of some interest. Fol44

lowing Ref. l once again, we can combine the triangles of
Fig. 1 into a periodic lattice. The outside vertices of the
triangles are special. Now they have six neighbors, while
all other points have four. We describe these special
points by an on-site energy y. The form of Eq. (17a) and
the initial condition y„=x„still hold, but now, instead of
Eq. (17b), we have

y (x —3x —2 cos3$) —6x (x +cos3$) (18a)
x (x —7x —6 cos3$)

Then, when the last stage is reached, the on-site energy is
y &, while the phase is P&. In this last stage the system lies
upon a triangular lattice. A brief calculation shows that
the allowed energies of the lattice are in the range
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X
FIG. 4. Set of initial points that do not escape after 100 itera-

tions. Line Jj corresponds to x = —2cos3$. Lines 8 and Care
described in Sec. III C 2.

Thus we find, with this boundary condition, that allowed
energies occur in bands.

C. A note on the zero-field case

The approaches to finding the spectrum described in
the preceding section must all be modified if the field is
zero. The basic problem can be seen in specializing Eq.
(10) to the case P =0. Then this equation reads

x (x + l )(x +2)(x —3)
r'"sg~

perform i iterations and see how many and which of the
original points remain in the region. In previous experi-
ments of this kind' the number of points surviving after i
iterations, n, (i), dropped off exponentially,

n, (i ) e-
for large ~'.

The measurement of n, (i) is interesting because n,
gives information about localization, densities of states,
and the fractal character of the spectrum. For the case in
which gaskets with the order of 3' sites are combined into

N =(x +2)(x + I ),
I =(x+2) (x+l)

(19)
0-

When x is —2 or —l, Eqs. (19) have an intractable 0/0
structure. That is why these values of x had to be han-
dled specially in Ref. l. At /~+60', similar singularities
appear at x =2 or 1.

However, this difficulty is peculiar to these three spe-
cial cases of P. For these P values, special attention must
be given to the values of x which produce the 0/0 struc-
ture. However, for all other P values, I remains positive,
no distinguished values of x arise, and the methods out-
lined in subsection 8 do give the spectrum.

III. THE SPECTRUM

A. Introduction
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%'e now proceed in a semiphenomenological fashion
and perform a kind of escape-rate experiment' in, the x-P
plane. This procedure will help us understand the spec-
trum of eigenstates.

What we shall do is very simple: We initially distribute
points uniformly in a region of the x,P plane. We then

—60—4.0
~ I I I I

-3.5 -3.0 -2.5 -2.0 —1.5
a» ~.
. 2 I I ' I

—1.0 —0.5 0
X

FIG. S. Set of initial points that do not escape after 300 itera-
tions.
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a triangular lattice, n, (i)/n, (0) describes the total band-
width of the spectrum. If n, (i) decreases exponentially, as
in the equation above, e ~ defines the fractal dimension
of the spectrum.

Now look at what happens in our particular example.
The first thing to notice is that the spectrum is confined
in the interval —4 &x & 4. It is now of particular interest
to see how the points in this interval map under applica-
tion of the recursion as defined in the preceding section.
To put things on a more quantitative basis, we discretize
the continuum of points in the interval —4&x &4, and,
say, —90 &/&90', into a finite, equally spaced set of
points and ask ourselves the following question: Which of
these points remain in the interval —4 &x & 4 after, say, i
iterations? In Fig. 4 these points are plotted for i =100.
The initial grid contained 180& 180 points.

The structure of Fig. 4 is suggestive of a remarkably
complicated and rich spectrum of eigenenergies. In Fig. 5
the survivors are plotted for i =300, with an initial grid
of 240X240. This more detailed picture shows the spec-
trum to consist of a family of lines. Making use of the
symmetries displayed in Fig. 4 [the lines p=n X60' are
symmetry axes; the points x =0, P = (2n + 1)X 30' are
points of inversion symmetry], the whole x-P plane can be
reconstructed from Fig. 5.

It is interesting to ask what happens at /=0'. On this
line, which maps onto itself, the recursion relation is
characterized by the A, =5 of May-Feigenbaum. A de-
tailed study of the spectrum for this case was presented by
Domany et al. ' Figure 5 shows that each point on the
/=0 line corresponds to many lines for P&0. Each line
represents an eigenenergy of the system. Hence, setting
/=0' produces a very considerable degeneracy of eigen-
values and probably a quite different physical behavior.

10-

n —e I"
S
P —0.55

Ch

C

4

2

0
0

I I I

2
I

6
I

8 10
I I

12

FIG. 6. Plot of the logarithm of the number of survivors vs
the number of iterations for the P =0' case.

B. Escape rate

As a first attempt toward a better understanding of the
spectrum of eigenstates, we employ the concept of escape

10—

nS

CO

4-

2—

0
0 4 6 . 8 10

En i

FIG. 7. Log-log plot of the number of survivors vs the num-
ber of iterations for P= —10. The algebraic law is character-
ized by an exponent -0.42.

2

rate in a more precise manner. Figure 6 is a plot of the
logarithm of the number of survivors versus the number
of iterations for the / =0' case.

As in the cases studied previously, ' n, (i) decays ex-
ponentially. In contrast, consider Fig. 7, which shows the
data for P= —10' plotted on a log-log scale. After ap-
proximately 100 iterations a striking power-law behavior
sets in with n, (i)-i . Here the exponent a is 0.42. We
have checked numerically that this exponent is unchanged
by small deformations of the region examined in the P-x
plane. The points in Fig. 7 originate from an initial set of
10000 equally spaced points with P= —10' in the interval
—2 &x & —1.25, where, according to Fig. 5, the spectrum
is rather dense.

We have also explicitly checked that the escape rate on
a triangular lattice made up of gaskets (see Sec. IIB) fol-
lows the same power-law behavior. It is interesting to
note that, within an accuracy of 0.01, the escape-rate ex-
ponent is equal to 2 —d~, where di ——log~o3/logto2 is the
fractal dimension of the gasket. We have not found an
explanation for this simple result.

Both exponential and power-law behaviors of the
escape-rate rule out the possibility of a continuous spec-
trum. This is because eventually all of the initially chosen
points will disappear towards infinity under repeated ap-
plication of the recursion relations, and, hence, only a set
of measure zero can correspond to eigenstates (due to the
fact that the map is "illegal" for these energies, as ex-
plained in Sec. II C).

It is intuitively appealing to associate an exponential es-
cape rate with exponentially (or stronger than exponential-
ly) localized wave functions (as, for instance, applies for
the case /=0 ); by the same token, the power-law escape
rate, as found in this problem, might be suggestive of
power-law localized wave functions. However, as we will
argue later, the spectrum consists of truly extended wave
functions for nonzero P. The meaning of the escape rate
for localization, as such, is still unclear.



31 ENERGY SPECTRUM FOR A FRACTAL LATTICE IN A. . . 1393

C. More details about the spectrum

The previous numerical experiments establish qualita-
tively the difference between the one-dimensional (logistic)
map for the zero-field problem and the two-dimensional
P-x map for the self-similar-field case. Whereas Figs. 4
and 5 answered the question of which of the initially
chosen energies survive after many iterations, the escape-
rate experiments, on the other hand, tell us how many sur-
vive.

We next deal with the question of where (after many
iterations) the survivors actually end up. Numerically, it
turns out that all of the survivors get stuck for a long time
very close to the line (A in Fig. 4)

x = —2 cos3(P, (20)

after which (if one waits long enough) they disappear to
infinite energies. This line-is clearly visible in Fig. 5 as a
very densely packed region of dots.

Indeed, inserting Eq. (20) in the recursion relation for
x, we find

many of the details of the spectrum are still unknown.
This is because the experiments so far have only revealed
the domain of attraction of the fixed line of Eq. (20).
Gther fixed lines or points, having a domain of attraction
of one or several dimensions less than that of the fixed
line, are very hard to detect. For completeness, we will
next give a list of special situations which have been
found by trial and error.

Another set of lines which map onto themselves are
given by (80, Fig. 4)

x =4cos(P+g), g'=0, 120', 240' . (25)

The map on these lines is governed by the fixed points
(P =0', x =4) (stable), (P =90,x =0) (unstable), etc.

Furthermore, they form the boundaries in the x-P plane
of the spectrum and so do their ancestors, i.e., the se-
quence of lines that ultimately will map onto the lines of
Eq. (25). For instance, the lines in Fig. 4 indicated by
8

x'=4x(1 —x), x=x /4. - (21)
x = —2 cos(P+~), ~ =0', 150,300 (26)

P'= —2P+ —,
' m. sgnP . (23)

Apparently, the long escape time is caused, in part, by a
trapping near Q =0. In particular, if Q « 1, then

This is a "fixed line" characterized by the iI=4 of May-
Feigenbaum. This map is mixing and ergodic; eventually
all of the points on this line get visited after an infinite
number of iterations. Consequently, the line of Eq. (20)
represents a continuum set of eigenstates of the system
(i.e., continuously varying with magnetic field or P).

This line forms the domain of attraction of all the other
lines displayed in Fig. 5 (however, see below). We are now
in a position to carry out the analysis one step further and
see how the map behaves in the linear neighborhood of
the fixed line. This then will lead to a qualitative under-
standing of the numerical data of the preceding sections.

1. Marginal parameter

Let us define the variable

x +2 cos3$
sin3$

According to the above, if Q is initially zero it will remain
zero. In terms of P, the recursion relation on the fixed
line equals

map, after one iteration, onto 80 [Eq. (25)], and they
themselves define boundaries. A sequence of "boundary"
lines thus obtained can be regarded as the limit of another
(higher-dimensional) sequence of lines which form the
domain of attraction of the fixed line of Eq. (20). Already
at this level we see that the self-similarity in the spectrum
is building up in a very complicated two-dimensional way.

Superimposed on this buildup one has to imagine the
existence of multicycles. For example, we found empiri-
cally a cycle of length 2,

x
—0.729 546 212
+ 0.272 277 6806

and one of length 3,
'x

+ 1.732050 808
+ 1.732050 808
—1.732 050 808

P (rad)

+ 0.003 937 949
—0.014 638 887

P (rad)

—0.194444 444
+ 0.138 888 889
—0.027 777 778

Finally, we mention the lines [P,x]=[/, 0] (C in Fig. 4)
and [P,x]= [n &&60', x], which, as is seen before, map onto
themselves.

Q'= —Q ——,'Q tan3$+0(Q ) . (24)
IV. PARTICIPATION RATIO

That is, Q is conserved for small values of Q. Hence,
whenever one obtains small Q, one will be stuck near the
fixed line for a very long time. The marginal behavior of
(24) explains the power-law behavior of the escape rates of
the preceding sections. For very small values of
($-0.01 ), there is a crossover from an exponential escape
rate to the universal algebraic behavior after about ten
iterations.

2. Fixed points, lines, and multicycles

Although the foregoing analysis was sufficient to ex-
plain our considerations regarding escape-rate phenomena,

In an attempt to understand -the nature of the eigen-
ytates and the distribution of eigenenergies, we have con-
structed Sierpinski gaskets having up to 365 sites and di-
agonalized the Hamiltonian numerically. For compar-
ison, we have also carried out similar studies on an
Anderson-type model obtained by taking the tight-binding
model and adding diagonal disorder distributed uniformly
between —0.5 and 0.5. For both calculations, the three
different symmetry boundary conditions were used as
described in Sec. II B. This enables us to obtain the eigen-
values and eigenstates for a larger gasket, containing 1095
sites with free boundary conditions. From each of the
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V. ANALYSIS WITH GREEN'S FUNCTIONS

We now return to the generating function formalism of
Sec. II. The decimation on the partition function implies
a recursion relation for the free energy per site
F=N 'lnZ,

(28)

where D and I are defined in Eqs. (5) and (10), respective-
ly. The density of states can be obtained using

10- I ~

I g

L
L J

BF
p(x, g)-Im

Bx
(29)

0

60-

50-

40-

I

' 0.25 0.50 0.75
Participation Ratio

I I
I ~

e I

I

1.00 Hence, the density of states is associated with the zeros in
I and D. On the lines /=0' and /=60, considerable
simplification occurs; the recursion relation for the free
energy becomes

b fF=ln(x+2)+ —,ln(x+1)
——,ln(x 2)+F'—for P =0',

b fF=In(x —2)+ —,ln(x —1)

——,
' ln(x+2)+F' for /=60' .

(30)

20-

10-

I
I

eJ
~~
L

0
0 0.25 0.50

Participation Ratio
FICi. 8. Histogram of the number of eigenstates Xp having a

participation ratio I' for a gasket containing 365 sites with three
different boundary conditions (dashed curves). The solid curve
represents an un-normalized histogram for a larger gasket con-
taining 1095 sites with free boundary conditions. (a) No ran-
domness; /=17'. (b) On-site randomness uniformly distributed
between —0.5 and + 0.5; /=17'.

I

0.75
I

1.00

eigenfunctions we have calculated the participation ratio
defined by

1

Xg
/

%';(r)
f

(27)

where III;(r) is the wave function of the ith eigenvalue at
site r, and N is the total number of sites. For extended
states, p; is of order 1, whereas for localized states, p; is
of order 1/N.

The results for /=17 are summarized in Fig. 8. The
effect of disorder is to shift the distribution of participa-
tion ratios uniformly to lower values. For the infinite gas-
ket with disorder, the histogram reduces to a 5 function at
the origin. Clearly, our finite-size —gasket results do not
give conclusive evidence for the true nature of the eigen-
states. However, our studies of finite-size effects are not
inconsistent with truly extended eigenstates for the gasket
without disorder. In the following section we present a
mote definitive analysis using Green s-function tech-
niques.

This recursion relation has been employed in Ref. 3 for
the study of the spectrum of eigenstates. For our two-
dimensional map, however, the calculation becomes gen-
erally intractable. However, we shall proceed to present
qualitative arguments regarding the nature of the spec-
trum. The zeros in I occur at the points

(31)

and those which can be obtained from these by symmetry.
The line described by Eq. (20) passes through two of the
points above; this, together with the ergodic property of
the A, =4 map, tells us that the line of Eq. (20) corre-
sponds to a set of eigenstates of the system. As pointed
out in Sec. III C, the vast majority of the spectrum maps
onto the line of Eq. (20) after successive iterations of the
recursion relations. Therefore the nature of the majority
of eigenstates is determined by that of the wave functions
on the fixed line.

This brings us to the final issue of this exercise, which
is to show that the wave functions on this fixed line are
truly extended. A.ccording to Ref. 1 we cari define
Careen's functions

G(r, r')=(r
~

(x H) '
~

r')— (32)

with simple properties under decimation by taking the lat-
tice sites r, r' to be on the lattice that remains after de-
cimation. Then, after some algebra, one can write the fol-
lowing recursion relation:

G(r, r')=Dl i G(R,R'), (33)

sin 3$
sin 3$' (34)

where r, r' and R,R' denote the same sites on the original
and decimated lattice, respectively. On the line
x = —2 cos3$, the combination Dl '~ [Eqs. (5)
(10)] reduces to the simple result
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(35)

where the sum is over a discrete set of eigenenergies e;
and where 'P; denotes the corresponding wave functions.
In particular, for an eigenvalue on the fixed line we can
insert —2cos3$ for x;. From Eqs. (33)—(35) we read off,
for the wave functions on that line,

g (r, r';P)5(x +2cos3$) = — . g (R,R', P')
sin3$

X5(x'+ 2 cos3$'), (36)

where

We make use of the fact that we are dealing with a point
spectrum. This allows us to write, for the Green's func-
tion,

g (r, r', P)5(Q) =g (R,R';P')5( —Q'), (38)

with Q the marginal field defined in Sec. III C l. We have
thus found a remarkably simple result for the wave func-
tions on the fixed line A. Equation (38) implies that g
remains unchanged after decimation. Now we can use the
fact that the wave functions will change continuously
with P, together with the properties of the recursion rela-
tion for P, Eq. (23), to argue that the spectrum consists of
truly extended states. Imagine that r, ~' are very far away
and denote points on the gasket that will be transformed
away only after a very large number of iterations. After
each iteration the system acquires a new magnetic field, P.
Since, eventually, after many iterations, the whole P inter-
val would have been visited, one can come arbitrarily close
to any initial value for P, if one waits long enough. By
continuity, this implies that g is periodic and, hence, the
wave functions are extended.

g (r, r', p) =qI (r;$)%'(r', p'), (37) ACKNOWLEDGMENT

and 4 denotes the wave function on that line. Note, how-
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