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We study the continuous-wave (cw) NMR spectrum of a two-dimensional p-wave superfluid He
film. Two thickness regimes are considered: thickness comparable to the interparticle separation,
and thickness much larger than the interparticle separation but smaller than the superfluid coher-
ence length. We find that the form of the dipole Hamiltonian is similar for both regimes, but nu-

merical differences in the coefficients of various terms in some cases lead to qualitatively different
results. We find remarkable differences in the NMR spectrum of the two superfluid phases of in-

terest (Anderson-Brinkman-Morel and Balian-Werthamer types of states) and two thickness re-

gimes. From our results it follows that cw NMR is an excellent diagnostic tool for the pairing state
in films, as it is in the bulk. We emphasize the qualitative features of our results which are most
likely to prove useful to experimentalists.

I. INTRODUCTION

Very thin films (one or two layers) of He behave effec-
tively as two-dimensional systems. ' At temperatures
=100 mK a layer of He adsorbed on a He II film forms
a self-bound, degenerate, two-dimensional Fermi liquid.
With further reduction in the temperature, one can expect
the transition to a paired state to take place, providing an
example of a two-dimensional BCS-type superfluid.
Moreover, in thicker films, containing many layers, the
superfluid component will still be effectively two dimen-
sional as long as the thickness is smaller than the super-
fluid coherence length g. This is not a severe restriction
for the thickness, as g may be quite large.
(g= 150—200 A at T=0 for bulk He. )

In this paper we consider the problem of how to detect
the presence of the superfluid component and how to dis-
tinguish between different possible phases using the tech-
nique of continuous-wave (cw) NMR. We will concen-
trate our attention on two physically different situations:
(i) the very-thin-film regime in which the thickness of a
film is comparable to the average interparticle separation
(i.e., d=kF ), and (ii) the thin-film regime in which the
thickness is much larger than the interparticle separation,
but is small compared to the coherence length (i.e.,
kF &d &g). The physical character of the superfluid
state can be quite different in these two regimes since in
the former the normal component behaves two dimension-
ally, while in the latter it is effectively three dimensional.
We furthermore make the nontrivial but plausible as-
sumption that in the very-thin-film regime the superfluid
state is of the p type (i.e., I. = 1, S= 1 BCS pairing). No
such assumption is needed for the thin films since in that
case the pairing interaction is essentially the same as in
the bulk.

The absolute minimum of the weak-coupling free ener-
gy in a two-dimensional p-type superfluid has twofold de-
generacy. Two phases, a and b [the Anderson-

Brinkman-Morel (ABM) and the Balian-Werthamer (BW)
types of states, respectively], appear, therefore, to be the
most likely candidates for the equilibrium state in a super-
fluid film. The technique of cw NMR proved very
powerful in the case of bulk superfluid He, allowing a
clean distinction between the NMR responses of the nor-
mal component and the various superfluid phases. We ex-
pect cw NMR to be just as useful in the experimental
study of two-dimensional p-type superfluidity, the only
possible shortcoming being the weakness of the signal
from the two-dimensional sample.

The relevant equilibrium properties of the a and b
phases, as well as Leggett's method for the calculation of
the NMR response, are discussed in Sec. II. We also in-
troduce a simple model for the superfluid component in
the thin-film regime. From a general symmetry argument
we give a form of the dipole Hamiltonian in the two-
dimensional superfluid. In Sec. III we calculate explicitly
the dipole Hamiltonian for both of the regimes considered
using models introduced in Ref. 8 and in Sec. II. On the
basis of these explicit forms we find the cw NMR spec-
trum for the various cases of interest in both regimes. We
find that a clear distinction in the NMR response exists
between the a and b phases in very thin films; the ques-
tion of which one is the stable phase could be easily
resolved by experiment. In the a-phase of the thin-film
regime we find that the equilibrium orientation of the
order-parameter vector d is perpendicular to the angular
momentum vector 1. This unusual situation (caused by
the combined action of the quasiparticle renormalization
factors and different dimensionalities of the superfluid
and normal component) enables one to easily distinguish
the thin-film regime from, for instance, a flat slab
geometry (thickness d & g, but smaller than any length as-
sociated with textures). Numerical estimates of resonance
frequencies and critical fields are given and discussed, but
emphasis is placed on the qualitative features independent
of our models. Finally, in Sec. IV we offer some conclud-
ing remarks.
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II. METHOD

In this section we consider the properties of p-type su-
perfluid films which we need to use to calculate the cw
NMR spectrum. We discuss the specific phases that we
will study as well as the general method for calculating
the dipole energy.

We choose the z axis to be normal to the film surface
The L,,=0 Cooper pairs are taken to be totally
suppressed: for the case of very thin films (d =kz ') this
suppression follows trivially from the two-dimensional
character of the normal component. In the case of thin
films (kz & d & g), pairing with L, =0 is suppressed by
reflection from the boundaries. If .we assume that the re-
flection from both the free surface and the surface of the
adsorbate is predominantly specular, the condensation of
L, =+1 pairs will only be slightly affected. For d «g,
moreover, we will have a further significant reduction of
the gap b, (k ) for all those directions on the Fermi sphere
which are not confined to the x-y plane. Since the size of
the Cooper-pair wave function is of the order of g, it can
not fit within the transverse extension of the film, and the
quasiparticles which have their momenta outside the x-y
plane will be geometrically precluded from forming Coop-
er pairs.

For the thin-film regime, finding the exact form for the
gap would involve solving the full pairing problem in that
geometry. This is really not necessary for our purposes.
We have performed our calculations using the following
simplified model: Let us impose periodic boundary condi-
tions in the z direction. The superfluid gap in this case is
of the form h(k, n, ), where k is a unit vector in the x-y
plane, and k, —:(2~/d )n, . We approximate b, (k, n, )

by 56„0,that is, we take the superfluid component as be-

ing confined to the adsorption plane. The gap parameter
b, (which, in the a and b phases that we will consider, is
isotropic) may be thought of as being chosen so as to
reproduce the overall magnitude of the gap:

max

f i
b(k, n, )

i

+z +max

(2.1)

Note that n,„=(k~d)/2~ may be large in the thin-film
regime. In the very-thin-film limit the above assumption
reduces to that of purely two-dimensional pairing in the
same wave .as the thin films. For the latter regime, since
the normal component remains three dimensional, it is
safe to assume that the nature of the pairing interaction is
the same as in the bulk. Hence, the main difference be-
tween 6 and its bulk counterpart comes through a factor
accounting for the geometrical restrictions arising from
d «g. This will be further discussed in Sec. III 8.

In practice, the limits of applicability of our method are
not too narrow. In most experimentally accessible cases,
the films will not be very thin: Films from 4 to about 50
layers would exhibit three-dimensional behavior for the
normal component, while the coherence length
=go(l —T/T, ) '~, which at T=O is of the order of 200

A «d~( b, +|i Z2);, (2.2)

where 5 ~, A2 are two real and orthogonal unit vectors in
the x-y plane, with

h)~ A2 ——l, (2.3)

where / is a unit vector in the direction of the angular
momentum, and d is a unit vector in spin space.

For the BW-type state, which, in two dimensions, we
shall call the b state, the order parameter is specified by

A« ——exp(ig)R«(n, 8), (2.4)

A, would still be much larger than the thickness of the
film (the thickness of one layer is =3.8 A). Moreover, the
region of T not too far from T, is the most accessible and

probably the most attractive from the experimentalist's
standpoint. Keeping this in mind, we believe that our
simple model is sufficient to extract at least qualitative in-
formation concerning the NMR spectrum for thin super-
fluid films.

Once the film thickness becomes comparable to the in-
terparticle spacing, so that the normal component itself is
two dimensional, our model is exact (for p-wave pairing).
The magnitude of the superfluid gap b, (we remove the
tilde when discussing the very-thin-film regime) is still not
known due to the different character of the pairing in-
teraction (see the Introduction). Still, the qualitative and
even many quantitative features of the cw NMR spectrum
do not depend on the specific mechanism which leads to
the p-type BCS instability. Therefore, we expect that our
results might be a useful guide in a search for the two-
dimensional superfluidity.

The symmetry of the order parameter for a superfluid
film is reduced from that of the bulk. For p-wave pairing
the reduction is from O(3)&&O(3) (spin&&space) in the
bulk to O(3)XO(2) for the film. Note that the lowered
spatial O(2) symmetry is precisely the kind we need to ob-

. serve long-range order in the two-dimensional super-
fluid. ' The symmetry reduction turns out to have a non-
trivial effect in the NMR spectrum.

As in the bulk case," we can represent the two-
dimensional superfluid order parameter by means of a
complex tensor A; in spin and orbit space. The indices
a = 1,2, 3 represent spin, and i =x,y are the space indices.

In the weak-coupling limit, the possible stable phases of
the two-dimensional superfluid can be determined by us-
ing the free-energy functional given in Ref. 12. This was
done in Ref. 4, where it was found that the weak-coupling
free energy reaches an absolute minimum (there are also
many relative minima) for two topologically distinct
forms of the order parameter. These phases are simple
generalizations of the ABM and BW (Ref. 11) types of
phases in the bulk superfluid, even though in three dimen-
sions the BW and ABM phases do not have the same
weak-coupling free energy.

For the ABM-type state, which we will call the a state,
we have



1376 ZLATKO TESANOVIC AND ORIOL T. VALLS 31

where R ~; (n, 0) are the matrix elements (corresponding to
the indicated indices) of an arbitrary three-dimensional
rotation around some axis n, with angle 8, and P is arbi-
trary. In what follows we will also use an alternative
form of the order parameter, i.e., the order-parameter vec-
tor d (k )=A~;k;, " where k is a unit vector in two-
dimensional momentum space.

We should note the following properties of these a and
b phases: Both have an isotropic gap, which is why they
have the same weak-coupling energy. Both are anisotro-
pic in spin space. Furthermore, both a and b phases cor-
respond to equal-spin-pairing (ESP) states W. e consider
it unlikely that strong-coupling effects could make any

other phase energetically more favorable, and, for this
reason, we have in this paper limited our discussion to
these two states.

For future reference we now write the static susceptibil-
ity tensors for both phases as we use them in the follow-
ing section. The expressions are different for the two re-
gimes considered. For very thin films the general expres-
sion is" (neglecting Fermi-liquid effects)

r

2~de d (k )dp(k )
X~p ——X„5~p—f [1—Y(b(k ),T)]

2'tr
~

d(k )(

(2.5)

where Y(b,(k ), T) is the generalized Yoshida function. " Using the forms of the order parameter given in (2.2) and (2.4),
we obtain

a phase: X p
——X„I5 p

—[1—Y(T)]d dpI,
b phase: X p ——X„I—,'[1+Y(T)]5p+ —,

' [1—Y(T)]co copI .

(2.6a)

(2.6b)

In the above, X„ is the susceptibility of two-dimensional normal-component He for the very-thin-film regime, Y(T) is
—+

the Yoshida function, " and co is a unit vector in spin space, normal to d(k ) and independent of k. If co is taken to be
the axis of spin quantization, then the b phase includes only the

~
t t ) and

~
l & }members of the S= 1 triplet.

In the thin-film regime the total susceptibility tensor can be defined as
T

d (k )dp(k )
X~p= g X„5~p—I [1—Y{h(tc,n, ), T)]

max =— ~
~

d(k )
~

2

With the use of our model, (2.2), and (2.4), we can cast the results in the following form:

a phase: X p ——X„I 5 p n(k~d ) '[1——Y(T)]d d p I,
b phase: X p=X„I5 p

—(m. /2)(kFd) [1 Y(T)](5 p co —cop) . —

(2.7)

(2.8a)

(2.8b)

In the thin-film regime, 7„ is the normal-state susceptibil-
ity of bulk He. The approximation for the true suscepti-
bility tensors that our model introduces has very little ef-
fect on our results. This will become clear in Sec. III B.

In (2.6) and (2.8) we have neglected strong-coupling
(Fermi-liquid) effects. In the very-thin-film regime these
are unknown. For further discussion of this problem, see
Sec. IIIA. In the thin-film regime, as will become clear
in Sec. III 8, the strong-coupling corrections, apart from a
simple susceptibility-enhancement factor, are of little
consequence for our results.

To study the NMR properties of these phases it is most
convenient to use Leggett's method, suitably extended to
our case. The total spin S and the order-parameter vector
—+

d(k ) are treated as a pair of canonically conjugate
dynamical variables. The equations of the motion for S
and d(k ) are found to be of the form

(2.10)

Rd p the dipole torque on S, is given by

Rd;p= — d(k ) x
2tr 5d(k )

(2.11)

The total Hamiltonian is defined as

A „,= —,y S X '(d(k )) S—yS H+A dp(d(k )), (2.12)

and A d;~ is the dipole-interaction Hamiltonian. Obvious-

ly, knowledge of X (d(k)) and A d;„(d(k )) closes the
set of equations (2.9), and one can study the solutions in
different regimes. In order to find the resonance frequen-
cies in cw NMR, one linearizes Eqs. (2.9) and solves for
the dynamical susceptibility tensor defined by

S=ySXH(t)+Rdp, d(k )=d(k )XH'(t), (2.9)

where the field H(t) =Ho+ Hgt) (uniform plus oscillating
fields), and

S(co)=y X(co)H+co) .

From X(co) one can obtain the resonance frequencies and
the weight of the different resonances. Following I.eggett,
we define two equilibrium tensor quantities:
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28 A dIP

ae„ae. ' (2.13)

A,~p(T) =[1 f(T)](5 t3 d~d—p), — (2.16a)

where BO stands for an infinitesimal rotation of the d
vector (5d =8 8 )& d ), and

n„=X4X„', (2.14)

where hX is the anisotropic part of the inverse suscep-
tibility tensor and P is the true equilibrium susceptibility.
These two tensors, 0 and cx, contain the required infor-
mation about the equilibrium configuration of the order
parameter. For all but one of the various situations that
we consider in the following section (the case of the b
phase in the parallel magnetic field is the exception), the
principal axes of 0 and o: coincide and are easily found.

The above method was, generalized by Leggett and Tak-
agi to include relaxation effects. They employed a form
of a "two-fluid" model suitably defining the superfluid
and normal parts of the relevant macroscopic physical
quantities (spin, susceptibility, etc.). When the NMR
pulse is applied to the system, it is only the superfluid
component which is involved in the "tunneling" between
the up- and down-spin bands; this causes an imbalance be-
tween the superfluid and normal components in each
band, which simultaneously relaxes via spin-conserving
quasiparticle collisions. The characteristic relaxation time
r(T) is therefore of the order of the quasiparticle lifetime.
If the frequency of the external field is not too large or
too small compared to ~ ', this relaxation mechanism
determines the damping of the NMR.

To take care of the relaxation effects, it is convenient to
introduce a new dynamical variable. The vector g is de-

fined as the deviation of Sz (the superfluid component of
the total spin) from its equilibrium value, i.e., rt =Sz —Sz-.
In Ref. 7 it is shown that Sz ——X(T).S where, if one
neglects Fermi-liquid corrections,

7(T)=X~ O.X 0
' . (2.15)

Here, X&0 is the superfluid part of the susceptibility ten-

sor Xo. The subscript 0 indicates that Fermi-liquid effects
have been neglected. Our reasons for this have been dis-
cussed in connection with Eqs. (2.6)—(2.9). A more gen-
eral expression for A, is given in Ref. 7, but it does not
yield a closed-form result for the a and b phases. For
very thin films Eq. (2.15) yields, in the a and b phases,
the explicit results

In the thin-film regime, using our model and retaining
only terms linear in (kFd), we obtain the following ex-
pressions for the tensor A, in the a and b phases:

A, p(T)=m(k~d) '[1 f(—T)](5 p d—dp),

A~p(T) =(m. l2)(kid) '[1 f(—T)](5 p+co cot3) .

(2.18a)

(2.18b)

Note that in (2.18a) and (2.18b), f(T) is the same as in
(2.17), but with 5 replaced by b, .

—+

The extended set of dynamical variables S, d(k ), and
rt satisfies a system of three coupled differential equations
[see Eqs. (4.20)—(4.22) and the Appendix of Ref. 7]. Since
we are considering continuous-wave NMR, we need only
the hydrodynamic limit (d'or « 1, cot r « 1) of these equa-
tions, which then can be written in the following form:

S =yS x H(t)+Rd;p,

d(k) = d(k) &CH'(t),

f=(1—A. )r[Rd;@+y S X (X 'S)],
(2.19)

where the additional term linear in f (Ref. 7) appears in
the constitutive equation (2.10). A, is the appropriate prin-
cipal value of A, in equilibrium.

Equations (2.19) can be solved with only terms of up to
first order in co~, co&~ kept in the final result. The pro.-

cedure is the same as for Eqs. (2.9), the susceptibility an-
isotropy is treated exactly and [as in Eqs. (2.9)] the only
inputs needed are the static susceptibility tensor [Eqs.
(2.6) and (2.8)] and A z;~( d(k ) ). Given these, we can then
use Eqs. (2.19) to calculate the natural widths of the cw
NMR resonance peaks.

The conditions under which the two-fluid model and
Eqs. (2.19) give correct results are discussed in detail by
Leggett and Takagi. For the cw NMR, the results for
longitudinal motion are probably exact at any frequency.
For the transverse motion the theory gives correct results
to first order in cur.

In the above we have outlined the method used in our
study. To actually solve the problem in a specific situa-
tion we need to know the dipolar part of the Hamiltonian.
This can be found, in the thin-film and very-thin-film re-
gimes, by explicit consideration of our specific models, as
we shall see below (Sec. III and Appendixes). However,
on the basis of the O(3) &&0(2) symmetry of the order pa-
rameter, we know that cP d'p must be of the form

~d;p(d(k ) )= "' f [ b
i
d(k )

I

' —g i d, (k ) [

'

A, p(T) = [5~@+Y(T)r0 cop],
1 f (&)—
+ (2.16b)

+2h
I
d(k) k )'] (2.20)

where

and

(~2+, g2) I/2

f (7 )=f " f d~(~'yZ') ,' psech ( ,—p&) (2—.17)
o p~ o

A.
~

—+
Here, d~(k ) is the projection of d(k ) to the x-y plane,
the integration is taken around the Fermi circle, and Ed;z
is some characteristic energy which measures the contri-
bution of the dipole forces to the superfluid free energy.
The factors b, g, and h are of order unity, and are dif-
ferent for the thin-film and very-thin-film regimes (see
Appendixes A and B).

The anisotropic part of Eq. (2.20),
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~dp(d(k ))= f [—g ~
dg(k ) )'

+2h
i
d(k ).k

i ], (2.21)

shows g and h as functions of kid in the range which is
relevant experimentally. Ed;z is estimated to be
=10 ' (1—T/T, ) ergs/cm (see Appendix A). A d";~,

and the magnetic part of Leggett's Hamiltonian,

which cletermines the equilibrium configuration of the or-
der parameter and the NMR response, has a form qualita-
tively different than that of the bulk superfluid, where it
is proportional to

f j
d(k ) k

i

with the integration being over the Fermi sphere. This
contributes significantly to the differences that we find in
the next section between the NMR results in thin films
and those for the bulk.

III. RESULTS AND DISCUSSION
I

In this section we calculate the continuous-wave NMR
frequencies for both of the thickness regimes considered.
Even though the calculations are formally similar, the re-
sults are qualitatively different in many cases, and the de-
gree for which strong quantitative statements can be made
is also different, as we shall see.

A. cw NMR for very thin films

The first step is to calculate A d;~. For our purposes it
is sufficient to use the result and simple model of Ref. 8.
The coefficients of g and h and the factor Ed;~ which
enter the expression (2.21) for the anisotropic part of the
dipole energy are calculated in Appendix A. Figure 1

S.X 'S—yS.H,nag (3.1)

are responsible for the orientational effects in superfluid
He (see, for instance, Ref. 11). In Ref. 8 the equilibrium

orientation of the order parameter was determined by
minimization of A d;~+A, g, taking into account the an-
isotropy of the magnetic-susceptibility tensor. Only two
simple cases were considered with the external, uniform
magnetic field either perpendicular or parallel to the film.
Once the equilibrium configuration is known, the tensors
0 and H [Eqs. (2.13) and (2.14)] can be calculated, and
we can find the cw NMR spectrum.

We now proceed with the discussion of the a and b
phases using the corresponding forms of the order param-
eter. Since there are numerical uncertainties in our
knowledge of quantities, such as the dipole energy or the
magnetic susceptibility, our final values for the resonance
frequencies are obviously to be interpreted with caution,
although we believe them to be qualitatively correct. This
uncertainty is caused, among other reasons, by the present
unclear status of the Landau theory of the Fermi liquid in
two dimensions (for a detailed discussion of the problem,
see Ref. 13). The resolution of this problem is quite
beyond the scope of this paper. We do not wish to engage
in speculations and we have simply omitted Fermi-liquid
corrections in the magnetic susceptibility and ignored (in
this regime) the quasiparticle renormalization factors
which should appear in A d;z. While this approximation
might be poor when the overall magnitude of the dipole
energy and magnetic susceptibility are concerned, we ex-
pect it to be more reasonable for the resonance frequen-
cies, which are ratios of the similarly enhanced quanti-
ties. ' We will briefly return to the quantitative effects of
the Fermi-liquid corrections when we give numerical esti-
mates of the various quantities of interest.

The order parameter for the ABM-type state is given in
(2.2). We may choose, for convenience, b,

&
=x and

52=y. Then the order parameter can be written in the
form

d~(k ) =d (k» +i' ) . (3.2)

0.0 0.5 1.0 1.5 2.0

FIG. 1. Coefficients g and h which apped. r in Eq. (2.21) cal-
culated in the very-thin-film regime. The parameter x=k~d
compares the spatial extent of the wave function along the z
axis to the average separation of particles in the film.

Grientational effects, from the magnetic part of the free
energy, will therefore tend to orient the d vector (in spin
space) in a particular direction. Since, from Fig. 1,
h(x) ~g(x) for any x, it is easy to see that the equilibrium

—+
orientation will be that with d

~
~l, i.e., perpendicular to the

film. When a uniform, constant, external magnetic field
is introduced, this orientation may change due to the
orientational effects of the field. Let us now consider two
characteristic cases, Ho parallel or perpendicular to I.

When the applied field is parallel to I, the dipole and
magnetic orientatio11al cnclglcs compete with each othcl.
A qualitatively similar effect is found in the study of tex-
tures in superfluid He-A near a solid wall. ' While it
would be preferable, for the dipole energy alone, to have
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d parallel to 1, the magnetic field pushes d into the plane
of the film. There is a critical magnitude of the magnetic
field H~ at which the magnetic energy prevails and the
configuration of the order parameter suddenly changes
from d~ ~I to d in the x-y plane. By equating the aniso-
tropic parts of the magnetic and dipole energies [Eqs.
(2.21) and (3.1)], we find the critical field strength,

1/2

There are two separate cases, Ho&H and HO~H,
which we now discuss. (The value of H is estimated
below. ) The results we obtain qualitatively agree with
those obtained by Takagi' for a fiat slab (thickness
greater than the coherence length) of three-dimensional
superfluid He. For Ho&H, d is parallel to I, and it is
obvious from symmetry that there is no longitudinal reso-
nance. Leggett's equations can be solved for the dynami-
cal susceptibilities and we obtainEd;p(h —g)

X„[1—Y(T)]
H-=

C (3.3)

(3.4)

Xz&(co}=—X»(co) =X„lcocor, co —a coL, + 0a D ~ (co) ~

2 2 2a 2 l.

1 —a

which correspond to two circularly-polarized transverse
modes. For low fields (cor «0, ) these resonance fre-
quencies can be approximated by 0, +(I+a)coL. On the
other hand, as Ho approaches H, the frequency of one of
the modes goes to zero, while the other is given by
(1 ga)col .

Using Leggett's theory, extended to include relaxation
effects (see Sec. II), one can also find the linewidths of the
predicted resonance peaks. Following Ref. 7, we need
only the principal values of the tensor A, (this is true also
for the b phase, in a field perpendicular to the sample)
and we can then solve Eqs. (2.19), taking into account the
susceptibility anisotropy (as prescribed in the Appendix of
Ref. 7). We obtain the following result for the linewidths
of the two transverse modes:

where

D & ( )co—:(co +acol —0, ) —'co col. ( 1+a )

In the above,

(3.6)

0, =—y Ed;p(h —g)/X„,
a= 1 —Y(T), and coL is the Larmor frequency. Since the
gap in the a phase is isotropic, the standard Yoshida
function appears in the "susceptibility anisotropy" param-
eter a.
. The poles of the dynamical susceptibility tensor X(co)

correspond to the resonance frequencies. Solving
D & (co) =0, one obtains two resonance frequencies,

1/2

=1 4Qg
co~ ———(1—a) coL +2 (1 a)

+( 1 ~a)col, (3.7)

2
COL Qg+a Q)L +2a +ac&)Lco~
co~k~

2 2 2
COL Qg

a —a +co~
N~ CO~

2
2 Q)L1+a 2

CO~

2 —&~++ —,COL (3.8)

where A, ( T)= 1 f ( T),f ( T) is d—efined in (2.17), and When Ho &H the equilibrium direction of the vector
d will be in the x-y plane. Thus the magnetic energy is
minimized, while the dipole energy has its maximum
value. This interesting situation was analyzed in Ref. 16,
and the result for the dynamical susceptibilities can be
simply transcribed to the situation under consideration
here. Thus, if d is chosen along the y axis,

b, ~ ——1 —(a col /co~) .

The relaxation time ~, introduced in Sec. II, is of order of
the normal-state lifetime; for a two-dimensional Fermi
liquid corresponding to a He layer on a He II film, it is
=10 sec at a temperature of =1 mK. Equation (3.8) is
valid in the hydrodynamic limit (see Sec. II). Further-
more, following up on our earlier discussion, the normal-
state susceptibility-enhancement factor, which would or-
dinarily come as a prefactor in I +, has been taken to be 1.
The rather cumbersome form of I ~ is somewhat simpli-
fied when T is close to T, . Then it is safe to neglect the
susceptibility anisotropy, and Eq. (3.8) can be written as

A7

X„,(co) =X„ D) co

co +Q~
Xyy(co) =X„

D) co
(3.10)

l COCOL

X„y(co)= —X»(co)=X„"D)(co)
g 1 —XI += 70a /(co~ ——,coL co~ ) (3.9)

(co) =X „(co)=X„.1 D~—(co)(co +acoL, —0~) co + 0 —a(1+a)co
1 —a
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where

D) (co)=~ —coL +Qa .2 2 2

Again, there is no longitudinal resonance. There is a
single elliptically polarized mode of frequency
(coi —Q, )'i . The negative shift is the consequence of the
d vector oscillating about the maximum of the dipole en-

ergy. Note that X(co) [Eq. (3.10)] does not depend on the
susceptibility anisotropy. The width I —of the transverse
resonance line does, however. We obtain, for 1-' (note
that the relaxation effects are not considered in Ref. 16),

within the general limits of applicability of the two-fluid
model of Ref. 7.

Quantitatively, the resonance frequencies co+, the criti-
cal field H,' , an-d I"+,1-' all depend on Q~. We can get
some sense of what the actual value of 0, is by using the
estimate of Eo;~ (see Appendix A) close to T, . For the
magnetic susceptibility we use the standard Fermi-liquid-
theory expression for quasiparticles of effective mass
m*/m = 1.73 (Ref. 2) and leave out the enhancement fac-
tor. The factor h (x)—g (x) is approximately equal to 2 in
the region of x =kFd of interest here (x=1—2), as can be
seen from Fig. 1. In this way we obtain

Q~(Q, +acoL )I-=
COI —Qg

where

(3.11)

=(86 kHz)(1 —T/T, )'i (3.12)

a=[1—1'(T)]/[1+Y(T)] .

One should not be alarmed by the negative sign in the
denominator of (3.11); for Ho) H,", coL is always larger
than Q, [since 1 —Y(T) & 1 for any T]. Equation (3.11)
has been obtained under the assumption that

For very strong fields, i.e., acoL ))0„

and one finds

I -/(coi —Q, ) = raQ /cubi
Q 2 2 1/2 1 ~ 2

This quantity is rather small, particularly close to T„
since then both Q, ~ && 1 and a && 1; therefore the approx-
imations made in arriving at Eq. (3.11) are completely
consistent. For intermediate field strengths, i.e.,
coL ))Qg, but cxcoI ~Qg,2 2 2 2

2

1-'- r, (Q, +acoL )
COL

and

&+4 2 2

r'-/(coL —Q, )'i =
COL

The upper limit on this expression is provided by either
3

&a
2 wQ,

COI

01

and this result is only weakly dependent on kFd, within
the regime under consideration. The magnitude of 0, is
=25% smaller than the magnitude of its vapor-pressure
counterpart in the slab geometry (without susceptibility
enhancement), "' but it is hard to predict to what extent
the susceptibility-enhancement factor will reduce (3.12)
(the reduction is about a factor of 2 in the bulk). Since
He films exhibit a very enhanced paramagnetism, ' it is

possible that this reduction is appreciable.
The critical field H follows from the above estimates

and Eq. (3.3), and it is rather low, of the order of 20 G.
Most probably, in a practical NMR experiment the exter-
nal field will far exceed H .

The case where Ho is perpendicular to l is much easier:
then the equilibrium direction of d is along l. This con-
figuration minimizes both dipole and magnetic energies,
and all the quantities we are interested in are identical to
these for the A phase of the bulk superfluid He, provided
that we replace Leggett'-s frequency Q~ by Q, .

We now turn to the discussion of the cw NMR in the b
phase, with an order parameter of the form (2.4). In
equilibrium, with no magnetic field present, the absolute

minimum of A o;„ is obtained when R(n, 8) describes a

+m/2 rotation about the z axis, i.e., n
~

~1 and Leggett's
"magic angle" is 0=+~/2. We again must distinguish
between two orientations of the static field.

When the uniform field is applied in the z direction,
both n and 0 remain unchanged for any magnitude of the
field; both magnetic and dipole energies are minimized, as
is obvious from (2.6b) and the fact that co

i
~z.

In an external, longitudinal, small oscillating field

H~, 8 will be driven to follow the field oscillations, while
n will remain unchanged. The dynamical susceptibility is
of the standard form:

1 —A,
2 'TCXCOI

COL

depend1ng on whether Q )coL o1 Q«(zcoL . . In this re-
gion the assumption works very well too. In fact, for T
close to T„coL ))Q, ensures that

I-
(

& Q& )1/2

where the longitudinal resonance frequency is

Qb ii
=2y Egq, h (x)/7„.

(3.13)

(3.14)
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The frequency Qb~~ shows a significant dependence on

x, since h (as opposed to h —g) varies appreciably with
k~d. To estimate Qbt~, we can use x=1.5; then h =2.9.
It follows that

same method used for the a phase. The result is

b 1 —A

«b)) (3.16)

=(148 kHz)(1 —T/T, )' (3.15)

The linewidth of the resonance peak is obtained by the

where X= I f (—T). The existence of this longitudinal
mode offers a clear distinction between the a and b
phases.

The transverse components of the dynamical suscepti-
bility tensor follow from Sec. II,

where

(co) =+~(co)=X„(l D—'(co) [[co acoL——(1+a)Qb~](co aQ—b~)+a(1 a)c0—co& ( ),
L. (~ a~I——2a Qbi.

(3.17)

D(co)= [u a—mL—
,

—(I+a)Qb~] —co coL, (1—a), Qb~—=y Ed;~(h+2g)/4g„, a=
1+Y(T)

Thus, there are two circularly-polarized transverse modes
with frequencies

1/2
4Qgq

co+ = (1+a) coL + (3.18)+ (1—a)coL

(3.19)

2 1+ex

The expression for the linewidth I + is as cumbersome as
(3.8). To avoid writing it we note that I + can be obtained
from (3.8) if one changes a to —a and replaces
Q&/(I —a) by Qb [one should recall Eqs. (3.17) and
(2.16b) for a and the transverse principal value of X in the
b phase].

It is very useful to examine the ratio'
2

Qb& 1+2g /h

n~~~

Note that this ratio does not depend on the Fermi-liquid
corrections to susceptibility. It is independent of the par-
ticular type of microscopic interaction which leads to the
p-type instability. It is determined solely by the assump-
tion that the normal fluid behaves two dimensionally, and
our model for calculating the functions g and h.

From the values of g and h displayed in Fig. 1 the ratio
Qbz/Qb~~ is easily found for a given value of the single di-
mensionless experimental parameter kp d. In the interval
1 & k~d & 2, this ratio changes monotonically from 0.17 to
0.21.

cosg= co 'z (3.20)

we can conveniently parametrize R in terms of angles g
and p, the latter describing rotations about the z axis:

cosp sinP 0
R = —sinP cosg COSP cosg sing (3.21)

sinp sing —cosp sing cosg

Using (3.21) we can write the total anisotropic energy of
the system as a function of cosg and cosp:

%'e now consider the case when the parallel external
field is applied to a superfluid film in the b phase. In this
case for experimentally relevant magnitudes of the exter-
nal field, the principal axis of the tensors Q and a are
not the same, and the calculations are much more in-
volved.

To illustrate how the above problem comes about we
find the equilibrium configuration of the order parameter
(2.4) in an external field Ho. We take the field to be along
the y axis. From the form of the susceptibility (2.6b), it is

clear that R(n, 0) would change from its zero-field form
so as to move co as close to Ho as possible without an ex-
cessive cost in dipole energy. Since A d;„has axial sym-

metry, whatever the final form of R is, co will be in the
z-y plane. If we now define

A to, =A d;p+A ~,s —— [ 2h[ —„'cos p+ —,'+cos g( 4cos p+ ~ )+cosg( ~ cos p —
4 )]mag

—g( 2 + 2 cos g) J + 4 g„[1—Y( T)]HOCOS g . (3.22)

Ed;ph
COSgp =

Ed;p(h —2g) +2X„(1—Y)HO
(3.23)

To find the equilibrium form of R, we need to mini-
mize (3.22) with respect to cosg and cosP; the values of
cosg and cosP for which A,',", has a minimum are found,
after some algebra, to be unique:

cosPO ——0 . (3.24)

Therefore R is the product of a rotation about the z axis
for +m/2 and a rotation about the x axis for go given by
(3.23). This solution requires

~
cosgo

~

& 1; it follows that
00 must be larger than

H; = [Ed; g /g„(1 —Y)]'~
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(H;)'(h /2g)

(H;) (h /2g) + [Hp —(H;) ]
(3.25)

Note that H;=20 G only.
Physically what happens is the following: as the paral-

lel magnetic field is turned on the equilibrium configura-
tion remains the same as in the zero field as long as the
magnitude of the field is below H;. The vector p] (the
ESP spin-quantization axis) is still in the z direction.
Once Ho exceeds II;, however, co leaves the z axis and
moves toward the direction of the field; the angle between
co and Hp (~/2 —gp) keeps getting smaller as Hp increases
as a consequence of the increasing importance of A '",

~
relative to A d";p. Finally, as Ho~ oo, m aligns parallel to
Hp(gp ——+]r/2). It is not difficult to reexpress R in the
conventional way in terms of n and Leggett's magic angle.

The above form of R comes as compromise between
the magnetic and dipole energies; neither is minimized in

equilibrium. Consequently, the dipolar torque Rd;~ does
not vanish in equilibrium; for Hp & H; it equals

xX„[1—Y ( T))H pcosgpsingp/2 .

Leggett's method, which ordinarily is applicable only
when Rd;~ ——0 in equilibrium, can be extended to this case
if, in addition to the symmetric part of the tensor N [de-
fined in Ref. 5, Eq. (5.2)], one also uses the antisymmetric
part. The algebra is rather complicated, but straightfor-
ward, and we do not display it here since it is not of great
practical consequence. To make this clear, let us rewrite
(3.23) in the. form

and, from definition (2.13), we find

Q 0 0

Q = 0 Qy Qy,

0 Qy, Q,

(3.27)

where, in the limit gp = +7T/2,

Q„—:y Ed;p(h/2 —g)/2X„,

Qy
——Q, =y Ed;ph/2g„,

Qy, =+3y Ed;ph/8X„.

(3.28)

There is no clean separation into longitudinal and trans-
verse motion; all three resonance modes are mixed" to-
gether and have nonzero weights for an arbitrary direction
of the external oscillating field. The resonance frequen-
cies are obtained by solving the following equation:

For realistic values of Hp, one always has Hp))(H );
therefore gp —m /2.

In this limit, Rd;~ nearly vanishes and no refinements
are needed in Leggett's method. However, one major
complication remains: the principal axes of a and Q are
still different. Since now co

~ ~

Hp, a is diagonal. We write

100
a= 0001+ I'(T) (3.26)

001

(1+a)p] Q„
2 2 2

Ct) —CX COL

z (I+a)p] Q,
(co —Qy ) p] —

z z
Q7 —CX COL

(1+a)p] Qy,

CO —A COI
2 2 2

a(1+a)cop]L, Q„
+ lQ)COI +

i(co —a p]L)

a(1+a)p]p]LQ» z z a( I+a)p]]g»l Q~
+(CO —Qy ) ]COCOI +

i (p] —a coL) ] (p] —a coLz )
=0 . (3.29)

For given values of temperature and Ho, solutions of
(3.29) can be obtained numerically. In order to get an idea
what the NMR response is, let us consider only tempera-
tures close to T, (so that a=0). Equation (3.29) then sim-
plifies to

(p] —Q„)[(co —Qy)(p] —Q, ) —Qy, ]—co p]L (p] —Qy ) =0 .

(3.30)

If Q», were zero, (3.30) would separate into the stan-
dard equations for the longitudinal and transverse reso-
nance frequencies. Since this is not the case, we must
solve (3.30). However, the-algebra can be simplified once
we realize that (3.30) holds close to T, and for Hp »H;;
then, to an excellent approximation, coL ~&Q~, Q~, Q„Q~,.
The frequencies of the resonance modes are given as

p][(co —Q]) +Qy, ]
Xzz(a]): Xpg z z z z z z &(p]) 7

( co ] coz ) (coz co3 )( co3 co ] )

~[(~' Q])(~' —Q') ~'~—i ]
Xyy(p]) Xfg z z z, z z z +(p])

(P]] ~z)(P]z P]3)(P]3 P]])

(3.32)

(3.33)

However, Q~, appears in the expressions for the com-
ponents of the dynamical susceptibility tensor. It is in-
teresting to check what is the extent of mixing" of the
three resonance modes (3.31). To this purpose, we write
the diagonal components of the imaginary part of the sus-
ceptibility tensor (the results below correspond to the limit
of the relaxation time going to zero. For finite ~ the ex-
pressions are very cumbersome. We also set Q~
=Q, =—Q]):

co ) =Qy ~ c02 =coL +Qx +Qz, Q) 3 =0,2 2 2 2 2 2 2 (3.31)

Thus, the finite value of Qy, does not seem to have an
influence (in this limit) on the resonance frequencies. where

p](p] —Q] )(co —Q„)
2 2 2 2 2 2

( p3] p3z)( p]z p—]3)(p]3 p—]])—(3.34)
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6(co): (co2 c03)5(co Ico] ) + (co3 co] )5(o] ~2)2 2

+ (co]—coq)5(co —co3),2 2

and m], ~z, co3 are roots of (3.30).
Let us imagine that the oscillating field H~ is applied

in the y direction. In the limit col ~ ao (see above), co3 0,
and only ro] and co2 have finite weights in X„'„'(co). From
(3.33) it follows that the relative weight of the modes with
frequency co& and co] goes as =Q~, /Q]col. . Obviously, this
is a rather small number, and therefore there is a very lit-
tle chance that the mixing would be detected experimen-
tally. Similarly, the relative weight of mI and cu2 in
X" (co) is =(Q~, /coL, ); again, a small number. Giving
that co] does not have any weight at all (in the limit con-
sidered) in g~(co), we conclude that for practical purposes
the "longitudinal" mode ot frequency co] separates from
the "transverse" modes with frequencies co2 and co3.

B. cw NMR for thin films

Now we turn to the case of thin superfluid films within
the limits of applicability of our model as explained in
Sec. II. From the experimentalist s point of view this re-
gime is probably easier to deal with. Moreover, the nature
of the pairing interaction and the relevant properties of
the normal liquid are, to a good approximation, the same
as in the bulk. This is of considerable help in putting the
theory on a more quantitative footing. Many of the cal-
culations needed are very similar to those performed in
Sec. III A and we will avoid repetition.

As in Sec. IIIA, we first find the explicit forms of the
dipolar part of the free energy. Using our model this is
straightforward (see Appendix B). As expected, the final
result has the general form required by symmetry. Expli-
citly,

B) required to obtain Ro and R] from Eq. (3.36) can be
performed numerically. We have taken a», f», and Xsc
from the plots in Ref. 20. We obtain Ro ——2.0 and
R] ——0.5, at saturated vapor pressure (0.28 atm), as is ap-
propriate for adsorbed films.

We now proceed with the discussion of the cw NMR
properties in the a and b phases on the basis of the dipo-
lar Hamiltonian (3.35) and Leggett's method outlined in
Sec. II. In this case, because the normal component has
three-dimensional character, we can say that the a phase
is most probably stable at any temperature since the
strong-coupling corrections to the free energy always
favor the ASM-type state as opposed to the BW type" or
the b phase. Thus, only a very brief remark concerning
the properties of the b phase in the thin-film regime will
be given at the end of this section. We now discuss the
important case of the a phase.

The order parameter for the ABM-type state can be
chosen in the form given by Eq. (3.2). In zero magnetic
field, the vector d will orient itself in spin space so as to
minimize A d;~. A quick look at (3.35) shows that, if we
were dealing with particles rather than quasiparticles, our
model would have no orientational effect on d. In zero
magnetic field, the direction of d would be unspecified.
Our method would then be insufficient for the discussion
of orientational effects and we would have to include
terms of higher order in (kFd) ' and d/g in our expres-
sion for A d;~ (see Appendix B). Fortunately, quasiparti-
cle effects are present in A d;~', in fact, it is the quasiparti-
cle renormalization factor which determines the orienta-
tion of d in the lowest order.

Using the values for Rp and R& listed above and Eq.
&3.2), we can find A d";~ in terms of the relative orientation
of d and l(z). After some algebra and integration around
the Fermi circle, we obtain

A d"; = f [—3(RO+R])
i
d](k )

i ~d p
—— 3R](d.I) = ,'Eo p(d l)—

P (3.37)

+6Ro~d(k)k~ ]. (3.35)

a

R (q)=
[1—fq&sc(q o)]' (3.36)

where we use, for the polarization-potential parameters,
the standard notation of Ref. 20. The integrals (Appendix

Ro and R] are the averages over the Fermi circle of the
q-dependent quasiparticle renormalization factor R2(q),
as defined in Appendix B. One notices immediately that
the effect of the quasiparticle renormalization factors goes
beyond merely changing the overall magnitude of the di-
pole energy; as a consequence of the reduced symmetry,
these factors qualitatively determine the equilibrium
orientation. Therefore, before any further discussion we
must find the values of Ro and R]. The quasiparticle re-
normalization factor R (q) has been found explicitly by
Takagi' within the paramagnon model, and by Fomin
et al. ' in the polarization-potential approach. ' Since, in
the present case, the normal fluid has three-dimensional
character, we can use the expression in Ref. 19:

Obviously, A d";~ has a minimum for d perpendicular to l.
Since l is perpendicular to the surface of the film, d is
confined to the x-y plane. As far as the dipole energy is
concerned, all directions in this phase are degenerate.
This is a rather surprising result, as it is just the opposite
of what happens in the very-thin-film regime and in the
bulk. As we have already emphasized, the quasiparticle
renormalization effects and the reduced symmetry of the
order parameter are responsible for this equilibrium orien-
tation of d.

In a cw NMR experiment, a constant, uniform magnet-
ic field Hp is applied to the system. We will again consid-
er only two simple possibilities for the direction of
—+

Hp. Hp either parallel or perpendicular to l. Since the or-
der parameter in a magnetic field takes a form which

maximizes the susceptibility, it is clear from (2.8) that d

will tend to align perpendicularly to Hp.
When Hp is parallel to I, both magnetic and dipole en-

ergies are minimized when d lies in the x-y plane. The
two vectors d and S remain perpendicular to each other
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throughout the motion (assuming that the applied field is
weak, compared to &0). Equations (2.9) can then be
linearized and solved for the dynamical susceptibility ten-
sor. Since rotation of d about the z axis (1) does not
change A dip there is clearly no longitudinal resonance.
The components of X(co) are given by Eqs. (3.10), in
which we change Q, to —0, where2 2

0,—=y Ed;p(3R()/X„= 2 y Ed;r/X„. (3.38)

Thus, we find a single, elliptically polarized transverse
mode of frequency

co=(col +0, )' (3.39)

In contrast to Takagi's' result for a superfluid slab,
where in the strong perpendicular fields there is a negative
shift in the transverse mode [co=(col —Qz )', where Az
is the Leggett frequency; this result has been confirmed
experimentally '], we predict that once the thickness of
the fil~ becomes significantly smaller than the coherence
length, the NMR signal would exhibit a positive shift in

the transverse resonance. Therefore, at least within the
limits of applicability of our method, there is an easy way
to distinguish between a slab (with a three-dimensional su-
perfluid component) and a thin film (with a two-
dimensional superfluid component).

The susceptibility anisotropy has no effect on (3.39).
Therefore, the only uncertainty that our model introduces
in the value of the resonance frequency is that which is
contained in (3.37). The frequency 0, which determines
the shift can be conveniently written in the following
form:

Q~=rQ~,2 2 (3.40)

where r= P, /P~ or, —at least close to T„r=n, /nz,
where n, is the superfluid density in the a phase of the
thin film and nz is the corresponding quantity for the
bulk 3 phase. The ratio r is less than unity, and is tem-
perature dependent, but its other properties are 'difficult to
elucidate. In the regime we consider in this subsection it
is possible that r is significantly less than 1 and, conse-
quently, any search for the transverse NMR shift of type
(3.39) would have to be conducted in a fairly low field.

As in Sec. III A, we can find the linewidth correspond-
ing to the resonance (3.39). The effect of the susceptibili-
ty anisotropy can be neglected here, since it is clear from
(2.8a) that a=O((k~d) '). The result is

Ag X„r, = (3.41)
~L ++g +nO

where A, is given in (2.16a).
If the applied field is in the plane of the film the equili-

—+
brium configuration of d is along (I &&HO). Both magnet-
ic and dipole energy are minimized. The equations of
motion for d and S are easily solved and we find that the
signal for the transverse NMR is the same as in the nor-
mal system; the resonance occurs at coI and there is no
shift caused by the dipole forces. There is a single longi-
tudinal resonance mode at

2 2
co =Qg (3.42)

The linewidth of this mode is

1 A 2 +71I
))
—— ~Q,

+nO
(3.43)

Therefore, the peculiar arrangement of vectors I, d, and

Ho in the orthogonal triad produces the same qualitative
effect in the cw NMR as the isotropic bulk B phase.

As we have mentioned above, it is unlikely that the re-
sults for the b phase in this regime are of experimental in-
terest and, for the sake of brevity, we will omit them. The
calculations are quite similar to those performed in Sec.
IIIA for the case of very thin films and the results are
qualitatively similar.

IV. CONCLUSION

%'e have studied the cw NMR response of a two-
dimensional superfluid„He. Two thickness regimes were
considered, the very-thin-film (d=kF ) and the thin-film
case (kF &d &g) with two- and three-dimensional nor-
mal components, respectively. There is, as expected, a
significant qualitative difference in the NMR spectrum
between the a and the b phases. This difference forms a
basis for an experimental identification of the stable phase
in a superfluid film; we believe that our results can serve
as a useful reference in this sense. Caution is needed

I

when our numerical estimates for resonance frequencies
are used; as discussed in Secs. II and III, there are various
sources of possible errors which could, at least in princi-
ple, influence our numerical estimates. However, it is im-
portant to emphasize that there are very many features in
the NMR response which are quite insensitive to the ap-
proximations we employed. For example, the ratio of the
longitudinal and transverse resonance frequencies in the b
phase of the very-thin-film regime depends only on our
model for the two-dimensional Fermi liquid. We do not
expect that a more sophisticated model (with a more real-
istic wave function and included renormalization factors)
would produce any major changes in the value of the ratio
Qb J /Qb

~ ~

in Sec. III A. In fact, a cw NMR experi-
ment would be quite conclusive in this case; observing the
value of the above ratio in the neighborhood of 0.2 would
positively identify the b phase. It could be even possible
to use the deviation from the bulk value to test the model
used for the two-dimensional Fermi liquid. Similarly, the
a phase in the very-thin-film regime could be easily iden-
tified by the negative shift in the transverse resonance.
The a phase in the thin-film regime also has a very dis-
tinctive NMR response.

Therefore, we expect that a cw NMR experiment in the
two regimes that have been discussed would yield useful
information about the two-dimensional superfluidity and
the character of the superfluid and normal components in
He films. From an experimentalist's viewpoint, the ma-

jor obstacle in designing the experiment would probably
be the weakness of the signal from a two-dimensional
sample. This, however, is the problem which has ap-
peared frequently in two-dimensional physics and has
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been repeatedly overcome. We think that such an experi-
ment is within the reach of today s experimental capabili-
ties and we hope that it will be done in the near future.
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APPENDIX A

The contribution of the dipole interaction to the superfluid free energy can be written in the following form:

~d;~ ———,
' fd 8 fd r g~p(r }(cr )rs(op)„&gr(R+r/2)g&(R r/2)—) &P,(R—r/2)gs(R+ r/2)), (A 1)

where

2 2

g~p(r )= (5~p 3r~rp) —(r = r/r) . —
p

3 (A2)

I

the x-y plane, and p is the projection of r on the x-y
plane. 4(z) ls the ground-state wave function for an He
atom bound on the host surface.

Combining (A4) with (A3), we obtain

P~(r )=g a~(k )e' " '~C&(z),
k

(A4)

where A is the area of the film, k is the wave vector in

o~ (a = 1,2, 3) are the Pauli matrices, & ) denotes an
anomalous average, and y is the gyrornagnetic ratio. We
introduce the spin tensor F„,defined as

F»(r, R)—= &Q„(R—r/2)f (R+r/2)) .

If a system has full translational symmetry, F„„will be
independent of R. However, if this symmetry is broken,
as in the thin-film geometry, F» will generally depend on
R.

In the very-thin-film regime we, in fact, consider a
monolayer of He on a substrate, and assume that the sys-
tem behaves like a two-dimensional Fermi liquid. Then
the field operator can be expanded as

F p(p, z;Z) =pe' " '~4(Z —z/2)4(Z+z/2)F~p(k ),

where Z =—R.z and

(A5)

F p(k )=—&a ( —k)ap(k )) .

It is also useful to define the spin vector F:

F(k ):—— (o'2o—) pF p(k ) .
2

(A6)

With the help of (A5) and (A6), after somewhat lengthy
algebra, A d;~ can be written as

A d;p ————,y A' Q QF~(k ')Fp(k )K~p(k —k '), (A7)
k k'

with

Ik p(q )—= fd pe ' ~f dzg p('r )fdZ@'(Z —z/2)C'(Z+z/2) (q—:, k —k') .

In order to find X p(q ) we need to know @(z). We assume that we can approximate @(z) by

0 for ~z~)d/2,
1/~d for ~z

~

(d/2 .

(A8)

(A9)

Although this approximation is rather crude, we do not believe any significant error is introduced in our results by mak-
ing it; it clearly contains the relevant physics. Equation (A9) can be inserted in (A8) with the result

2&
K~p(q )=

d
~ —5 @+2 1 —expa-

2

T

qd
q qp+ 1+2exp 5,5p, . (q—= q/q) . (A10)

Finally, we can perform the sum over
~

k
~

and
~

k
~

in (A7) and, using the definition, "
d(k ):f' Q F(k ),—

Ik)
where g is the overall magnitude of the order parameter, we obtain, from the explicit form (A10),

(A 1 1)
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2/2 2

f f ' d*(k') d(k)d1P

1+2exp
2

d,*(k ')d, (k )—2 1 —exp q'd*(k ')q. d(k ) (A12)

To put (A12) into the desired form (2.20), we now use d~(k )=A;k; and insert this in (A12). We obtain

~y ]h ~ —23*A dp dp' k, k qd
dlP d zl zJ 2 2 l J

There are two types of tensors appearing in (A13):

~j=f—"~ f "~ Q(k k')k,'k, ,

—2A "3 I q q k'ki 1 —exp/J m 2 2 f m J 2

(A13)

(A14)

S; ji=f f Q(k k')qq k ki.

From symmetry considerations, it follows that
1

+ij =
2 Q]~ij

1 1 1

]mi! 4 (Ql + 2 QO) ]m~ji 8 QO(~lj~ml+~il~mj )

where

g.—=f ', ~ f ',~'Q(k. k ), g, =—f ",~ f ',~'Q(k k )k k .

From (A16)—(A18),

2VTy Il lp ] gc 1 1 1 4 1 1

2 2 2

~dI P 2 Q]~zi~zi+( 8 + 4 Ql+ 8 QO)~ij~ij+( 8 8 QO)( ij ji+ ii jj)I

(A15)

(A16)

(A17)

(A18)

(A19)

where

Q =—exp — (1—k.k ')kFd

It is a matter of straightforward algebra to show that (A19) can be obtained from

27r fi df t
—Ql I

d(k )
I
'+( 2 Ql+ 2 Q. —2 )

I
di(k )

I
'+2(-' —Q. /2)

I
d(k).k

I
'] (A20)

again by using d (k ) =A;k;.
Therefore we have finally arrived at the expected form, (2.20), for ~d;~. We now identify

Ed &
—=0.4, b:——10gl, g —= 10( —2 Q] —

2 go+ 2 ), h—:10(.—Qo/2+ 2 )
lry ]]2 f (T) (A21)

The factor of 10 was introduced to make g and h numbers of order unity. g and h as functions of x =kFd are plotted in
Fig. 1.

In Ref. 8, Ed;~ was erroneously estimated to be =10 "(1—T/T, ) ergs/cm, close to T, (for He layer on He II
film ). The error was caused by a misplaced factor of (22r) . The correct estimate is

Ed]~=10 ' (1—1/T, ) ergs/cm

APPENDIX 8

We start from the general expression (A7):

A d]],= ——,y fi g g E"( k ')Ep( k )R (
I

k —k '
I

)IC~p( k —k '),
k k '

where now, since the normal component is effectively three dimensional, E p is given by its bulk form,

I] ~p(k —k ') = — (5 p 3q~qp), —

(A22)

(B1)

(B2)
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and R (q) is the quasiparticle renormalization factor in the three-dimensional Fermi liquid. If we use the model intro-

duced in Sec. II, we have that F~( k ) ~ 5k o', from this and from definition (A 1 1) we obtain

2nd'
A d;p

————,y A'
Q f f R (q)K p(q )d~(k')dp(k )

y'R'g~f ~ f ~ R2( )[d*(k')d (k )—3q. d*(k')q. d(k )], (83)

where 1(t is the overall magnitude of the superfluid order parameter in the thin-film regime. Equation (83) has the same
general form as (A12). Using Eqs. (A14)—(A19), we can transform it in the following final form:

~dp= "f PRi I
d(k ) I' —3«o+Ri)

I
di(k ) I'+6Ro

I
d(k ) k I'~,

2 2m

where

Ro= f "~ f "~ R'(q) '

R = f—"~ f ~ R (q)k.k'
2~ 2~ ' ' 2~ 2~

(84)

(85)

(86)

Note that (84) is exact in the limit d/g~O, (kid ) —+0. For realistic situations, therefore, our model amounts to re-
taining only the zeroth-order term in the expansion of 4 d;z in terms of small quantities d/g and (kid); this is suffi-
cient for the level of accuracy we require in our discussion.
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