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Atomic and molecular hydrogen isotopes in liquid helium

K. E. Kiirten*
Courant Institute ofMathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012

M. L. Ristig
Institut fiir Theoretische Physik, Universitat zu Koln, D 5000 K-oln 41, West Germany

(Received 9 July 1984)

We present a theoretical analysis of the properties of atoms and molecules of hydrogen and its iso-

topes in liquid He. Numerical results on the chemical potentials and on the volume coefficients of
these admixtures as functions of the bulk helium density are reported and discussed in detail. The
ab initio calculations are based on optimized wave functions of Jastrow type and employ realistic
hydrogen-helium potentials. The optimization is performed within a standard paired-phonon
analysis in conjunction with the hypernetted-chain approximation. The results on chemical poten-
tials and volume coefficients are given from the hypernetted-chain approximation and are supple-
mented by the results of a variational Monte Carlo procedure. In contrast to the atomic states, di-

atomic hydrogen, deuterium, and tritium molecules penetrate the helium surface and dissolve into
the bulk interior.

I. INTRODUCTION

Recent exciting experiments on spin-polarized gases of
atomic hydrogen and deuterium at low temperatures and
densities, being higher by several orders of magnitude
than those which hitherto could be achieved, have opened
a door to the exploration of many new or poorly under-
stood phenomena of interest in diverse areas of physics. '

It is now known experimentally that the-interaction of hy-
drogen with the surface of a confining helium chamber
dominates the most important properties of such spin-
aligned systems. At present, experimental and theoretical
interest is therefore focused on detailed studies of the fate
of H, D, and T atoms during and after the recombination
process at the helium surface. In particular, we would
like to know if hydrogen or one of its isotopes is clustered
together with itself, is bound to the helium surface, or if it
dissolves into the bulk liquid helium.

In this contribution we address the latter problem, ex-
ploring the properties of isotopic hydrogen atoms and
molecules sufficiently below the "He surface where they
depend mainly on the local density of the interior liquid.
The behavior of the foreign particle in this region is
governed by the properties of the chemical potential, re-
placing one "He atom in the liquid by one hydrogen atom
or molecule. These studies are not only of interest in their
own right but also provide valuable information and input
data which will be necessary for a more sophisticated
treatment of the bound-state problem of one foreign parti-
cle at or above the helium surface.

Our ab initI'0 study is based on a microscopic approach
by invoking the variational principle for the expectation
value of the ground-state energy with respect to a spatially
correlated wave function. The optimization procedure
adopted here employs the paired-phonon analysis of
homogeneous boson mixtures developed and described in
Refs. 8—10. This method improves systematically upon

an earlier approach '" where constraint variations with
simple parametrized wave functions have been performed.
Expectation values are calculated within the hypernetted-
chain (HNC) approximation and —in the most interesting
cases—by employing an appropriate Monte Carlo algo-
rithm. "

The following section summarizes the formal theoreti-
cal concept and provides explicit expressions for the
chemical potential and the volume coefficient, which are
the central quantities of interest. Numerical results on
these functions are reported and discussed in the subse-
quent sections. The behavior of the hydrogen atoms H,
D, and T in liquid He is described in Sec. III. Section IV
is reserved for a detailed report on the results characteriz-
ing the properties of the isotopic hydrogen molecules in
the He liquid interior.

II. FORMALISM

On a microscopic level the behavior of a foreign parti-
cle in the presence of a many-body medium such as liquid
helium is determined by a Hamiltonian

H =H))+H)2,
where

g2 N —1 X—1

H)t = — g V;+ g v(&(rtl)2m'

is the Hamiltonian of (N —1) He atoms with atomic
mass m~ =—mH, interacting via a pair potential U&I. The
operator

g2 . X—1

~~+ g vi2(r;~)2

2777 2

represents the kinetic energy of the foreign atom or mole-
cule with mass m2 and the potential energy of the foreign
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particle admixed to X —1 helium atoms.
Does a hydrogen atom or molecule dissolve into liquid

helium'? To answer this question we must construct the
spatially correlated ground state which is associated with
the Hamiltonians (1)—(3). For a finite number X of parti-
cles we may try to do this by employing a Green's-
function Monte Carlo algorithm. At present, our calcula-
tions will be based on an approximate ground-state wave
function of suitable form:

X—1 N —1

/=exp ——,
' g u~~(rj. ) ——,

' g u&z(r;z)
I (J i=1

(4)

BE(p, x)P= ' - =2(Ez —Ei&)+
Bx Bx

/

Here, E(p,x) is the expectation value of the energy per
particle of the mixture being at density p and concentra-
tion x of the admixed component. The derivative may be
broken down into the energy contributions (i,j=1, 1 or
1,2)

EJ ———,p I v;J (r)gj (r)d r,
(7)

\

v,j(r) =vV(r) —" (m;-I+mJ-I)Vzu J(r),
8

and a term BE~~/Bx which represents the energy change

We may choose X to be finite or take the thermodynamic
limit N~ oo where the density p of the bulk liquid is held
constant. In case ansatz (4) is not flexible enough to
answer our question with sufficient accuracy we can go
one step further and include triple correlation factors in
Eq. (4), etc. These additional pieces describe effects
caused by backflow ignored in ansatz (4).

The wave function (4) permits differing spatial correla-
tions between like and unlike particles. To determine the
optimal functions u»(r) and u ~z(r) we follow Refs.
8—10. This procedure rests on the variational principle
for the ground-state energy (f ~

H
~ p) /(1(

~ p) and leads
in the thermodynamic limit to a set of two Euler-
I.agrange equations for the radial distribution functions
g~~(r) and g~z(r) for like and unlike particles, respective-
ly. Adopting the hypernetted-chain approximation which
relates functions u~~(r) and u~z(r) to g»(r) and g)z(r) the
Euler-Lagrange equations may be cast into a simple form
and solved by standard methods invoking the paired-
phonon analysis.

The behavior of hydrogen atoms or molecules in the in-
terior of the He liquid is determined by the chemical po-
tential

@=X(E; E~) . — (5)

The quantity NEz is the energy of X He atoms, XE; is
the energy of (X —1) He atoms plus one foreign particle.
Thus, p represents the change in energy by replacing one
He atom of the liquid by one impurity. The energy por-

tions are evaluated as expectation values of the appropri-
ate Hamiltonian (1) with respect to the corresponding op-
timal wave function of type (4).

In the thermodynamic limit Eq. (5) may be cast into the
form '

X f (Sii —1)[(Sii—1) —Siz]Si, k dk . (8)

A calculation of the chemical potential (6) employing
the expressions (7) and (8) neglects the contributions of
the so-called elementary diagrams. A standard variational
Monte Carlo approach based on ansatz (4) with the op-
timally determined functions u~, (r) and u&z(r) as input
data permits the avoidance of the above (hypernetted-
chain) approximation. ' With the help of Eq. (5) we may
calculate the expectation values E;, Ez, and p accurately
with an absolute statistical error 6p =X && [(5E;)

+(Mz) ]' . As found in an analogous Monte Carlo
treatment of the pure He system the size effects are very
small. There are only insignificant differences between
our results for 32 and 64 particle systems. '

Ansatz (4) ignores the presence of triple, quadruple, . . .
spatial correlation factors in the true ground state. To
learn something about their importance and influence on
the chemical potential we study the properties of the
volume coefficient a. This thermodynamic quantity de-
scribes the relative increase in volume if we replace one
He atom in the liquid by one impurity. It may be direct-

ly extracted from the optimal structure function via
—a= 1+S&z (k =0). The exact chemical potential p and
volume coefficient a associated with the true ground-state
wave function are related by'

=aX(0)p ' =D( p), —
Bp

where

(9)

X(0)= lim A' k /4m&S»(k)=m&c
k~0

(10)

determines the velocity c of first sound in liquid helium.
In general, the expressions on the left- and right-hand
sides of Eq. (9) differ from each other if we insert the
quantities p( p) and D( p) associated with an approximate
ground-state wave function such as ansatz (4). The mag-
nitude and behavior of this deviation may thus provide
some indications about the influence of multiparticle
correlation factors on the density dependence of the chem-
ical potential p.

III. RESULTS GN H, D, AND T

An early theoretical discussion of binary mixtures of
atomic hydrogen, deuterium, and tritium with helium has
been given in Refs. 5, 7, and 11. It was found that the bo-
son systems H- He and T- He completely phase separate
at zero temperature and H, D, and T atoIns do not
penetrate the surface of liquid He since their chemical
potentials are positive.

We study these systems within the improved theoretical

of the background liquid induced by the admixed particle.
In terms of the optimal structure functions generated by
the paired-phonon procedure in conjunction with the

, hypernetted-chain approximation the derivative is given
by the integral

~Err A' 1

Bx 8m& (2~)zp
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approach summarized in the preceding section. We are
particularly interested in studying the density dependence
and the sensitivity due to the hydrogen-helium interac-
tion. This interaction is described by a potential of
Lennard- Jones form:

U, 2(r)=4@[(o/r)' (o—/r) j
0

with the parameters @=6.6 K and o.=3.2 A which has
been employed before. ' To represent the He-He interac-
tion we adopt the HFDHE-2 potential of Aziz et al. '

Our numerical results on the chemical potential for re-
placing one He atom in the bulk by one H or T atom as a
function of density are plotted in Fig. 1. They are derived
from Eqs. (6)—(8) with the optimal structure functions as
input. These functions are calculated by an iterative
paired-phonon procedure yielding results on functions
p( p)—within the adopted approximation —with a numer-
ical accuracy of about 2%. The results will only margin-
ally shift if potential (11) with @=6.6 K and o.=3.2 A
is replaced by the more refined hydrogen-helium potential
of Ref. 15. To explore the consequences of a rather dras-
tic change in the interaction we have increased the
strength of potential (11) from a=6.6 K to E=8.1 K.
This strength has been recently advocated by Silvera. At
a density p=0.0172 A we find in this case that the
chemical potentials (shown in Fig. 1) are lowered by about
6to8 K.

Under the various conditions adopted the chemical po-
tentials (6) are positive and increase rapidly with 'increas-
ing density. The latter property indicates that it becomes

energetically favorable for the hydrogen atoms to reside in
regions of low densities. We learn from Fig. I that the
chemical potentials for H and D atoms are positive and so
large that they cannot penetrate the helium surface. The
situation might be somewhat more subtle for T atoms if
we follow Silvera and assume the hydrogen-helium po-
tential to be strongly attractive (@=8.1 K). En this case
we find a rather weak chemical potential, @=2.9 K, at
density p=0.0172 A . We therefore expect that under
these conditions a tritium atom would very much behave
like a He atom'in liquid helium. '

Our numerical results on the volume coefficients o. as a
function of density are depicted in Fig. 2. This quantity
is positive at all densities considered, it increases if the
density is lowered and becomes singular at about p=0.016
A . At this density the optimal ground state (4) of the
He liquid is unstable against density fluctuations, i.e.,

quantity X(0)= m
~ c vanishes. Calculating function

D(p) =aX(0)p ' from these results we find, for exam-
ple, in the case of tritium, D-1000 KA at p=0.017
A and D -2000 K A at p=0.021 A . Evidently,
quantity D(p) is positive and increases with increasing
density. This behavior is consistent with our results on

p(K)
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FIG. 1. Chemical potential p for replacing one He atom in
the liquid at density p by one H, D, or T atom. The calculation
is based on a hydrogen-helium potential (11) with parameters
@=6.6 K and o.=3.2 A employing ansatz (4) and Eqs. (6)—(8)
with optimally determined structure functions as input. Open
circles at p=0.0172 A indicate the shift in energy for H and
T atoms if the well depth of the hydrogen-helium potential is in-
creased to @=8.1 K.

16 20 22
10 (A )

FICx. 2. Theoretical volume coefficients a of H and T atoms
and H2, HD, T2 molecules in liquid helium as a function of He
density p. Results are extracted from the optimal structure
functions S~2(k) at k =0 associated with ansatz (4) and poten-
tials of form (11)with (i) @=6.6 K, o.=3.2 A for H, T atoms, (ii)
m=15. 56 K, o.=3.01 A for H2, HD, and T2 molecules in liquid
He. The open circle represents the result on coefficient a for T

0
atoms at p=0.0172 A if the strength of the T- He interaction
is increased to @=8.1 K.
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the slope of the chemical potential p(p) which may be
taken from Fig. 1. A crude numerical estimate of the.
derivative Bp /Bp yields, indeed, positive values of the
same order of magnitude but they are roughly twice as
large as the corresponding results on quantity D(p). As
discussed in Sec. II this quantitative discrepancy must be
caused by neglecting the elementary contributions to the
expectation values in question and, in particular, by omit-
ting the multiparticle correlation factors in ansatz (4). We
expect that these effects will presumably shift the above
numerical results on the chemical potentials to somewhat
smaller values. However, we do not believe that such
more refined (but rather elaborate) calculations will lead
to a substantial or qualitative change of the picture drawn
above. Since H, D, and T atoms do not dissolve into the
liquid interior it is—in a next step of exploration —much
more warranted to study the surface bound states of these
atoms within a version of the present theory which is
adapted to treat inhomogeneous mixtures.

20
1

-20—

-40—

IV. NUMERICAL RESULTS ON MOLECULES

Recently, Silvera reported on results of an experiment
which provides direct evidence that hydrogen after recom-
bination to the molecular state penetrates the surface of
liquid He either in the form of single molecules or molec-
ular clusters. Before attacking the more complex prob-
lem of an H2 molecular. surface state we concentrate on a
theoretical study of diatomic molecules such as Hz, D2, T2
and HD, HT, DT in the helium liquid interior.

The exploration is based on the formalism of Sec. II.
The interaction between one He atom and one hydrogen
molecule is described by the Lennard-Jones potential (11)
adopting the parameters' i=15.56 . K and o.=3.01 A.
The optimal structure functions needed for expressions
(6)—(10) are generated by an iterative paired-phonon pro-
cedure. They are employed for calculating the associated
chemical potential p, the volume coefficient a and quanti-
ty D at various densities p and isotopic masses m2. Fig-
ure 3 depicts an isochore of the energy p as a function of
the mass ratio m2/mH, . Except at very small hypotheti-
cal masses (2m' & mH, ) the chemical potential is negative
at experimental saturation density, p=0.021 85 A, and
decreases monotonically with increasing molecular mass.
Consequently, hydrogen molecules penetrate —in contrast
to the atoms —the surface of liquid He and tend to dis-
solve into the interior.

To determine the contributions of elementary diagrams
neglected in the hypernetted-chain results the same quan-
tity is calculated from Eq. (5) within the variational
Monte Carlo (VMC) approach. With the optimal func-
tions u»(r) and u, q(r) as input data the standard Monte
Carlo procedure yields a chemical potential fitted by
curve VMC in Fig. 3. It represents the results of a least-
mean-square fit to the Monte Carlo data which are calcu-
lated with an absolute statistical accuracy of 6p=0.9 K'.
It is very gratifying that the elementary contributions
(difference between curve HNC and curve VMC) yield
only small corrections to the hypernetted-chain results.
They are negative thus supporting the tendency of the
molecules to dissolve into the liquid. .

FIG. 3. Chemical potential p for replacing one He atom in
liquid helium at density p=0.02185 A by one diatomic hy-
drogen molecule as a function of the isotopic mass ratio
m2/mH, . Curve HNC represents the optimized hypernetted-
chain results and curve VMC depicts a least-mean-square fit of
the associated variational Monte Carlo results (open circles).
The interaction between a, molecule and an He atom is
described by Eq. {11)with e=1S.56 K and o.=3.01 A. The
cross indicates the energy shift for a H2 molecule if the parame-
ters are changed to @=13.34 K and' can=3.03 A.

To study the penetration process of the various mole-
cules in more detail we plot our numerical results on the
chemical potentials for H2, HD, and T2 versus density p
(Fig. 4). The energies p, in hypernetted-chain approxima-
tion, are negative at all densities considered and the
heavier molecules are more strongly bound to the liquid
than the lighter. ones. . %'ith increasing density the chemi-
cal potential of H2 increases slightly, that of HD has an
extremely flat minimum and the T2 chemical potential de-
creases monotonically. Obviously, Tz is tightly bound and
dissolves into the liquid interior. The results on H2 and
HD seem to indicate that these molecules prefer to reside
at liquid densities below saturation. However, the energy
variation over the range of densities considered is relative-
ly small and comparable in size with the magnitude of the
elementary contributions to the chemical potentials of Hq
and HD found above at saturation density (see Fig. 3 and
open circles in Fig. 4 at p=0.021 85 A ). For this reason
we extend the Monte Carlo calculation on H2 from satura-
tion density to lower densities. These Monte Carlo data
are also shown by open circles in Fig. 4. Curve VMC
represents a least-mean-square fit to these data. As ex-
pected the magnitude of the elementary contributions is
small everywhere and decreases by lowering the density.
%'e believe that the elementary portions to the HD and Tq
potentials hav'e a similar dependence. The Monte Carlo
result at p=0.02185 A then indicates that the T2
chemical potential is very well approximated by the
hypernetted-chain result. In the case of HD molecules we
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expect that the Aat minimum in the hypernetted-chain re-
sult on quantiy p disappears if the elementary pieces are
included. We are therefore convinced that HD as well as
all heavier molecules dissolve entirely into the liquid inte-
rior. The H2 molecule is the most interesting system.
The Monte Carlo results on its chemical potential p show
a shallow minimum at density p=0.018 A . Provided
ansatz (4) is sufficiently accurate the behavior suggests
that H2 molecules penetrate the surface of the liquid but
might tend to reside in regions of densities below satura-
tion.

We stress that the above discussion rests on the assump-
tion (4). We further point out that the chemical potential
of Hz molecules is rather sensitive to changes in the
strength of the H2- He interaction. To demonstrate this
feature we calculate the chemical potential at
p=0.021 85 A assuming a test potential (11) with
@=13.34 K and o.=3.03 A. This choice has been adopted
by Silvera to simulate a more precise H2- He potential. '

The calculated shift in energy is about +14 K. It might
be surprising that such an increase is caused by a change
of 2 K in the potential well depth; However, expression
(7) which determines the energy portion E&2 involves the
potential U~2 as well as the optimal radial distribution
function g&z(r). An increase in the strength of the poten-
tial generates a larger overshoot in function g&2(r) and
both effects contribute coherently to the integral (7). The
same feature has been observed in the case of an He im-

purity in liquid helium. '

Our numerical results on the volume coefficients of the
molecules H2, HD, and T2 as functions of density are
plotted in Fig. 2. The coefficients for T2 and HD mole-
cules are negative at all densities considered. Consequent-

ly, quantity D=aX(0)p ' has the same property which is
in qualitative agreement with the (Monte Carlo) results on
the density dependence of the T2 (and HD) chemical po-
tentials which have a negative slope, Bp/Op&0. The
volume coefficient for the Hq molecule is negative at den-
sities p (0.021 A and positive for higher densities. The
behavior is in qualitative accord with the existence of a
minimum in the variational Monte Carlo results on the
chemical potential. This consistency suggests that the
minimum is not merely an artifact of approximation (4).

However, deviations from the equality (9) are apparent.
Between the densities p=0.017 A and p=0.020 A
the slope of the T2 curve in Fig. 4 gives roughly
Bp/Bp-1000 KA . The value differs from the corre-
sponding result on D in the average by a factor of about
1.9. Similarly, for H2 molecules function D(p) has its
zero at density p-0.021 A whereas the minimum in
the chemical potential p(p) appears at the lower density

p(K)—

-24

-32 — HD

I

16 18 20

0
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22
10 p(A )

FIG. 4. Chemical potential p for replacing one He atom in
the liquid by one hydrogen molecule plotted versus density p.
The solid lines represent the optimal hypernetted-chain results
on H2, HD, and T2, the open circles indicate the corresponding
variational Monte Carlo results, and curve VMC depicts the
least-mean-square fit to the H2 Monte Carlo data. The
hydrogen-helium potential is described by form (11) with
@=15.56 K and o.=3.01 A.

0p-0.018 A . These quantitative discrepancies are evi-
dently generated by neglecting the triple, quadruple, . . .
correlation factors in ansatz (4). Thus, we should be
aware that inclusion of these multiparticle correlation fac-
tors will correct the detailed dependence of the approxi-
mate chemical potentials. However, we strongly believe
that these backflow corrections will not lead to significant
changes in the magnitude and the gross features of the
variational results based on ansatz (4).

ACKNOWLEDGMENTS

We would like to thank I. F. Silvera, W. N. Hardy, G.
Chester, and M. Kalos for valuable information. This
work was supported by the Deutsche Forschungsgemein-
schaft under Grant No. Ri 267 and by the U. S. Dept. of
Energy under Contract No. DE-AC 0276 ER-3077 and by
the National Science Foundation Grant No. DMR-77-
18329.

Present address: Institut fur Theoretische Physik, Universitat
zu Koln, D-5000 Koln 41, West Germany.

I. F. Silvera, Physica (Utrecht) 109ck 110B, 1499 (1982).
W. N. Hardy, M. Morrow, R. Jochemsen, and A. J. Berlinsky,

Physica (Utrecht) 109&% 110B, 1964 (1982).
3I. F. Silvera, Phys. Rev. B 29, 3899 (1984).

"Y. M. Shih and Chia-Wei Woo, Phys. Rev. Lett. 30, 478
(1973).

5M. D. Miller, Phys. Rev. B 18, 4730 (1978).
R. A. Guyer and M. D. Miller, Phys. R,ev. Lett. 42, 1754

(1979).
7J. B. Mantz and D. O. Edwards, Phys. Rev. B 20, 4518 (1979).



31 ATOMIC AND MOLECULAR HYDROGEN ISOTOPES IN LIQUID HELIUM 1351

K. E. Kiirten and C. E. Campbell, Phys. Rev. 8 26, 124 (1982).
K. E. Kurten and M. L. Ristlg, Phys. Rev. 8 27, 5479 (1983).
M. L. Ristig, S. Fantoni, and K. E. Kiirten, Z. Phys. B 51, 1

(1983).
M. D. Miller, Ann. Phys. (N.Y.) 127, 367 (1980).

~~K. E. Kurten, in Recent Progress in Many-Body Theories, Vol.
198 of Lecture Votes in Physics, edited by H. Kummel and M.
L. Ristig (Springer, Berlin, 1984).
G. Baym, Phys. Rev. Lett. 17, 952 (1966).
R. Aziz, V. P. Nain, J. S. Carley, W. L. Taylor, and G. T.

McConville, J. Chem. Phys. 70, 4330 (1979).
~5R. Jochemsen and A. J. Berlinsky, Can. J. Phys. 60, 252

(1982).
K. E. Kurten and M. L. Ristig, Nuovo Cimento 2D, 1057
(1983).

&7R. Gengenbach and Ch. Hahn, Chem. Phys. Lett. 15, 604
(1972).

W. Meyer, P. C. Hariharan, and W. Kutzelnigg, J. Chem.
Phys. 73, 1880 (1980).


