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Eilenberger equations for moderately dirty superconductors
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Weak dependence of the Eilenberger Green's functions f (v) upon the direction v at the Fermi
surface is explored to obtain equations for the averages (f(v)) =E over the Fermi surface. The
derivation is similar to that of Usadel for the dirty limit. The proposed equations, however, are
valid not only in the extreme dirty limit, but for "moderately dirty" samples too, i.e., in the case
most often encountered in experiment. The formalism also describes superconductivity in a weak
field for any impurity concentration and at any temperature.

I. INTRODUCTION

A BCS superconductor with a weak coupling is
described by the system of Eilenberger (E) equations' in
any field, at any temperature, and for any concentration
of impurities. The equations read

v &f= g 2cof+ (g(—f) f(—g)), —26 1

26* 1—v 11*f+= g 2cof++—(g(f+)——f+(g)), (2)
fi 7

(4)

j =4meN(0)T g (v. lmg),
{9+0

f+(r, co, v)=f*(r,co, —v), g(r, co, v)=g*(r, co, —v) .

Here v is the Fermi velocity, fico = ir T(2n + 1) with
n =0, 1,2, . . . . The temperature T is measured in energy
units. The gauge-invariant gradient is II=V —i2eA/A'c
and A is the vector potential. The angular brackets
denote an average over all v directions on the Fermi
sphere. The relaxation time for scattering by nonmagnet-
ic impurities is r=l/v with 1 being the mean free path;
only S scattering is taken into account. The density of
states for one spin direction at the Fermi level is N(0)
and j is the current density. The Eilenberger Green's
functions f, f+, and g are the Gor'kov functions F, F+,
and 6 integrated over the energy variable. The "pair po-
tential" 6 depends on the position r only.

The whole phenomenon of superconductivity occurs
near the Fermi surface. As a result the exact Green's
functions F(r)'s and G(r) oscillate in space with a period
kF '. On the other hand, the macroscopic observable

.features of superconductors change very slowly on the
scale of the coherence length g or the penetration depth
XH of the magnetic field, which are both much larger
than kF ~.

In fact, the E equations are a semiclassical WKB ap-
proximation to the BCS theory in Gor'kov's formulation.
A substantial gain in dealing with the E functions
f(r), f+(r), and g(r) is that they no longer oscillate with

a period kz '. Instead, they change on distances of the or-
der g, so that they are suitable for inhomogeneous prob-
lems in superconductivity. The inequality k~g&&1 is ac-
tually a very weak restriction on the applicability of the E
formalism. Many problems in stationary superconductivi-
ty are technically much simpler when handled with E
equations in comparison with the traditional Gor kov ap-
proach.

Still, the functions f(r, co, v) and g(r, co, v) are quite
complicated objects primarily due to their angular (v)
dependence. In some circumstances this dependence is
weak, and the E formalism can be simplified.

In the dirty limit where the mean free path l «g, the v
dependence off and g is smeared by the strong scattering.
Usadel reduced the E equations for this case to a simpler
set involving the averages F(r, co) = (f(r, co,v) ) and
G(r, co) = (g(r, co, v) ):

——II.(GIIF—EVG) =—G coE, —D
(7)

2

Gi+ /F
/

=1,
TQ

Aln =2irT g F-
T Ace

j =4ireN (0)DT QImE*IIE, (10)

where D=vl/3 is the diffusion coefficient. All sums
hereafter are performed over co & 0, or n =0, 1,2, . . . .

The Usadel equations hold in the limit I/$~0. More
precisely, their domain of validity is given by the strong
inequalities

G ))2co7. , E))267./A' .

The condition I «g is actually met only in extreme cases
of a very short mean free path, e.g., in amorphous materi-
als. However, situations most often encountered in prac-
tice are those with I smaller than g, but still of the same

' order of magnitude. The question arises as to whether a
system of equations for the averages I' and 6 can still be
formulated for "moderately dirty" materials.

Another situation where the v dependence of the E
functions is weak arises near the critical temperature T, .
In Eq. (1) the only v-dependent term is small:

v IIf— f«f— .U

co cog
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due to divergence of g(T). In this domain the E set of
equations (1)—(6) yields the Ginzburg-Landau (GL) equa-
tions '

order (and of the same angular dependence) separately.
We introduce the vector 1=v~ for convenience and

multiply Eqs. (1) and (2) by r to obtain
2

—gGLII 5=A 1—
~0

8m. T, (T, —T)
7g(3)

7$(3)A' u
(~)

48m T,(T, T)—
Here g(3)=1.202,

(12)

(13)

1 IIf=gF —fG, 1.II—*f+=gF* f'+—6
with

(17)

F=F+2br/A, 6=6+2(ur .

Writing Eqs. (17), we used the symmetry relations (6); e.g.,

F+=(f+(v)) =(f*(—v) }=(f*(v))=F' .

Now substitute expansions (16) in Eqs. (17) and (3) and
collect the isotropic terms:

8 oo

X(A, ) = g (2n + 1) (2n + 1+A, )

and A, =Pi/2mT, r is the impurity parameter. The current
density expression provides the second equation for 6 and
A; it can be found elsewhere.

o =goF foG—
o=goF * foG—
1=go+ Ifo I

The solutions are

(19)

II. WEAK ANISOTROPY

Let us begin with the observation that the v dependence
of f,g is a result of inhomogeneity. Indeed, the Fermi
velocity vector v arises in Eq. (1) only in the combination
v II with the gauge-invariant gradient. By "inhomogenei-
ty" we mean here the magnetic field, the persistent
current, or the proximity effect in an otherwise uniform
superconductor. We shall use the term "field" in a broad
sense for any source of inhomogeneity.

In the uniform situation (g) =g, (f)=f. Equations
(1)—(3) then give

f(0) (f+(o))e (0)Ao

Po
'

Po
'

(14)
P() ——A' o) +

~

h()(T)
~

fo= go= ——y'=6'+ ~F ~'
y

' y'
Note now that the term 1.IIfk is of order 0+ 1 due to

the assumption made about the weak anisotropy. Then
for the first-order terms in Eqs. (17) and (3) we have

1 &fo =g(F f(6—
—1 II*f()——g(F* f(+6, —
o =2gog (+fof(+fof (

Solving this system with respect to g(, f(, and f&+, we ob-
tain the first anisotropic corrections to fo and go.

g( ——1 ImfoIIfo ——iy 1.ImF IIF,
y

where ho depends only on T and satisfies the self-
consistency equation (4):

f = — '[(2g() +
~ f ~

)IIf +f()II*f()]
2'VÃ0

f(+ =f((—1) .

(22)

C
ln =2nT gT

1

Po
The f( expression can be further simplified making use of
go+ Ifo I'=I:

This yields the BCS gap ho( T).
One expects the anisotropy of f and g (i.e., their v

dependence) to be weak in a weak field or when the strong
scattering in dirty samples smears this anisotropy out.
For this reason we look for a solution of the E equations
in the form

f=fo+f)+fr+
(16)

f(=y 'I'(forgo —goIIfo)

=y I.(FVG —GIIF) . (23)

We now note that the current density j of Eq. (5) con-
tains the average (vg }= (vg) }+O(g3),because both vgo
and vg2 are odd in v components. Therefore, j can be ob-
tained at this stage already up to the second-order terms
inclusive:

8 =So+8 i+82+ ' j =47reN(0)DT gy IrnF*IIF . (24)

where fo and go are isotropic v-independent parts; f( and
g( are linear in the operator v. tI; f2 and g2 are quadratic
in components u;II;, and so on. We assume the series (16)
are convergent. Terms of different orders in (16) have dif-
ferent angular dependence on the Fermi sphere. Substi-
tuting expansions (16) in the original E system (1)—(4) one
can, under assumptions made, compare terms of the same —,

' (v Ilf, }=6,G/fi coF— (25)

It is worth noting that this equation gives j(r) in terms of
the vector potential at the same point r, i.e., the j- A con-
nection is still local.

Similarly, taking the average ( } of both sides of Eq.
(1), we obtain
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accurate up to the second-order terms inclusive. This
gives, with the help of Eq. (23),

(27) is of order (lF/gy ) «F and can be neglected.
Hence,

II.y (GIIF F—V'G)=b, G Pre—oF . (26) 6=1- IF I
(30)

To derive another equation for F and G, we note that
up to the second-order inclusive F=fo+ (f2 ),
6=go+ (gz ), so that

Since the left-hand side of Eq. (26) contains already the
small derivatives, one can set there G = 1. In particular, y
of Eq. (28) reduces to 1+2cor so that we have

6'+ IF I
'=go+

I fo I
+2go&g'2 &

+fo(f+)+f'o(f ) .

On the other hand, collecting the second-order terms in

g +ff+=1, we have

II F=b,(1——,
'

i
F

i
) ficoF—.

2( 1+2cor )

The self-consistency Eq. (9) reads

5t=g F—2' Tg

(31)

(32)

2go&g~&+fo&f2' &+fo &fz & = —&gi+fif i+ & .

Therefore,

with 5t=(T, —T)/T, «1. Because 6/T, «1 also, we
have the estimate

6'+
I
F

I

'=1—&g i+fif i+ & . ~ ~ ~ (33)

This yields, with the help of Eqs. (22) and (23),
26'+ ~F ~'=1+, (ImF*IIF)'+

~

GIIF FVG ~'—j .
3y6

(27)
Thus, the set of Eqs. (26) and (27) completed with the

self-consistency Eq. (9), the current density Eq. (24), and
the explicit expression

2 '1/2

y= (6+2cor) + F+ (28)

y= 1+26coi.+ (F4*+F*b.) . — (29)

III. GINZBURG-LANDAU DOMAIN

The derivation of the EWA equations has been based
on the convergence of expansions (16). This is certainly
the case near T„where all quantities change slowly in
space [recall that the nth term in (16) consists of a com-
bination of the nth-order derivatives]. Therefore, the va-
lidity of this system in the GL domain does not call for
any restriction on the mean free path. The GL equations
for any impurity concentration should follow from our
system as T~T, .

To show this we note that as T~T„both F and F are
small, y=G, the correction to unity at the right of Eq.

describes situations where the Eilenberger functions are
only weakly anisotropic. %'e shall use the abbreviation
E%'A for this set.

In the dirty limit one sets ~=0 everywhere but in
D =U ~/3. The point is that at the left of Eq. (26) we
have, in fact, the ratio D/g ~ l/g which should be con-
sidered as finite because g cc l. Thus, in this limit
G=G, F=F, @=1, and the E%'A equations. reduce to.
the Usadel set (7)—(10). The first correction to the dirty
limit would amount to keeping terms of the order
I/gcc V l while neglecting those of the order (l/g) o:l.
%'e have then for the moderately dirty superconductors
the set EWA where Eq. (27) is reduced to G +

~
F

~

=1
and

where the ellipsis indicates higher-order terms. To com-
bine Eqs. (31) and (32), we divide Eq. (31) by %co and sum
up over all co &0. Then, taking into account Eq. (33), we
have

IV. WEAK FIELD

This is another case where the applicability of the
EWA equations is not limited to moderately dirty sam-
ples. In a weak field all quantities are close to their zero-
field values given in Eqs. (14) and (15):

~o eoF= +F), 6= +G), A=ho+6),
Po

'
&o

(35)

where the corrections F~, G~, and h~ are small. Then the
gradients are small too, e.g.,

. 2eIIA= VA~ —i Aho .
cA

(36)

This is not due to the slow variation as in the GL domain,
but rather because of the smallness of the variable part of
the function in question. Derivatives of all orders are of
the same order of magnitude here, unlike the situation in
the GL domain.

For this reason the coefficients of the gradients in Eqs.
(24) and (26) can be set equal to their zero-field values. In
particular Eq. (28) reduces to

21-
y =1+ Po (37)

so that y is r independent. We consider here two exam-
ples where the application of the E%'A equations appears
to be sufficient.

The first is the well-known but difficult problem of the
penetration of a weak magnetic field into a superconduct-
ing half-space (x &0) bordering vacuum or insulator (see,
e.g, , the last section of Ref. 5). In the gauge A„=A, =0,

—aPII'S g, ,A' co (1+2cor) AT, fi3co3

(34)
This coincides with the GL equations (12) and (13).



31 EILENBERGER EQUATIONS FOR MODERATELY DIRTY: . . 1321

Az ——A(x), and A(ao ) =0, the current density expression
(24) yields readily in a weak magnetic field

z fiD PPp+2fico ~

2y2 ctiP3
(44)

3222
A "(x)= N(0)DTb, oc fi

XQPo 1+
~ Pp A(x) .

Therefore, the penetration depth A,H is

16m e U
AH —— X(0)b,o(T)T QPp +Po

3c 2~
(38)

2+o

= b,oG 1 +Go b, 1 ficoF1, (40)—
T,

ln2' T T
—FI (41)

The correction to unity at the right of Eq. (27) contains
(F') and, therefore, should be neglected. Then, from
G +F =1 we obtain GoG& —— FpF&, so that i—n fact
Eqs. (40) and (41) contain only two unknown functions Fi
and 6&. Both E& and b

& go to zero simultaneously if the
"field" vanishes. This suggests the form of a solution

for any T and i.
As the second example, we consider the weak proximity

effect in the absence of a magnetic field. A superconduc-
tor in the half-space x & 0 borders a normal metal. If T is
close to T„ the order parameter in the superconductor is
given by the known solution of the GL equations:
b, =hotanh(x+xo)/g&LW2. ' The constant xp depends
on the properties of the two metals in contact as well as
on their interface. At large distances from the boundary

, deep in the superconductor

6=b,p
—const X exp( —x V 2/goL),

so that 5 approaches its uniform value Ao exponentially
with the characteristic length

gi =ANGL/W2 . (39)

This proximity length" is unrelated to the second materi-
al and characterizes the superconductor in question. One
expects this length to be of the order of the coherence
length g. The latter is defined, in fact, by its relation to
the upper critical field H, 2(T) =etio/2iig (T) with Po being
the flux quantum. We are going to examine the tempera-
ture dependence of the ratio gz(T)/g(T).

Far from the interface in the superconductor, the order
parameter 6 differs only slightly from b,p. Then one can
use the "weak-field" formulas (35) and (37). The EWA
equations yield

The length gz must be co independent, because b,
&

de-
pends only upon x. Thus, Eq. (44) determines the form of
P(co):

1+D«romp

i
Po Pp fiD/2—y pgq

(45)

This is to be substituted in Eqs. (42) and (41) to obtain an
equation for g~:

ln = g —P(co) . (46)
1

l
Tc 1

27TT

Taking Eq. (15) into account we rewrite this in the more
convenient form

1

„,o po
—$(co) =0 . (47)

-=0.81,
T~p, l~p

while for the clean material

=0.61 .
r-o, 1

(49)

Comparing these numbers with the GL value I/V2, we
see that the T dependence of the ratio gz/g is rather
weak.

We close this section by indicating some of the prob-
lems that can be treated with the weak-field version of the
EWA equations. These are, e. g., (a) the field dependence
of the penetration depth A.H(T, H) which is known to be
weak near T„(b) the change in A,H(T) induced by prox-
imity with a normal metal, and (c) asymptotic behavior of
the order parameter at large distances from the vortex
core. '

V. DISCUSSION

Equations (47) and (45) can be solved numerically to find

gz as a function of temperature and mean free path.
One easily confirms that as T~T„Eq. (47) generates

the correct result (39) with gGi given in Eq. (13) (see Ap-
pendix A). At T =0, the sum in Eq. (47) is replaced by
an integral:

2irTQ~ Jd(fico) .
The latter can be found analytically. Two limiting cases,
dirty and clean, are considered in Appendix B. Here are
the results. In the dirty limit

F, ( ~x) =a,(x)P(~),
where the function P depends only upon co.

Now Eq. (40) reduces to an equation for hi(x):

with a solution b. i ccexp( —x/g~) and

(42)

(43)

As we have seen the EWA equations are valid near T,
in any field as well as in a weak field at any temperature
with no restriction upon the mean free path in both cases.
In the dirty limit it transforms to Usadel equations and
holds for any H and T. Actually, in all these cases the
term 1.IIf of Eq. (17) responsible for the anisotropy of the
E function, is small. It is, however, hard to outline a re-
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gion in the HT plane where the proposed equations are
valid for a fixed mean free path. The general conditions
under which the expansions (16) are convergent rapidly
are difficult to obtain.

The moderately dirty materials are described by the
theory where the terms of the order I/g, neglected by
Usadel, are retained. We gather here the equations of this
theory:

0.9

0.8

0.7

20 10
I

2.5 1.67

2
II y (GIIF FV'6—) =66 RrpF—,

6'+ /F /'=1,
Te

ln
27TT T N)0

j =4ireN(0)DT gy ImF'IIF,

y =1+2cp~G+r(FA*+F*b, )/A .

(50)

0.5

0.4

0.3

-II F+ b, =b. fuoF . —
2 (51)

These equations certainly hold in the GL domain as well
as in a weak field. Therefore, the most severe test one
could impose on this theory is to check whether it yields
correct results at T =0 and, in the same time, in the max-
imum possible field, i.e., near FI,2. Hence, we consider
the H, 2(T, /) problem in the frame of Eqs. (50) and com-
pare the results with the exact H, 2(0, /).

Near H, 2, 6=1, while F and 6 go to 0 and
y= 1+2cpr. Then the first of Eqs. (50) reduces to

0.2

0.1

0.60.2OA35 0.1 -0.3 0.4 0.5

FICr. 1. Coherence length g d(/) at zero temperature found
by solving Eq. (55) of the theory for moderately dirty materials
at T =0. The upper curve shows gd(/) for the dirty limit. The
lowest curve g',„(/) is the exact BCS coherence length. The g's
and I are in units AU /2~T, . The impurity parameter
A, =AU/2m. T,I is given on the upper scale.

. with

AD�( 8+27./R)

2y (1 fin)8)— (53)

The coherence length must be cu independent. This deter-
mines 8(cp):

1 Duly g—
(54)

Iso+AD/2y g

The term Dr/y g =I /3y g «1 and should be neglect-
ed; only I/g terms are retained in this theory. Substitut-
ing now F=86, in the self-consistency equation [the third
in the set (50)j and taking Eq. (15) into account we obtain

)p Pp fici)+fiD/2$ (1+2rpr)

This can be solved for g(T, /). The highest field, at which
Eq. (52) has a nontrivial solution b, (r), is H, 2 r/ip/2rrg . ——

The roots g(0, /) at T =0 of Eq. (55) have been found
numerically for a number of l's. The middle curve in Fig.
1 shows the results. The mean free path / and g(0, /) are
given in units fiv/2vrT, . The upper curve shows gd(O, I)
calculated with the dirty-limit formula g»

——fiD/b, p(0) or
g'd =1.187/ in our units. The lowest curve represents the

Similar to what has been done in the preceding section, we
look for F(r,cp)=b, (r)8(cp). Then Eq. (Sl) reduces to the
form generating Abrikosov's b, (r):

(52)

exact BCS g,„(0,/) obtained in Ref. 8:

dHc2
g,„=r/ip/2irH, 2, H, 2(0) = h*(I)—

dt

Here h*(/) is almost constant: in the clean case
h "(oc )=0.73, in the dirty limit h*(0)=0.69. The slope

4p dkaL'

dt ~ ( 27' dt

and we have g,„=—h*(/)(dgoL/dt). The dimensionless
impurity parameter A, =aviv/2rrT, / is shown in Fig. 1 on
the upper horizontal scale. One can see that within, e.g.,
1% accuracy the dirty theory applies for A, )20, that cor-
responds to the ratio I/$, „=0.2. The moderately dirty
theory can be used with the same accuracy if A, )4, for
which //$, „=0.5.

In fact, the curve g'(0, /) obtained from Eq. (55) follows
pretty closely the exact g',„(0,/) up to I/g, „=l. This,
however, should not mislead one to exaggerate the accura-
cy of the theory proposed. Equation (55), which yields
g'(0, /), is correct only as long as I . /g « l. On the other
hand, the accuracy of Eqs. (50) should improve out of the
domain T-0 K and H-H, 2(0).

To conclude, we propose a scheme fEqs. (9), (24), (26),
and (27)] to describe a BCS superconductor in terms of
the Eilenberger functions averaged over the Fermi sur-
face: (f(r, rp, v)). The theory holds when the v depen-
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dence of f is weak (CxL domain, weak magnetic field,
small persistent current, weak proximity effect). In par-
ticular, it applies to moderately dirty materials [Eqs. (50)].
In fact, it improves the Usadel theory retaining terms on
the order 1/g neglected in the dirty limit. The current-
field relation remains local (as in the dirty limit) as long
as the condition l /g && 1 is satisfied.
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APPENDIX A

Equation (47) reads

A'co2(1+Dr/youp )

Pp(&o ftD—/2yokp )

bo ft coD—/2yokp

Po(Po ~/2yokp )

In the GL domain the numerator is small. Therefore, in
the denominator one can set Ap and g as zero. Then
one obtains

6p g(fico) =
~ g(fico) (1+2cor)

2 p

This yields gz ——g'oi /2 with the help of Eq. (13).

APPENDIX 8

In the dirty limit y = l. At T =0 we have instead of the sum (47)
r

1 Xdx
p ( 2+ g2)1/2 ( 2+ g2)[( 2+ g2)1/2 )

where xp ——ftD/2'. With x = Dotal this becomes

~/2 6o cosp —x p
dP

6p —xp cosf Xp

1/2
kp 2 ~ )~~ ) 1+xp/5o

2(1—xo/6p) tan
Xpl~o

The last equation is further reduced .to 2(m. —8) sin8=ir by denoting xo/hp ——cos8. The root is 8=0.8725. This yields
g~ =fiD/1. 5326 p. The dirty-limit coherence length at T =0 is g =fiD/b, p.

In the clean case y =2rPp/ft. Then the function P(co) of Eq. (45) assumes the form
1

g2 2 @2v2

P3 12P2g2
I+

Being substituted in Eq. (47) this yields

v Am
o X P3 12~. X Ps

The sums are easily found at T =0. As a result we have gz
——ftu/6bp. The clean-limit coherence length at T =0 is

027% Ubl.oThe latter is taken from Ref. 8 (see Discussion).
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