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Time evolution of the structure function of quenched Al-Zn and Al-Zn-Mg alloys
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The decomposition of Al —6.8 at. % Zn and Al —10 at. %%uoZnbinar yalloy san d ternar yalloy swith
the further addition of 0.1 at. %%uoMg, quenche d int o th emiscibilit yga pan dage da t differen t tem-
peratures (18, 40, and 80'C), has been studied by small-angle neutron scattering. The scattering
cross section dX(k, t)/d0 as a function of scattering vector k at different aging times t has been
analyzed in terms of time-evolution theory of the structure function S(k, t), proposed by Furukawa,
taking into account the scaling properties of S(k, t), the mobility M(t) of the clusters, and the dif-
fusivity DT(k, t) of a cluster gas. The results show that a simple dynamical scaling law

S(k, t) ~R (t) S(kR (t)) with a characteristic cluster size R (t) ~ t' and a universal scaling function

S(x)~x /(y/2+x +~) holds for a wide range of aging times for various samples with different ag-
ing temperatures. From the analysis we could extract the time evolution of M(t) and D&(k, t),
which should determine the evolution of S(k, t},and thus we were able to calculate numerically the
time evolution of d X(k, t)/d0 in good agreement with corresponding observed quantities.

I. INTRODUCTION

The process of decomposition in binary systems such as
alloys, glasses, and liquid mixtures, following quenching
from the homogeneous state into the miscibility gap, has
been studied for a long time not only because of its practi-
cal importance in metallurgy and the development of ma-
terials, but also from the point of view of nonequilibrium
statistical physics. The early stages of the decomposition
process can be interpreted in terms of either the nu-
cleation and growth mechanism of Becker and Doring' or
the spinodal decomposition mechanism by Cahn and Bil-
liard, Hillert, and Cook. The former mechanism was
refined into the microscopic cluster theory of nucleation
developed by Binder and Stauffer. The spinodal decom-
position mechanism was successfully developed into a
nonlinear theory by Langer, Bar-on, and Miller.

The later stages of the decomposition process were
studied by Lifshitz and Slyozov for alloys and by Siggia
for liquids. In the later stages of the decomposition, clus-
ters aggregate by a diffusion mechanism and coalesce into
larger clusters accompanied by a decrease in the free ener-

gy of the system due to the smaller surface energy. The
repetition of this process increases the cluster size R (t) in
a rather simple manner according to the power law

R(t) ~t'.
Correspondingly, the diffusivity of the cluster D(t) de-
creases as

idea was developed into a scaling formalism by
Furukawa he proposed that the structure function
S(k, t) of the system at the time t can be scaled with a sin-
gle length parameter R (t) such that

S(k, t) ~ R (t)"S(kR (t)),
where S(x) is a universal scaling function and d is the
dimensionality of the system.

Subsequently, the scaling relation was found to hold in
the results of a computer simulation using a kinetic Ising
model by Marro, Lebowitz, and Kalos. " The relation was
further confirmed in real systems, for example, in liquid
mixtures by Chou and Goldburg and in binary al)oys by
Hennion, Ronzaud, and Guyot. '

A universal scaling function S(x) was proposed by
Rikvold and Gunton' who assumed a model of spherical
clusters surrounded by depletion zones (cluster regime).
Furukawa' has obtained a scaling function of the form

2

S(x) ~ (4)y/2+x'+~ '

where x =kR (t) and y =d + 1 for off-critical concentra-
tions (cluster regime) and y =2d for the critical concentra-
tion (percolation regime) in the dynamic scaling theory.
This theory takes into account the scaling of the mobility
M(t) and susceptibility X(k, t) of the clusters such that

M(t) cxR(t)

D(t) R (t) "+" t "+". -- (2) X(k, t) ~R(t)dX(kR(t)), (6)

This fact was first noticed by Binder and Stauffer. This where g is an exponent related to the exponent a in (1) and
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X(x) is a scaling function.
In this paper we observed the small-angle neutron

scattering cross section dX(k, t)/dQ from quenched Al-
Zn and Al-Zn-Mg alloys, and compared it with a theoreti-
cal calculation of the structure function S(k, t) in the
framework of Furukawa's theory. ' ' The results show
that the scattering cross section can be scaled by the
length parameter R(t) in terms of the scaling function
S(x), as given by (4). Good agreement was obtained not
only for the scaling function S(x), but also for the time
evolution of S(k, t) including the absolute values of k, t,
and S(k, t), if we take reasonable values of the mobility
M(t) and the susceptibility X(k, t). Conversely, we could
determine the values of the mobility and the susceptibility
that account for the time evolution of S(k, t).

We used the ternary alloys with the addition of 0.1

at. %%uoof th e thir delemen t Mg to th ecorrespondin gbinary
Al-Zn system in order to stabilize the quenched-in vacan-
cies, and accordingly to control the diffusion process of
atoms governed by such vacancies. In fact, the ternary al-
loys show simpler behavior with respect to the decomposi-
tion process than the corresponding binary system, in
which quenched-in vacancies vanish rapidly and show a
kind of saturation in the decomposition process. In this
sense the ternary system represents a more ideal case of
the decomposition of the pseudobinary system.

In Sec. II the theoretical background for the present
study of decomposition is given, including the definitions
and properties of the structure function, the neutron
scattering cross section, and the two-phase model of the
binary system. In Sec. III the small-angle neutron scatter-
ing experiment and the sample preparation are described.
The results of the small-angle neutron scattering are given
in Sec. IV. In Sec. V the general trends, the scaling prop-
erties, and the time evolution of the scattering cross sec-
tion are discussed. The conclusions are summarized in
Sec. VI.

II. THEORY

A. Definition of the structure function

The structure function S(k, t) is the Fourier transform
of the space-correlation function G(r, t) of the composi-
tion rl(r, t) at time t as a parameter. These functions are
given by

S(k, t)= f 6(r, t)e'"''dr

6( r, t)=—f [g(r ', t) g][rl(r+ r ', t) r—j]dr ', —

where

6(r, t)=1—
2
[(n„n—~) +4gzz(r, t)],

(nz+nz)
where

(12)

gz~(r, t)= —f nz(r ', t)nz(r+ r ', t)dr '. (13)

The function g~z(r, t) is more tractable than 6(r, t) in a
realistic model of a binary system.

If we integrate S(k, t) over all k/(2m. ), we obtain

S(calc)=
3 f S ( k, t)d k =—f [g( r, t) —g]2d r

(2m. )'

(14)

where ( ) denotes space averaging (1/V) f dr.
The sum rule (14) shows that S(calc) is equal to the
mean-square deviation of the local composition from the
average composition. If we assume further that S(k, t) is
isotropic in the space of k, we obtain

S(calc)=, f k'S (k, t)dk,
(2m )

which is easier to calculate than (14).

B. Time evolution of the structure function

Furukawa' has derived an equation for the time evolu-
tion of the structure function of the form

S(k, r)=2M(t)k&Tkz[l —X '(k, t)S(k, t)],

where M(t) is the mobility of the clusters and depends on
the time according to the scaling law

M(t) =M, [R (t)] &=M(1)r

where R (t) is a measure of the cluster size and grows
with time according to a power law

R (t) =R (1)t' .

Furukawa found a relation between the exponents g and

c = nz /(n~ +n~ )

is the B atom concentration and V is the volume of the
system (0(c(1).

The space-correlation function G ( r, t) of the composi-
tion q(r, t) can be expressed by the space cross-correlation
function gzz(r, t) of the densities n~(r, t) and nz(r, t),

q(r, t) = [n~{r,t) —n~(r, t)],
nz+n&

(9) a =(d +/+2)-' .

Assuming a scaling property for X(k, t) of the form

(19)

nz

n
(10)

where nq(r, t) and nz(r, t) are densities of A and B
atoms, respectively, and n~ and n~ are respective average
densities ( —1 (g ( 1) and

X '(k, t)=a '[R(t)] ~X '(kR(t)), (20)

S(k, r) =a[R (t)]"S(kR (t)) . (21)

he obtained a scaling property for the solution S(k, t) of
(16) of the form
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Here the constant a is

CX
2

(22)
(1—a/)(2/y+ 1)

and the universal scaling functions X '(x) and S(x) have
the forms

and (23) gives

x (44/10+x )

3(2+x )
(33)

The calculated structure function can be normalized by
dividing S(k, t) by S(calc) to give

X '(x) = y(d +y+4)/(2d +4)+x'+'
1+y/2 y/2+x'+r (23) W""(k,t) = S(k, t),S(calc) (34)

and

(24)y/2+x'+r
The scaling function S(x) was originally derived' from
the asymptotic forms

x for small x

which should be compared with the normalized cross sec-
tion W '"'(k, t) in (48) obtained from the experiment.

It should be noted that constants M(l) in (17) and
R (1) in (18) cannot be chosen independently. There is a
relation' between M(1) and R (1),

M(1)=Mo[R (1)]

S(x) ~ '

x r for large x , a(d+2) —+1 [R(1)]d+',
2k~ T y

(35)

and the normalization property S(1)=1'. These asymp-
totic forms are reasonable assumptions, since at small x
the time-evolution equation (16) has an asymptotic form

which should be obeyed if S(k, t) has the scaling property
in (21).

The diffusion coefficient is then given by

S(k, t)=2M(t)k& Tk2 (26)

gq~(r, t) (x:
d r[R (t)]-—[R (t)] 'r

[R (t)]" (27)

due to the conservation of the number of A and 8 atoms
(conservation of the order parameter), and at large x the
cross-correlation function (13) should have the form

DT(k, t)=k~TM(t)X '(k, t)

=kg TM0[R(t)] ~X '(k, t)

=kg TM(1)t '~X '(k, t)

for given k and t at the temperature T.

D. Neutron scattering cross section

(36)

and thus

S(k, t) ~k 'd+ "[R(t)]--' (28)

where

41rCfp

leap

(2n )3 2m'
(29)

P= f x S(x)dx . (30)

For off-critical concentrations y =d + 1, and for the
three-dimensional case d =3, we have

3xS(x)=
2+x (31)

and P=2.800 by numerical calculation. In the same case
a in (22) is simplified and gives

in the case of off-critical concentrations. This latter
asymptotic form is identical with Porod's law, which is
well known in small-angle x-ray scattering. ' The scaling
function X(x) in (23) was derived' from the time-
evolution equation (16) assuming the scaling function (24)
together with the initial condition S(0)X '(0) =0.

C. Numerical calculation of the structure function

It is interesting to note that if we calculate the integral
of S(k, t) according to (15) with substitution of (21) and
(24), we obtain

= f G'(r)e'"'dr (37)

where

G'(r) =—f [p(r ') —p][p(r+ r ') —p]dr '

V
(38)

is the space-correlation function of the scattering ampli-
tude density p(r ), which is defined for a small volume v

around the position r as

(39)

where b; is the scattering amplitude of the atom at the
site r; and the sum extends over the small volume v

around r. p is the average of p(r) over the total volume
V. The formulas (37) and (38) correspond to (7) and (8),
respectively, in the structure-function formalism.

If we integrate dX(k)/dQ over all k/(2m), we obtain

X(calc)= f dk= —f [p(r) —p] dr1 dX(k) 1

(2m)3 dQ V

What we observe from the neutron scattering experi-
ment is the macroscopic cross section dX/dQ in units of
cm ' sr ', which is defined as the scattering cross section
per unit volume of the sample per unit solid angle. The
macroscopic cross section is given by

4
3(1—ag)

(32) =(p') —(p)', (40)
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which is similar to (14) for the structure function. Such
integrals can be calculated from the experiment for the
isotropic case by

(2~)3 o d Q
(41)

In practice the integration must be replaced by a sum for
a finite range of the measured values of k with finite b,k
instead of dk. The isotropic assumption is justified by the
experiment of Hennion, Ronzaud, and Guyot. '

~. --------o Initial state
I

Critical Point~~c

Q
LLj y

LLI

1 [(1—cq )b~ +c~ bg),pp=
Va

p = [(1—c )b~+c bg],1

Va

(42)

where bz and bz are scattering amplitudes of 3 and B
atoms, respectively.

Since the volume fraction of particles fz and that of the
matrix f~ are given by the lever rule, respectively, as

C —Cm

Cp
—Cm

c —c
fm

c~ —c

=1 f—
=1 fp, —

(43)

and the average of p and p are given by

&p&=f, p, +(1 f, )p. , —

&p'&=f p'+(1 —f )p',
the integral (40) can be calculated as

X(calc) =f~(1 fp )(p~ —p )'—
By the use of (42) we obtain

1
(c~ —cz )(ba b~ ), —

pp pm =
Va

and therefore

(44)

(46)

X(calc) =
z f~(1 f„)(c —cz) (bz b~)— —

Va

2 (c —c )(c~ —c)(bz bz)—=1 2

Va

(47)

The scattering cross section dX(k, t)/dQ may be divided
by X(calc) to obtain the normalized experimental struc-

E. Two-phase model for the cross section

The integral cross section X(calc) in (40) can be calcu-
lated from the two-phase model in which the average B
concentration is c and the total system is split into cluster
particles with cz B concentration, and the surrounding
matrix with c B concentration (Fig. 1).

Taking the volume of an atom to be U„ the average,
particle, and matrix scattering amplitude densities p, pz,
and p, respectively, are

p = [(1 c)bz—+ chal ],1

Va

I I

I 8
0 Cm Cl I

CONCENTRATION
FIG. I. Schematic phase diagram of binary A-B system.

Starting from the initial state at temperature T; with average B
atom concentration c, the system reaches the final state at tem-
perature T, with particle concentration c~ and matrix concen-
tration c

A

ture function

~,b,(k ), 1 dX(k t)
X(calc) d A

which should be compared with W ""(k,t) in (34).

III. EXPERIMENT

(4g)

B. Sample preparation

Two binary alloys, Al —6.8 at. %%uoZn(sampl eB)and
Al —10 at. % Zn (sample D), and two ternary alloys (sam-
ples A and C), with the further addition of O. l at. % Mg
to the corresponding binary alloys, were made from the
melt. They were shaped into rectangular parallelepipeds
with dimensions of 10)&10&32 mm . They were homo-
genized at 300 C, quenched in brine at —20'C, and subse-
quently kept at 77 K.

A. Small-angle neutron scattering experiment

The small-angle neutron scattering experiment was per-
formed at the Kyoto University Reactor (5 MW) with a
neutron guide tube and a 6-m-long small-angle scattering
apparatus. The description of the apparatus is given in
detail in separate papers' and therefore is not repeated
here. The wavelength used was about 4 A, which was
produced by a mechanical velocity selector. The area of
incidence of the neutrons on the sample was 6&28 mm
and the thickness of the sample was 10 mm. The scat-
tered neutrons were detected by a one-dimensiona1
position-sensitive detector. The absolute value of the
scattering cross section was calibrated against a standard
vanadium sample.

The observed cross sections were corrected for the back-
ground. However, no corrections were made for the finite
resolution of the scattering vector k of the spectrometer,
since the scattering curves were fairly broad. Corrections
for multiple Bragg scattering were unnecessary, since we
used fairly long wavelength neutrons of 4 A. The Placzek
correction for multiple phonon scattering was found to be
negligible, since the experiment was performed at 77 K.
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TABLE I. Composition aging temperature, exponent a' in (52), and comparison of the observed and calculated integral cross sec-
tion X'(obs), X(obs), and X(calc), defined in (50), (58), and (47), respectively.

Sample (at. %) (at. %)

Composition
Al+

Zn

Aging

temp.

(C) a'
X'(obs)

(10-'4 A-4)
X(obs)

(10-"A-4)
X(calc)

(10—14 A—4)

X'(obs)
X(calc)

r(obs)
X(calc)

B
C
D

+I
Cl
D'

6.8
6.8

10
10
6.8
6.8

10
10

0.1

0.1

0.1

0.1

80
80
80
80
40
40
18
18

0.16
0.11
0.18
0.34
0.11
0.22
0.06
0.17

3.1
2.2
4.1

4.0
10.3
10.0
5.6
6.4

3.8
3.0
6.0
5.8

16
25

8.0
8.8

4.4
44
7.7
7.7
9.2
9.2

10.1
10.1

0.70
0.50
0.53
0.52
1.12
1.10
0.56
0.63

0.86
0.68
0.78
0.75
1.74
2.72
0.79
0.87

Eight different samples were prepared in all: they were
ternary and binary alloys with 6.8 at. %%uoZnage da t 80'C
(samples A, B) and 40'C (A', B'), respectively, and those
with 10 at. %%uoZnage da t 80 C ( C, D )an d18'C (C', D'),
respectively, which are listed in Table I and shown in Fig.
2. Note that the samples C' and D' lie inside the sup-
posed spinodal line in the phase diagram. They were aged
for various periods ranging from 1, 2, 5, 10, 20, 50, 100,
200, 500, 1000 (or 800) min before the measurements.
Each measurement was carried out at 77 K to suppress
the aging and typically took half an hour.

IV. RESULTS

Some of the present results on the samples A' and B'
have already been published' and this study has been ex-
tended to six other samples ( A, B, C, D, C', D') in anoth-

400

500

cf 200
Q
LLj
CL

er independent experiment. A summary of the present
study has been reported in the Rapid Communications of
this journal.

Figure 3 shows the neutron scattering cross section
dX(k, t)/dQ as a function of scattering vector k at vari-
ous aging periods t for different compositions and dif-
ferent aging temperatures of the eight samples ( A, B, C,
D, A', B', C', D'), respectively. Note that all the abscis-
sas for k have the same scale, while some of the ordinates
for dX/dA have different scales from others. On the
whole there is a trend that as the aging time t increases
the maximum of the curve shifts towards smaller k and
the maximum value increases.

Figure 4 shows the same cross section d X(k, t) /d 0 as
in Fig. 3 as a function of aging period t at various scatter-
ing vectors k for the eight samples. The binary samples
without 0.1 at. % Mg (B, B', D, D') show the trend that
the growth of clusters ceases at an intermediate time and
reaches saturation. In the ternary samples (A, A', C, C')
the growth of clusters continues at this range of aging
time, although the growth rate is smaller than the binary
alloys.

Our neutron scattering cross sections are in agreement
with those measured by Hennion, Ronzaud, and Guyot'
from single-crystal binary alloys Al-Zn with similar con-
centrations aged at different temperatures (Fig. 2), except
that our polycrystalline samples reached saturation at ear-
lier aging times t than in the single-crystal case.

UJ
100

0
0

I

20 40 60 80

Zn (at. /) in Al —Zn
FIG. 2. Phase diagram of Al-Zn system. Circles represent

the concentrations and aging temperatures of our samples (ter-
nary alloys A, 2 ', C, C' and binary alloys B, B', D, D') in this
paper. Triangles represent those of Hennion et al. (Ref. 13).

V. DISCUSSION

A. Character of the scattering cross section

It is possible to analyze the neutron scattering data
from the point of view of the two-phase model and to ex-
tract the size of the clusters, the distance between clusters,
and the cluster density. Since such analysis will be given
later in Sec. V E, we will focus first only on the analysis of
the structure function.

' From each of the scattering curves dX(k, t)/dQ as a
function of k in Fig. 3, we can calculate the first and
second moment, k&(t) and kz(t), respectively, at each ag-
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FIG. 3. Neutron scattering cross section dX/dA (cm 'sr ') as a function of scattering vector k (A ') at different aging times t
(min) for the eight samples A, B, C, D, 2', 8', O', D', respectively. Note that the scales of the ordinates are different from each
other.

max k„dX(k, t)
dQ

'k„(t)=
dX(k, t)

dQ
min

(n =1,2),

ing time for each sample defined by

(49)

where the sum extends over the measured range of k, i.e.,
roughly from k;„=0.02 to k „=0.20 A '. Instead of
using Eq. (41) we can also calculate the following sum:

(2~) k k dQ

where the prime denotes that the sum covers the finite
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FIG. 3. (Continued).

1.0([k2(t)]'i /ki(t) (1.1 . (51)

measured range from k;„ to k,„.
The values of k|(t), [k2(t)]', the ratio

[kz(t)]' /k&(t), and X'(obs, t) were plotted logarithmical-
ly as a function of aging time t for each sample, although
the plots are not shown here. On the whole the ratio
[k2(t)]'i /ki(t) was almost constant and independent of
aging time, and the value of this ratio ranged between

Thus we were able to extract the exponent a' in the
power law

k, (t) ~ [k,(t)]'"~ t (52)

for the overall aging time for the ternary alloys ( A, A', C,
C') and for a rather limited time range up to 50 min for
the binary alloys (B, B', D, D'). The integral cross sec-
tion X'(obs, t) has a gradual increase with time t, but be-
comes almost constant at longer times. The values of a'
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where we have put

S (calc)
(54)

are in very good agreement with the original experimental
data (Fig. 3). The exponent a governing the exponential
growth of R (t)=k~'(t) by (18) and a similar exponent b
for A (t) given by

A (t) =A (1)t' (56)

x =kR(t)=kk (t) (55)

in S(x) defined by (31).
By a least-squares fit of the scattering cross section

dX(k, t)/dQ to formula (53), we obtained the two param-
eters A (t) and k (t) for each scattering curve. The
values for A(t) and k (t) thus obtained are listed in
Table II and plotted in Fig 6 for all the data. The scatter-
ing cross section dX(k, t)/dQ calculated from (53) with
these parameters A (t) and k~(t) are plotted in Fig. 7 for
all the samples as a function of k. The calculated curves

are determined from Fig. 6 for a certain limited aging,
time range with corresponding initial values at 1 min of
aging time R (1) and A (1). These values are listed in
Table III. For most of the data it was difficult to deter-
mine a single set of the exponent and the initial value,
since each curve has a kink or a curvature. Therefore, in
a later calculation we used the values of a for t &20
(samples A, C), t &20 (B, D), t & 500 (A', C'), or t & 50
(8', D') min, which represent the main features of the
process of the cluster growth.

We determined x;„and x,„corresponding to the
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minimum and maximum values k;„and k „, respec-
tively, for each scattering curve by

and
—1

xmax kmaxkm (57b)
—1

xmin =kminkm ( t) (57a) To obtain the integral (41) we calculated the following
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normalized sum:

x S(x)dx
X(obs, t) =2'( obs, t)

x S(x)dx

4~p ~" k2 dX(k, t)
(2 )3 ~ d~ ~& x S(x)dx,

min

which is the sum X'(obs, t) in (50) multiplied by a factor
to remove the effect of the finite-measured range of k.
The values for X(obs, t) are plotted in Fig. 6 for all the
samples. The logarithmic (geometric) average of X(obs, t)
for each sample X(obs) is listed in Table I. Figure 6
shows that the values of X(obs, t) are nearly constant for a
wide range of aging times t.

The values for an integral cross section with finite and
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TABLE II. Values of A (t) and k (t) defined in (53), (31), and (55) at each aging time t for all the samples;
dX(k, t)id' = A (t)3[kk '(t)]'l[2+[kk '{t)]'].

Aging time t (min)

Sample
A (cm 'sr —1)

k (A ')

A (t)
k (t)

0.0116
0.11239

10

0.033 8
0.092 02

20

0.066 1

0.074 16

50

0.1197
0.059 92

. 100

0.152 7
0.056 15

200

0.228 7
0.046 82

500

0.323 3
0.042 73

1000
( 800)

0.415 7
0.038 76

A(t)
k (t)

0.026 5
0.099 47

0.088 8
0.060 70

0.122 7
0.053 70

0.147 8
0.046 92

0.148 0
0.046 63

0.131 1

0.046 99
0.1350
0.048 52

0.1623
0.046 19

A(t)
k (t)

0.024 0
0..10924

0.051 7
0.097 90

0.123 4
0.072 57

0.219 6
0.060 87

0.353 1

0.051 50
0.475 5
0.046 74

0.705 7
0.039 42

1.037 6
0.034 58

A(t)
k (t)

0.046 3
0.100 10

0.192 8
0.060 74

0.342 4
0.049 02

0.340 3
0.047 96

0.393 9
0.045 68

0.430 2
0.044 84

0.455 0
0.044 45

0.473 0
0.045 00

A(t)
k (t)

0.043 3
0.141 43

0.059 5
0.124 13

0.0840
0.10961

0.107 9
0.095 87

0.1302
0.090 59

0.193 5
0.082 90

0.277 1

0.072 48
0.295 1

*0.073 34

A(t)
k (t)

0.0604
0.121 98

0.120 3
0.093 83

0.233 9
0.075 12

0.457 6
0.059 35

0.541 7
0.053 31

0.496 1

0.053 11
0.566 6
0.052 54

0.500 9
0.05040

C' A(t)
k (t)

A (t)
k (t)

0.0300
0.110 13

0.090 8
0.086 99

0.039 6
0.10664

0.158 4
0.071 57

0.051 1

0.101 65

0.292 3
O.OS8 25

0.069 8
0.096 05

0.415 6
0.051 59

0.090 7
0.089 36

0.500 1

O.OSO 56

0.1132
0.086 62

0.505 5
0.048 84

0.1890
0.071 08

0.541 6
0.048 34

0.192 5
0.07109

0.5180
0.048 39

TABLE III. Exponents a, g, b, and initial. characteristic size R (1)=k (1), peak cross section A (1), and mobility M{1)at t =1
min. [R(t)=R(1)t'from (18), A (t)=A(1)t by (56), and M(t)=M(1)t '~by (17) ]

Time
range

Sample (min)

k (1)
(A ')

R(1)
(A)

A(1)
(cm ' sr ')

kg TM (1)
(A /min)

&20
&20

0.27
0.15 1.67

1.57
0.43

0.181
0.108 9.26

0.0010
0.022 38 283

&20
&20

0.59
0

—3.31 1.72
0

0.23 4.35 0.0017 3 438

&20
&20

0.27
0.18 0.56

1.11
0.51

0.172
0.116 8.62

0.0034
0.035 32 138

&20
&20

0.72
0

—3.61 2.07
0

0.32 3.13 0.0017 805

& 500
& 500

0.14
0

2.14 0.53
0

0.165 6.06 0.0175 4293

B' &50
& 50

0.38
0

—2.37 1.00
0

0.23 4.35 0.0125 2 214

C' & 500
& 500

0.08
0

7.50 0.37
0

0.130 7.69 0.0165 8 080

D' &50
&50

0.29
0

—1.55 1.09
0

0.142 7.04 0.0150 18 836
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{53),with S(x}=3x /{2+x ) of (31) and x =k/k~(t) of {55},and X(obs, t}as given by (58}for the eight samples.

infinite range of k, X'(obs) and X(obs), are compared
with those calculated from the two-phase model X(calc)
as given by (47) in Table I, in which the ratios
X'(obs)/X(calc) and X(obs)/X(calc) are shown for each
sample. Parameters for the calculation of X(calc) of (47)
are given in Table IV. Although these ratios differ from
1, they are satisfactorily close to 1, if we take into account
the crudeness of the two-phase mode1.

C. Scaled structure function

(59)

In the next step we calculated the scaling function S(x)
from the observed scattering cross section dX(k, t)/dQ.
For this purpose we put X(obs), which is more realistic, in
place of X(calc) in (53) to obtain

dX(k, t) X(obs) k 3S(k/k ( ))
d 0 S(calc)
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From (29), (58), and (59) we obtain

S(x)=
dg(k t) I max

min

k2 dX(k, t) ~k
=F(x,t), (60)

where a cancels out. The function F(x, t) defined by (60)
is different from that used by Marro, Lebowitz, and

Kalos, " Chou and Goldburg, ' and Hennion, Ronzaud,
and guyot' by the factor f x S(x)dx, which elim-

min
inates the effect of the finite limits of the sum in the
denominator and ensures the normalization S(1)= 1.

Therefore, we have calculated the function F(x, t) of
(60) where x =kk '(t) and compared it with Furukawa's
universal scaling function S(x) of (31) for each sample.
The results are plotted in Fig. 8, in which the functions
F(x, t) appear to be independent of aging times t even for
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different samples and different aging temperatures, except
for the sample AI—6.8 at. %%uoZn( BandB' ) inwhic h the
range of aging time of invariant I' (x, t) is limited to aging
times less than 50 min. It is surprising to note that the
calculated function F(x, t) agrees excellently with
Furukawa's universal scaling function S(x) with the nor-
malizing character S(1)=1. Since in the samples B and

B' the growth of the cluster ceases at 50 min as seen in
Fig. 6, some different process from the other samples
might have occurred here.

D. Time evolution of the structure function

Since we were successful in correlating the universal
scaled structure function S(x) in (31) to the experimental
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TABLE IV. Parameters to calculate X(calc)=v, (c —c ){cp 'c)(b& bp) by (47) The values for
c, cp are those given by Gerold and Schweizer, (Ref. 22).

Sample

A, B
C,D
3',8'
Ct DI

0.068
0.100
0.068
0.100

Cm

0.031
0.031
0.020
0.015

Cp

0.706
0.706
0.730
0.745

(c —c )(cp —c)

0.023 61
0.041 81
0.04964
0.054 83

( bg —bg )'/U,'

1.8424x10 ' A
1.8424x 1O-"A-4
1.8424X10 ' A
1.8424x10 '2A 4

v =16.503 A
bA, =O. 3446x 1O-' A
bz„——O. 5686X 10-4 A



FUJ(I, ANND T. I'AKEDAs. KoM«A K. ~SAMURA, H.

CU

a
n(&&

'

z

31

A I
—g.B a'

z'
C3

CO

O

P.eg. A
d

gl

CL

O 0
Cl

(0
O 0

m ~-0

LV
CL

O

CL
I—

0

O
0

O0
0

, 00
n

I

TERING VECTOSCALED SCATT

A

0 i

SCALED SCATT

o

O

(Q0LL

CL

I—

Cl

V}

oo
LLJ

(f) CU0

A I
—6.8 at. % n

/ Mg
Z,'

C)

O
G30

UJ
Ct

Ioo

(f)

Oo
LLj

0

oa 0
0
0
0

o+0

o

RING VECTORSCALED SCATTE

4&

2
TERING VECTORSCALED SCATT

0

ca o = k (t) at different aging

00

gca or x =k/
S 1'd1 dk f d

F(x t) defined in
dence and samp e eg

ction S(x)=3x /structure function = /

th n calculatedcross section dX(k, t)/

(16) for S(k, t). To seouo q .1...f...,.
the orm as listed in Tab e

the framework oparameters in
M(1) in (17), w ic a(1) (18) otheory are on y Rnl R

' if R (1) is doubled,b formula (35); ito one another y
r for d =3.ust e 2 tim la ger o

extrapolation o t e cudetermine d from an ex
nding values 0fk TM6 and correspon

'

the time-evolution
h hod of

as listed in Table, t e
tion (16) with (17), (18,



129531 THE STRUCTURE FUN CTION OF. . .TIME EVOLUTION OF THE

Z.'
O

~x
0IJ

IJJ

0
CL

(f)

o o
IJJ

C3
(f) N0

B Al —6.8 at. % n

50 ITIIn

20
lo

O
I—

~x
0

LLj

I—0

I—
CA

o o
IJJ

(f) CU0

D A I
—IO at. % Zn

O

3I 2
SCALED SCATTE

oo
i 2 3 4

SCALED SCA TTERING VECTOR

O

O
Z,'

CO0
IJJ
CL

U3~ o-k'
Q
I—
(A

~ 0
LIJ

R 0

B'
O

0
ooo

A I
—6.8 at. % n

o

CO0
LJ
Cl

oo

(f)

~ 0
IJJ

N0

D' A I
— IO at. % n

0 mIn

0
OO

0
50
20
lO

5

o 3 4I 2
ECTOR, SCALED SCATTERING VE

3 40 I 2
SCALED SCA

FIG. 8. (Contt'nued).

n S(k, t) wi'th an initial condi-d
Th results of the calcu

ice of the ini ia
neutron scattering cr

were then calculated as in

d X""(k t) X(obs)
dQ S(calc)

(29) and X(obs) fromusing s of S(calc) fromusing the values o

able I.
shown as

0 I
fthee '" '"t'1es were good rep resentations o e

'
al ones

alculation some yp

curves w
~ 7 aild 4 From the calcu

k t) are pic e
w ere these values arre iven in un

2 '
(d A/10 A, an



1296 S. KOMURA, K. OSAMURA, H. FUJII, AND T. TAKEDA

Ca I c. C a I c.

E
CJ

Zo
O

C3
UJ
V) ~
v)~
V)0
LV

~ C)

CC
UJ

~o
M

A I
—6.8 at. /o Zn
—O. I at. % Mg

fTlln

E

+0
O
I—

(A~
R
(A
O

QO

LIJ

gO
cn

A I
—

I 0 at. /o Zn

—0. I at . /e Mg

0 min

0
0
0
0
0
0
5
2

C
O.O+ 0.08 0.12 O. l 6

SCATTERING VECTOR k (A-')
0.04 0.08 0.12 0.16

SCATTERING VECTOR k (A-')

A I
—6.8 at. /e Zn

O

Ca Ic.
A I

—
I 0 at. % Zn

O

C a I c.

E

O

QJ
(f) &
R

QO

LU

~o
M

—O. I at. % Mg

40 C

E

N
~C)

(/) —.
R
(A
O

QO

IX
LLI

(f)

—O. l at. % Mg

I8

00 0.04 0.08 0.12 0.16
SCATTERING VECTOR k (A )

0-
0.04 0.08 0.12 ~ 0.16

SCATTERING VECTOR k (A ')

FIQ. 9. Calculated value of dX""(k,t)/dQ (cm 'sr ') from solving the time-evolution equation (16) with parameters a and R (1)
in Table III as a function of k (A ) at different aging times t (min) for the eight samples. Note that there is a close resemblance to
the experimental data given in Fig. 7.

respectively, at typical values of aging time t and scatter-
ing vector k near the maximum of S(k).

The corresponding observed scattering cross sections
dX' (k, r)/d0 and calculated ones dX'"'(k, t)/d0 and
their ratios

[dX' '(k, t)/dA]/[dX""(k, t)ldQ]

are listed in Table VI. The ratios are mostly close to 1

and scatter in the range from 0.5 to 5. These values seem
to be satisfactory because of crudeness of the calculated
model for the decomposition process and the very small
number of parameters involved: only a and R (1) [or al-
ternatively g and M (1)].
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Intercluster distance and cluster radius

The significance of the dynamic scaling law is that the
cluster structure in the alloy system is characterized by
only a single scaling parameter R (t) =k (t), which in-
creases by a power law (18) or becomes a constant in some
binary alloys at large aging times. Therefore, all the
structural information must be included in the parameter
k (t). The quantities of importance in the cluster regime

are (i) mean intercluster distance L between the centers of
the two neighboring clusters, (ii) mean cluster radius R
and (iii) volume fraction f~ of the clusters surrounded by
the depletion zone. Since the present results appear rather
insensitive to the volume fraction of the system, we have
neglected this effect hereafter. The effect of the volume
fraction is planned to be discussed in a separate paper. '

We have calculated the Fourier transform R (y) of the
universal structure function S(x) of (31) by
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( )
4' j' ~

2~( )
slI1(Xy) d

(2m)' ' xy
(62)

with the transformation of the variable from x =kk ' to
y =rk . The result of the numerical calculation is shown
in Fig. 11. The values of y for the first zero value and the
first maximum of R (y) are given, respectively, by

Since the function R (y) is a Patterson function, which
represents a space-correlation function like G(r, t) in (8),
these values y& and y2 are related to R* and L by

2R =r) =yjk~

and

1 2.571

y2 ——6.905 .

(63)

(64)

—1L = r2 =y2k~
/

where r& and r2 are real distances corresponding to y&
and y2. Since y2/y& ——2.69 is a constant, the present
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TABLE V. Estimation of characteristic size R(t), mobility M(t), structure factor S(k, t), susceptibility P(k, t), and diffusivity

DT(k, t) for typical values of aging time t and scattering vector k for each sample.

Sample

Aging
time

(min)

10
100

1000

Scattering
vector

k
(A-')

0.095
0.055
0.04

Characteristic
size
R (t)
(A)

13.08
18.47
26.10

Mobility
kg TM(t)
(A /min)

21 528
12 106
6 808

Structure
factor
S(k, ~)
(A:)

2 460
7 384

21 567

Susceptibility
X '(k, ~)

( 10-' A.-')

2 841
526
217

Diffusivity
DT(k, t)

(A /min)

6.12
0.68
0.15

0.10 11.24 79 293 734 105.01

10
100

1000

0.105
0.05
0.035

13.05
19.75
29.89

25 528
20277
16 107

2 003
8 554

30 862

4 563
505
174

1.1.65
1.02
0.28

10 0.06 16.40 320 342 2 606 3 492 111.86

10
100
500

0.12
0.09
0.07

8.37
11.55
15.94

2 151
1 078

540

590
1 851
5 153

5 445
2 302
1 079

1.17
0.25
0.06

B' 10 0.09 10.43 17 586 986 6 157 10.83

C' 10
100
500

0.11
0.09
0.07

9.25
11.12
12.65

2 030
510
194

679
1 555
2 044

2 399
1 312

597

0.49
0.07
0.01

10 0.07 13.73 53 087 2 442 2 224 11~ 80

treatment approximates L/R*=5. 37 to a universal con-
stant.

From the relations (65) and (66) we have calculated the
mean intercluster distance

L =6.905km '

and mean cluster radius

(67)

O. l5—
O. l4l9 R *= 1.28Skm (68)

a

O. l

ICE

8

&H 0.05
N' Al

II

1

0
yp

-0.05—

3X8 (X) - 2+X6

yp = l.47

y, = 2.57l

y~ = 6.905

l0 y

yo ——1.47 (69)

as shown in Fig. 11. Since 4 of yok gives the Porod's
radius

for each scattering curve for all the samples. These values
are listed in Table VII, which gives a view of the real clus-
ter structure. This method of analysis demonstrates the
usefulness of the dynamic scaling law in the present sys-
tem. It should be stressed that such analysis is only valid
for the range of the decomposition process, where dynam-
ic scaling holds. The conditions for the dynamic scaling
to hold are that the order parameter (or the number of A
and B atoms) is conserved and that the phase boundary of
the cluster is well defined. The latter condition applies to
the late stage of the process of the cluster growth.

The extrapolation of the linear portion of R (y) to zero
at small y gives

FIG. 11. Fourier transform R(y) of {62) of the Furukawa's
universal scaling function S(x) of (31). y & and y2 are values of
y for the first zero and the first maximum of R (y), respectively.
yo is the value of y for the extrapolation of the linear portion of
R (y) to zero at small y.

Rp ——(R )/(R ) =1.103k (70)

where R is a radius of a cluster, the cluster radius R* ob-
tained from (68) in the present paper is 17% larger than
the Porod's radius Rz.
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TABLE VI. Comparison of the observed and calculated cross sections dX(k, t)/dQ for typical
values of aging time t and scattering vector k for each sample.

Scattering
vector

Aging
time Ratio

d X'"'(k, t)
dQ

dX'~(k, t)
dQ

dX' '(k t)
dQ

(cm-' sr-')(cm ' sr ')(min)Sample
d X'"'(k, t)

dQ

0.03
0.11
0.325

0.095
0.055
0.04

0.03
0.15
0.42

10
100

1000

1.0
1.36
1.29 '

0.03 0.830.0250.10

0.06
0.25
0.88

0.05
0.35
1.03

0.105
0.050
0.035

10
100

1000

0.83
1.4
1.17

10 0.06 0.19 0.28 0.68

10
100
500

0.12
0.09
0.07

0.052
0.130
0.275

0.03
0.11
0.22

1.7
1.18
1.25

0.25B' 10 0.09 0.12 0.48

C' 0.11
0.09
0.07

10
100
500

0.01
0.025
0.035

0.04
0.09
0.19

4.0
3.6
5.4

10 0.160.07 0.16 1.0

Aging time t {min)
L (A)
R* (A)

1000
( 800)2001005020Sample

178.1
33.2

161.6
30.1

147.5
27.4

123.0
22.9

115.2
21.4

93.1

17.3
61.4
11.4

75.0
14.0

146.9
27.3

149.5
27.8

142.3
26.5

148.1

27.6
128.6
23.9

147.2
27.4

69.4
12.9

113.8
21.2

63.2
11.8

11-3.4
21.1

199.7
37.2

175.2
32.6

134.1
25.0

147.7
27.5

95.1

17.7
70.5
13.1

L

153.4
28.6

151.2
28. 1

155.3
28.9

154.0
28.7

144.0
26.8

140.9
26.2

113.7
21.2

69.0
12.8

L

*94.295.3
17.7

83.3
15.5

76.2
14.2

72.0
13.4

55.6
10.4

63.0
11.7

48.8
9.1

L

129.5
24.1

137.0
25.5

131.4
24.5

130.0
24.2

116.3
21.7

73.6
13.7

B' 56.6
10.5

91.9
17.1

L

97.1

18.1
97.1

18.1

71.9
13.4

79.7
14.8

77.3
14.4

67.9
12.6

64.8
12.0

62.7
11.7

L

D' 79.4
14.8

96.5
18.0

118.5
22.1

133.8
24.9

136.6
25.4

141.4
26.3

142.8
26.6

142.7
26.6

TABLE VII. Intercluster distance L (t) =6.905k '(t) by (67) and cluster radius R*(t)=1.285k '(t) by {68)at each aging time for
all the samples.
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VI. CONCLUSION

The scattering cross section dX' '(k, t)/dQ of Al-Zn
and Al-Zn-Mg alloys has been analyzed in terms of
Furukawa's theory of the structure function S(k, t) T.he
results show that a simple dynamical scaling law
S(k, t) ~R (t) S(kR (t)) holds for a wide range of aging
times t for various samples with different aging tempera-
tures. The universal structure function S(x) ~ x /
(y/2+x +r) fits the experimental data excellently.

Satisfactory calculation of d X""(k,t) /d 0 could be ob-
tained by taking only two parameters and solving the
time-evolution equation of S(k, t) in (16). These parame-
ters are the exponent a and the initial value R (1) in the
power law of the cluster size R (t) =R (1)t' in (18), or al-
ternatively the exponent g and the initial value M(1) in
the power law of the mobility M ( t) =MOR ( t)

=M(1)t '~ in (17); the values of a and g are related by
(19) and those of R (1) and M(1) by (35). The overall ra-
tio of the observed to the calculated dX(k, t)/d0 is close
to 1 and is in the range 0.5—S. Therefore, the theory
represents a satisfactory model of the decomposition pro-
cess in alloy systems. The derived values of diffusivity of
the clusters DT(k, t) from (36), with an order of magni-
tude 10 ' cm /s, give some insight into the decomposi-
tion process.
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